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Abstract In relation to a thesis put forward by Marx Wartofsky, we seek to show that a
historiography of mathematics requires an analysis of the ontology of the part of mathe-
matics under scrutiny. Following Ian Hacking, we point out that in the history of mathe-
matics the amount of contingency is larger than is usually thought. As a case study, we
analyze the historians’ approach to interpreting James Gregory’s expression ultimate terms
in his paper attempting to prove the irrationality of m. Here Gregory referred to the last or
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ultimate terms of a series. More broadly, we analyze the following questions: which
modern framework is more appropriate for interpreting the procedures at work in texts
from the early history of infinitesimal analysis? As well as the related question: what is a
logical theory that is close to something early modern mathematicians could have used
when studying infinite series and quadrature problems? We argue that what has been
routinely viewed from the viewpoint of classical analysis as an example of an “unrigor-
ous” practice, in fact finds close procedural proxies in modern infinitesimal theories. We
analyze a mix of social and religious reasons that had led to the suppression of both the
religious order of Gregory’s teacher degli Angeli, and Gregory’s books at Venice, in the
late 1660s.

Keywords Convergence - Gregory’s sixth operation - Infinite number - Law of continuity -
Transcendental law of homogeneity

1 Introduction

Marx Wartofsky pointed out in his programmatic contribution The Relation between
Philosophy of Science and History of Science that there are many distinct possible relations
between philosophy of science and history of science, some “more agreeable” and fruitful
than others (Wartofsky 1976, p. 719ff). Accordingly, a fruitful relation between history
and philosophy of science requires a rich and complex onfology of that science. In the case
of mathematics, this means that a fruitful relation between history and philosophy must go
beyond offering an ontology of the domain over which a certain piece of mathematics
ranges (say, numbers, functions, sets, infinitesimals, structures, etc.). Namely, it must
develop the ontology of mathematics as a scientific theory itself (ibid., p. 723). A crucial
distinction here is that between the (historically relative) ontology of the mathematical
objects in a certain historical setting, and its procedures, particularly emphasizing the
different roles these components play in the history of mathematics. More precisely,
procedures serve as a representative of what Wartofsky called the praxis characteristic of
the mathematics of a certain time period, and onfology in the narrow sense takes care of the
mathematical entities recognized at that time. On the procedure/entity distinction, A.
Robinson had this to say:

...from a formalist point of view we may look at our theory syntactically and may
consider that what we have done is to introduce new deductive procedures rather
than new mathematical entities. (Robinson 1966, p. 282) (emphasis in the original)

As a case study, we analyze the text Vera Circuli (Gregory 1667) by James Gregory.
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Gregory’s Sixth Operation 135

2 Ultimate Terms and Termination of Series

Gregory studied under Italian indivisibilists' and specifically Stefano degli Angeli during
his years 1664-1668 in Padua. Some of Gregory’s first books were published in Italy. He
mathematical accomplishments include the series expansions not only for the sine but also
for the tangent and secant functions (Gonzalez-Velasco 2011).

The Vera Circuli contains a characterisation of the “termination” of a convergent series
(i.e., sequence in modern terminology). This was given by Gregory in the context of a
discussion of a double sequence (lower and upper bounds) of successive polygonal
approximations to the area of a circle:

& igitur imaginando hanc seriem in infinitum continuari, possimus imaginari vltimos
terminos couergentes [sic] esse equales, quos terminos equales appellamus seriei
terminationem. (Gregory 1667, pp. 18-19)

In the passage above, Gregory’s seriem refers to a sequence, and the expression terminus
has its usual meaning of a term of a sequence. The passage can be rendered in English as
follows:

And so by imagining this series [i.e., sequence] to be continued to infinity, we can
imagine the ultimate convergent terms to be equal; and we call those equal ultimate
terms the termination of the series. [emphasis added]

Liitzen (2014, p. 225) denotes the lower and upper bounds respectively by I, (for
inscribed) and C, (for circumscribed). Gregory proves the recursive formulas I,f 1 = Gl
_ 2G4

and Gy =7 17 Gregory  states that the “ultimate convergent terms” of the

sequences [, and C, are equal.
After having defined the two series of inscribed and circumscribed polygons, Gregory
notes:

atque in infinitum illam [=hanc polygonorum seriem] continuando, manifestum est
tandem exhiberi quantitatem sectori circulari, elliptico vel hyperbolico ABEIOP
@quale[m]; differentia enim polygonorum complicatorum in seriei continuatione
semper diminuitur, ita vt omni exhibita quantitate fieri possit minor, & vt in sequenti
theorematis Scholio demonstrabimus: si igitur predicta polygonorum series termi-
nari posset, hoc est, si inueniretur vltimum illud polygonum inscriptum (si ita loqui
liceat) @quale vltimo illi polygono circumscripto, daretur infallibiliter circuli &
hyperbola quadratura: sed quoniam difficile est, & in geometria omnino fortasse
inauditu[m] tales series terminare; premitte[n]de sunt que dam propositiones ¢
quibus inueniri possit huiusmodi aliquot serierum terminationes, & tandem (si fieri
possit) generalis methodus inueniendi omnium serierum co[n]uergentium
terminationes.

This can be translated as follows:

and that [series of polygons] being continued to infinity, it is clear that a quantity
equal to a circular, elliptic, or hyperbolic sector ABEIOP will be produced. The

' Today scholars distinguish carefully between indivisibles (i.e., codimension one objects) and infinitesi-
mals (i.e., of the same dimension as the entity they make up); see e.g., Koyré (1954). However, in the 17th
century the situation was less clearcut. The term infinitesimal itself was not coined until the 1670s; see Katz
and Sherry (2013).
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difference between [two n-th terms] in the continuation of the series of complicated
polygons always diminishes so that it can become less than any given quantity
indeed, as we will prove in the Scholium to the theorem. Thus, if the abovemen-
tioned series of polygons can be terminated, that is, if that ultimate inscribed polygon
is found to be equal (so to speak) to that ultimate circumscribed polygon, it would
undoubtedly provide the quadrature of a circle as well as a hyperbola. But since it is
difficult, and in geometry perhaps unheard-of, for such a series to come to an end
[lit.: be terminated], we have to start by showing some Propositions by means of
which it is possible to find the terminations of a certain number of series of this type,
and finally (if it can be done) a general method of finding terminations of all con-
vergent series.

The passage clearly shows that Gregory is using the term “ultimate (or last) circumscribed
polygon” in a figurative sense, as indicated by

e his parenthetical ‘so to speak,” which indicates that he is not using the term literally;
his insistence that “in geometry it is unheard-of” for a sequence to come to be
terminated.

He makes it clear that he is using the word ‘termination’ in a new sense, which is precisely
his sixth operation, as discussed below.

One possible interpretation of ultimate terms would be the following. This could refer to
those terms that are all closer than epsilon to one another. If ordinary terms are further than
epsilon, that would make them different. The difficulty for this interpretation is that, even if
ordinary terms are closer than epsilon, they are still different, contrary to what Gregory
wrote about their being equal. M. Dehn and E. Hellinger attribute to Gregory

a very general, new analytic process which he coordinates as the “sixth” operation
along with the five traditional operations (addition, subtraction, multiplication,
division, and extraction of roots). In the introduction, he proudly states “ut hae c
nostra inventio addat arithmeticae aliam operationem et geometriae aliam rationis
speciem, ante incognitam orbi geometrico.” This operation is, as a matter of fact, our
modern limiting process. (Dehn and Hellinger 1943, pp. 157-158)

We will have more to say about what this sixth operation could be as a matter of fact (see
Sect. 4 on shadow-taking). A. Malet expressed an appreciation of Gregory’s contribution
to analysis in the following terms:

Studying Gregorie’s work on “Taylor” expansions and his analytical method of
tangents, which has passed unnoticed so far, [we argue] that Gregorie’s work is a
counter-example to the standard thesis that geometry and algebra were opposed
forces in 17th-century mathematics. (Malet 1989, p. 1)

What is, then, Gregory’s sixth operation mentioned by Dehn and Hellinger, and how is it
related to convergence?

3 Law of Continuity
The use of infinity was not unusual for this period. As we mentioned in the introduction,

Gregory fit naturally in the proud Italian tradition of the method of indivisibles, and was a
student of Stefano degli Angeli at Padua between 1664 and 1668. Degli Angeli published
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Gregory’s Sixth Operation 137

sharp responses to critiques of indivisibles penned by jesuits Mario Bettini and André
Tacquet. Bettini’s criticisms were extensions of earlier criticisms by jesuit Paul Guldin.
Degli Angeli defended the method of indivisibles against their criticisms.

Both indivisibles and degli Angeli himself appear to have been controversial at the time
in the eyes of the jesuit order, which banned indivisibles from being taught in their colleges
on several occassions. Thus, in 1632 (the year Galileo was summoned to stand trial over
heliocentrism) the Society’s Revisors General led by Jacob Bidermann banned teaching
indivisibles in their colleges (Festa 1990, 1992, p. 198). Indivisibles were placed on the
Society’s list of permanently banned doctrines in 1651 (Hellyer 1996).

It seems that Gregory’s 1668 departure from Padua was well timed, for his teacher degli
Angeli’s jesuat order” was suppressed by papal brief in the same year, cutting short degli
Angeli’s output on indivisibles. Gregory’s own books were suppressed at Venice,
according to a letter from John Collins to Gregory dated 25 november 1669, in which he
writes:

One Mr. Norris a Master’s Mate recently come from Venice, saith it was there
reported that your bookes were suppressed, not a booke of them to be had anywhere,
but from Dr. Caddenhead to whom application being made for one of them, he
presently sent him one (though a stranger) refusing any thing for it. (Turnbull
1939, p. 74)

In a 1670 letter to Collins, Gregory writes:

I shall be very willing ye writ to Dr Caddenhead in Padua, for some of my books. In
the mean time, I desire you to present my service to him, and to inquire of him if my
books be suppressed, and the reason thereof. (Gregory to Collins, St Andrews, March
7, 1670, in Turnbull p. 88)

In a letter to Gregory, written in London, 29 september 1670, Collins reported as follows:
“Father Bertet® sayth your Bookes are in great esteeme, but not to be procured in Italy.”
(Turnbull p. 107).

The publishers’ apparent reluctance to get involved with Gregory’s books may also
explain degli Angeli’s silence on indivisibles following the suppression of his order, but it
is hard to say anything definite in the matter until the archives at the Vatican dealing with
the suppression of the jesuats are opened to independent researchers. Certainly one can
understand Gregory’s own caution in matters infinitesimal (of course, the latter term wasn’t
coined until later).

John Wallis introduced the symbol co for an infinite number in his Arithmetica Infin-
itorum (Wallis 1656) and exploited an infinitesimal number of the form % in area calcu-
lations (Scott 1981, p. 18), over a decade before the publication of Gregory’s Vera Circuli.
At about the same time, Isaac Barrow “dared to explore the logical underpinnings of
infinitesimals,” as Malet put it:

Barrow, who dared to explore the logical underpinnings of infinitesimals, was cer-
tainly modern and innovative when he publicly defended the new mathematical
methods against Tacquet and other mathematical “classicists” reluctant to abandon
the Aristotelian continuum. And after all, to use historical hindsight, it was the non-

2 This was an older order than the jesuits. Cavalieri had also belonged to the jesuat order.

3 Jean Bertet (1622-1692), jesuit, quit the Order in 1681. In 1689 Bertet conspired with Leibniz and
Antonio Baldigiani in Rome to have the ban on Copernicanism lifted (Wallis 2012).
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138 T. Bascelli et al.

Archimedean structure of the continuum linked to the notion of infinitesimal and
advocated by Barrow that was to prove immensely fruitful as the basis for the
Leibnizian differential calculus. (Malet 1989, p. 244).

We know that G. W. Leibniz was an avid reader of Gregory; see e.g., Leibniz (1672). To
elaborate on the link to Leibniz mentioned by Malet, note that Leibniz might have
interpreted Gregory’s definition of convergence as follows. Leibniz’s law of continuity
(Leibniz 1702, pp. 93-94) asserts that whatever succeeds in the finite, succeeds also in the
infinite, and vice versa; see Katz and Sherry (2013) for details. Thus, if one can take terms
of a sequence corresponding to a finite value of the index #n, one should also be able to take
terms corresponding to infinite values of the index n. What Gregory refers to as the
“ultimate” terms would then be the terms /,, and C, corresponding to an infinite index n.

Leibniz interpreted equality as a relation in a larger sense of equality up fo (negligible
terms). This was codified as his transcendental law of homogeneity (Leibniz 1710); see
Bos (1974, p. 33) for a thorough discussion. Thus, Leibniz wrote:

Caeterum aequalia esse puto, non tantum quorum differentia est omnino nulla, sed et
quorum differentia est incomparabiliter parva; et licet ea Nihil omnino dici non
debeat, non tamen est quantitas comparabilis cum ipsis, quorum est differentia.
(Leibniz 1695, p. 322)

This can be translated as follows:

“Furthermore I think that not only those things are equal whose difference is
absolutely zero, but also whose difference is incomparably small. And although this
[difference] need not absolutely be called Nothing, neither is it a quantity compa-
rable to those whose difference it is.”

In the 17th century, such a generalized notion of equality was by no means unique to
Leibniz. Indeed, Leibniz himself cites an antecedent in Pierre de Fermat’s technique
(known as the method of adequality), in the following terms:

Quod autem in aequationibus Fermatianis abjiciuntur termini, quos ingrediuntur talia
quadrata vel rectangula, non vero illi quos ingrediuntur simplices lineae infinitesi-
mae, ejus ratio non est quod hae sint aliquid, illae vero sint nihil, sed quod termini
ordinarii per se destruuntur.” (Leibniz 1695, p. 323)

On this page, Leibniz describes Fermat’s method in a way similar to Leibniz’s own. On
occasion Leibniz used the notation “ — ” for the relation of equality. Note that Leibniz also
used our symbol “=" and other signs for equality, and did not distinguish between “=" and
“m 7 in this regard. To emphasize the special meaning equality had for Leibniz, it may be
helpful to use the symbol — so as to distinguish Leibniz’s equality from the modern notion
of equality “on the nose.” Then Gregory’s comment about the equality of the ultimate
terms translates into

I, mC, (1)

when 7 is infinite.

4 Translation: “But the fact that in Fermat’s equations those terms into which such things enter as squares or
rectangles [i.e., multiplied by themselves or by each other] are eliminated but not those into which simple
infinitesimal lines [i.e., segments] enter—the reason for that is not because the latter are something whereas
the former are really nothing [as Nieuwentijt maintained], but because ordinary terms cancel each other
out.”
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Gregory’s Sixth Operation 139

From the viewpoint of the modern Weierstrassian framework, it is difficult to relate to
Gregory’s insight. Thus, G. Ferraro translates Gregory’s “vltimos terminos conuergentes”
as “last convergent terms” (Ferraro 2008, p. 21), and goes on a few pages later to mention

Gregory’s reference to the last term, p. 21. ... In Leibniz they appear in a clearer way.
(Ferraro 2008, p. 27, note 41) (emphasis added)

Ferraro may have provided an accurate translation of Gregory’s comment, but Ferraro’s
assumption that there is something unclear about Gregory’s comment because of an
alleged “last term”, is unjustified. Note that Ferraro’s use of the singular “last term”
(note 41) is not consistent with Gregory’s use of the plural ferminos (terms) in his book.
One may find it odd for a mathematician of Gregory’s caliber to hold that there is literally a
last term in a sequence. Dehn and Hellinger mention only the plural “last convergent
terms” (Dehn and Hellinger 1943, p. 158).

4 The Unguru Controversy

There is a debate in the community of historians whether it is appropriate to use modern
theories and/or modern notation in interpreting mathematical texts of the past, with S.
Unguru a staunch opponent, whether with regard to interpreting Euclid, Apollonius, or
Fermat (Unguru 1976). See Corry (2013) for a summary of the debate. Note that Ferraro
does not follow Unguru in this respect. Indeed, Ferraro exploits the modern notation

o0

> a (2)

i=1

for the sum of the series, already on page 5 of his book, while discussing late 16th (!)
century texts of Viete. We note the following two aspects of the notation (2):

(1) It presupposes the modern epsilontic notion of limit, where S=>° a
means Ve > 03INe N(n >N = |S— Y1 | a;| <e), in the context of a Weier-
strassian framework involving a strictly Archimedean punctiform continuum;

(2) The symbol “oco0” occurring in Ferraro’s formula has no meaning other than a
reminder that a limit was taken in the construction. In particular, this usage of the
symbol oo is distinct from its original 17th century usage by Wallis, who used it to
denote a specific infinite number, and proceeded to work with infinitesimal numbers
like % (see Sect. 3).

We will avoid choosing sides in the debate over Unguru’s proposal.” However, once one
resolves to exploit modern frameworks involving punctiform continua/number systems, as
Ferraro does, to interpret 17th century texts, one still needs to address the following
important question:

Which modern framework is more appropriate for interpreting the said historical
texts?

5 The sources of such a proposal go back (at least) to A. Koyré who wrote: “Le probléme du langage a
adopter pour 1’exposition des oeuvres du passé est extrémement grave et ne comporte pas de solution
parfaite. En effet, si nous gardons la langue (la terminologie) de I’auteur étudié, nous risquons de le laisser
incompréhensible, et si nous lui substituons la notre, de le trahir.” (Koyré 1954, p. 335, note 3).
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140 T. Bascelli et al.

Here appropriateness could be gauged in terms of providing the best proxies for the
procedural moves found in the great 17th century masters.

Hacking (2014) points out that there is a greater amount of contingency in the historical
evolution of mathematics than is generally thought. Hacking proposes a Latin model of
development (of a natural language like Latin, with the attendant contingencies of
development due to social factors) to the usual butterfly model of development (of a
biological organism like a butterfly, which is genetically predetermined inspite of appar-
ently discontinuous changes in its development). This tends to undercut the apparent
inevitability of the Weierstrassian model.

We leave aside the ontological or foundational questions of how to justify the entities
like points or numbers (in terms of modern mathematical foundations), and focus instead of
the procedures of the historical masters, as discussed in Sect. 1.

More specifically, is a modern Weierstrassian framework based on an Archimedean
continuum more appropriate for interpreting their procedures, or is a modern infinitesimal
system more appropriate for this purpose?

Note that in a modern infinitesimal framework such as Robinson’s, sequences possess
terms with infinite indices. Gregory’s relation can be formalized in terms of the standard
part principle in Robinson’s framework (Robinson 1966). This principle asserts that every
finite hyperreal number is infinitely close to a unique real number.

In more detail, in a hyperreal extension R—"R one considers the set 'R C "R of finite
hyperreals. The set 'R is the domain of the standard part function (also called the shadow)
st : 'R — R rounding off each finite hyperreal number to its nearest real number.

In the world of James Gregory, if each available term with an infinite index n is
indistinguishable (in the sense of being infinitely close) from some standard number, then
we “terminate the series” (to exploit Gregory’s terminology) with this number, meaning
that this number is the limit of the sequence. Gregory’s definition corresponds to a relation
of infinite proximity in a hyperreal framework. Namely we have

I, ~ Cy, (3)

where ~ is the relation of being infinitely close (i.e., the difference is infinitesimal), and
the common standard part of these values is the limit of the sequence. Equiva-
lently, st(f,) = st(C,). Mathematically speaking, this is equivalent to a Weierstrassian
epsilontic paraphrase along the lines of item (1) above.

Recently Robinson’s framework has become more visible thanks to high-profile
advocates like Terry Tao; see e.g., his work Tao (2014, 2016). The field has also had
its share of high-profile detractors like Errett Bishop and Alain Connes. Their critiques
were critically analyzed in Katz and Katz (2011), Katz and Leichtnam (2013), and
Kanovei et al. (2013). Further criticisms by J. Earman, K. Easwaran, H. M. Edwards,
Ferraro, J. Gray, P. Halmos, H. Ishiguro, G. Schubring, and Y. Sergeyev were dealt
with respectively in the following recent texts: Katz and Sherry (2013), Bascelli et al.
(2014, 2016), Kanovei etal. (2015), Bair etal. (2017), Btaszczyk et al.
(2016, 2017a, b), Gutman et al. (2016). In Borovik and Katz (2012) we analyze the
Cauchy scholarship of Judith Grabiner. For a fresh look at Simon Stevin see Katz and
Katz (2012).
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Gregory’s Sixth Operation 141

5 Conclusion

We note a close fit between Gregory’s procedure (1) and procedure (3) available in a
modern infinitesimal framework. The claim that “[Gregory’s] definition is rather different
from the modern one” (Ferraro 2008, p. 20) is only true with regard to a Weierstrassian
modern definition. Exploiting the richer syntax available in a modern infinitesimal
framework where Gregory’s procedure acquires a fitting proxy, it is possible to avoid the
pitfalls of attributing to a mathematician of Gregory’s caliber odd beliefs in an alleged
“last” term in a sequence.

An infinitesimal framework also enables an interpretation of the notion of “ultimate
terms” as proxified by terms with infinite index, and “termination of the series” as
referring to the assignable number infinitely close to a term with an infinite index, by
Leibniz’s transcendental law of homogeneity (or the standard part principle of Robinson’s
framework).

While some scholars seek to interpret Gregory’s procedures in a default modern post-
Weierstrassian framework, arguably a modern infinitesimal framework provides better
proxies for Gregory’s procedural moves than a modern Weierstrassian one.
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