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ABSTRACT

We study random simplicial complexes in the multi-parameter upper

model. In this model simplices of various dimensions are taken randomly

and independently, and our random simplicial complex Y is then taken to

be the minimal simplicial complex containing this collection of simplices.

We study the asymptotic behavior of the homology of Y as the number

of vertices goes to ∞. We observe the following phenomenon asymptoti-

cally almost surely. The given probabilities with which the simplices are

taken determine a range of dimensions � ≤ k ≤ �′ with �′ ≤ 2�+1, outside

of which the homology of Y vanishes. Within this range, the homology

in the critical dimension � is significantly the largest, and we specify the

precise rate of growth of the �th Betti number. For the remaining Betti

numbers in this range we give upper bounds that strongly decrease from

dimension to dimension.
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1. Introduction

In this work we are interested in random simplicial complexes in the multi-

parameter upper model. In its most general form it is described as follows.

Let Δn be the n-dimensional simplex thought of as a simplicial complex. That

is, Δn is the set of all non-empty subsets of the set {0, . . . , n} of n+ 1 vertices.

Let Ωn denote the set of all simplicial complexes Y ⊆ Δn. Given an assignment

of probabilities {pσ}σ∈Δn , 0 ≤ pσ ≤ 1, it induces a probability measure on Ωn as

follows. As an intermediate step we randomly select a hypergraph X ⊆ Δn, by

which we mean an arbitrary subset of Δn, not necessarily a simplicial complex.

Each simplex σ ∈ Δn is included in X independently with probability pσ,

i.e., the probability for obtaining X is
∏

σ∈X pσ
∏

σ �∈X qσ, where qσ = 1 − pσ.

Now, the simplicial complex produced by this random process is the minimal

simplicial complex containing X , which we denote by X. That is, X includes

all simplices of X and all their faces.

Though we will not need it in this work, we present an explicit formula for

the probability P(Y ) that a given simplicial complex Y is obtained in this ran-

dom process. That is, P(Y ) is the probability that our random hypergraph X

satisfies X = Y . Let M(Y ) denote the set of all maximal simplices in Y , then

P(Y ) =
∏
σ �∈Y

qσ
∏

σ∈M(Y )

pσ.

This is because X = Y iff X ⊆ Y and X ⊇ M(Y ). Indeed, if X ⊆ Y then

X ⊆ Y , since Y is a simplicial complex, and if X ⊇ M(Y ) then X ⊇ Y , since

every simplex in Y is contained in a maximal simplex. On the other hand,

if X = Y then X ⊆ X = Y which implies X ⊇ M(Y ), since if σ ∈ M(Y ) then

the only simplex in Y containing σ is σ itself.

We will be interested in {pσ} of a very particular form. We will be given

an (r + 1)-tuple α = (α0, . . . , αr) ∈ [0,∞]r+1. The probabilities pσ determined

by α ∈ [0,∞]r+1 are as follows. Let j = dimσ. If j > r or αj = ∞ then pσ = 0.

Otherwise pσ = n−αj .

For a fixed α ∈ [0,∞]r+1 we will be interested in the asymptotic behav-

ior of the homologies H̃i(Y ;Z) of the random complex Y as n → ∞. In the

present work we show that the parameter space [0,∞]r+1 may be divided into

domains U�, where if α ∈ U� then asymptotically almost surely (a.a.s.), that

is, with probability converging to 1 as n → ∞, the homology of Y is domi-

nated by that in dimension �. More in detail, there is �′ ≤ 2� + 1 (depending
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on α ∈ U�) such that a.a.s. the homology of Y vanishes outside the range of

dimensions � ≤ k ≤ �′. Within this range, the homology in dimension � is sig-

nificantly the largest, and we specify the precise rate of growth of the �th Betti

number. For the remaining Betti numbers in this range we give upper bounds

that strongly decrease from dimension to dimension. The dominant dimension �

is named the critical dimension. A specific special case of this phenomenon

in the upper model has been studied in [FMN].

The upper model we have just described is in contrast to the multi-parameter

lower model, which begins with the same random hypergraph X but then pro-

duces from it the maximal simplicial complex contained in X , which we denote

by X. That is, a simplex σ is in X if σ and all its faces are in X . The upper

and lower models are dual in a clear sense, and so the formula for the proba-

bility P(Y ), for obtaining a given simplicial complex Y in the lower model, is

dual to that for the upper model. Let E(Y ) denote the set of all minimal sim-

plices among those not in Y . An equivalent and geometrically more suggestive

definition is

E(Y ) = {σ ∈ Δn : σ �∈ Y but ∂σ ⊆ Y }.
(This includes the case that σ is a vertex v not in Y since then ∂v = ∅ ⊆ Y .)

We have

P(Y ) =
∏
σ∈Y

pσ
∏

σ∈E(Y )

qσ.

This is because X=Y iff X⊇Y and X∩E(Y )=∅. Indeed, if X⊇Y then X⊇Y ,

since Y is a simplicial complex, and if X ∩E(Y ) = ∅ then X ⊆ Y , since every

simplex not in Y contains a simplex which is minimal among those not in Y .

On the other hand if X = Y then X ⊇ X = Y which implies X ∩ E(Y ) = ∅,

since if σ ∈ X ∩ E(Y ) then Y ∪ {σ} is a simplicial complex contained in X .

The sets appearing in the formulas for P and P are Y,M(Y ), E(Y ), which

have clear geometric meaning in terms of Y , but make the duality slightly

less apparent. From the point of view of duality one may like to add the

notation Y c for the set of all simplices not in Y . Then E(Y ) is the set of minimal

simplices in Y c and so may be denoted m(Y c). In terms of this notation we

have P(Y ) =
∏

σ∈Y c qσ
∏

σ∈M(Y ) pσ and P(Y ) =
∏

σ∈Y pσ
∏

σ∈m(Y c) qσ. This

makes the duality completely transparent, one formula is obtained from the

other by everywhere exchanging Y ↔ Y c, M ↔ m, p ↔ q. For more on the

duality between the upper and lower models see [FMN].
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The phenomenon of critical dimension also holds in the lower model. This

has been established in [CF3]. The asymptotic behavior observed in the lower

model resembles that of the upper model but occurs for a different division of

the parameter space into domains U�. More on the lower model may be found

in [CF1], [CF2], [F].

2. Definitions and statement of result

For a fixed integer r ≥ 0 we study random simplicial complexes of dimen-

sion ≤ r. We are given an (r + 1)-tuple α = (α0, . . . , αr) ∈ [0,∞]r+1, and an

integer n ≥ 0. With this data we produce a random hypergraph X by taking

each simplex σ of dimension 0 ≤ i ≤ r on the vertex set {0, . . . , n} indepen-

dently with probability n−αi (where by definition n−∞ = 0). Our random

simplicial complex Y is then defined to include all the simplices in X and all

their faces.

We are interested in the asymptotic behavior of our random simplicial com-

plex Y , by which we mean the following. We fix the parameters (α0, . . . , αr),

and we take n to be larger and larger. The asymptotic behavior is then described

in terms of the following probabilistic notion.

Definition 2.1: If for every n we have a random object Z = Z(n), and if T is

a property that Z may or may not have, then we say T holds asymptotically

almost surely (a.a.s.) if the probability that T holds converges to 1 as n → ∞.

Given α = (α0, . . . , αr) ∈ [0,∞]r+1 we define βi = i+ 1− αi and set

(2.1) β = β(α) = max{β0, . . . , βr} ≤ r + 1.

We divide our space of parameters V = [0,∞]r+1 into domains U− and U0, . . . ,Ur

where U− = {α ∈ V : β(α) < 0} and U� = {α ∈ V : � < β(α) < � + 1}
for 0 ≤ � ≤ r. The asymptotic behavior of our random simplicial complex Y

is as follows. If α ∈ U−, i.e., β < 0, then Y = ∅ a.a.s., see Proposition 3.1.

If α ∈ U� for 0 ≤ � ≤ r, i.e., β > 0 is not an integer and � = β� (the integer

part of β), then there is �′ ≤ 2β� (depending on α ∈ U�) such that a.a.s. the

homology of Y vanishes outside the range of dimensions � ≤ k ≤ �′. The �th

Betti number grows like dnβ, and for the remaining Betti numbers in this range

we give upper bounds that strongly decrease from dimension to dimension. The

precise details are stated in Theorem 2.3, for which we need one more definition.
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Definition 2.2: For two quantities a = a(n), b = b(n):

(1) We say a ∼ b if a
b → 1 as n → ∞.

(2) If a is a random quantity then we say a ∼ b a.a.s. if there is a sequence

εn → 0 such that |ab −1| < εn a.a.s., or equivalently, if there is a sequence

cn such that |a− b| < cn a.a.s. and cn
b → 0.

Theorem 2.3: Let Y be the random simplicial complex in the multi-parameter

upper model determined by parameters α = (α0, . . . , αr), and let β = β(α) be

as in (2.1). Assume β > 0, β �∈ Z, and define the critical dimension � = β�.
We further define the following quantities:

d =
∑

i,βi=β

1

(i + 1)�!(i− �)!
,(2.2)

νk = 2γk − k with γk = max{βk, . . . , βr},(2.3)

�′ = max{k : νk ≥ 0}.(2.4)

Then the following holds a.a.s. (Definition 2.1):

• Y has full (�− 1)-skeleton.

• Y may be collapsed into its �′-skeleton, having � ≤ �′ ≤ 2β� ≤ 2�+ 1.

Let bk(Y ) denote the kth Betti number of Y , then furthermore, for every se-

quence ω = ω(n) → ∞ the following holds a.a.s.:

• For k < �, H̃k(Y ;Z) = 0.

• For k = �, b�(Y ) ∼ dnβ .

• For � < k ≤ �′, bk(Y ) ≤ ωnνk having ν�+1 < β and νk+1 ≤ νk − 1 for

all k.

• For k > �′, H̃k(Y ;Z) = 0.

We make the following remarks:

(1) The constant d depends on α, but it attains only finitely many different

values. Indeed, d is determined by the (non-empty) set of indices i for

which βi = β. By Remark 3.2 below if βi = β then i ≥ �. So we have a

stratification of U� into 2r−�+1−1 strata, on each of which d is constant.

These strata are convex (for this to be meaningful we need to exclude

the values αi = ∞). The domain U� itself is connected, but in general

it is not convex.
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(2) We think of the piecewise linear hypersurfaces {α ∈ V : β(α) = �}
that separate between the domains U� in the parameter space V as

multi-parameter thresholds for passing from one typical behavior to

another. For example, on one side of the piecewise linear hypersur-

face {α ∈ V : β(α) = �+ 1}, in U�, we have H̃�(Y ;Z) very large, namely

b�(Y ) ∼ dnβ a.a.s. and on the other side of this hypersurface, in U�+1,

we have H̃�(Y ;Z) = 0 a.a.s.

(3) We have noted that β ≤ r + 1. The boundary case where β = r + 1 is

easily understood. In this case αr = 0, so every r-simplex is included

in our random hypergraph X with probability 1, and so Y is the full

r-skeleton on {0, . . . , n} with probability 1.

(4) If ν�+1 < 0 then �′ = �, meaning that the case � < k ≤ �′ of the theorem
is empty. That is, all the homology of Y appears only in dimension �.

In general we have γ�+1 ≤ β < �+1, whereas the present case ν�+1 < 0

means γ�+1 < 1
2 (�+ 1).

The plan of the paper is as follows. In Section 3 we are interested in the

number fk of k-simplices in Y for k ≥ �, and give the asymptotic behavior

of fk in Proposition 3.5. In Section 4 we are interested in the Betti num-

bers bk(Y ) for k ≥ �. The asymptotic behavior of these Betti numbers is given

in Propositions 4.6, 4.7, 4.9. This is achieved by collapsing Y onto a smaller

subcomplex Y ′. In Section 5 we are interested in H̃k(Y ;Z) for k < �, showing in

Propositions 5.5, 5.6 that H̃k(Y ;Z) = 0 a.a.s. This is achieved by a modification

of our random model that reduces it to that of Linial–Meshulam. Propositions

4.6, 4.7, 4.9, 5.5, 5.6 together constitute Theorem 2.3.

3. Counting simplices

Let gi denote the number of i-simplices in our random hypergraph X . Then gi

is a binomial random variable with parameters
(
n+1
i+1

)
, n−αi , so

(3.1) Egi =

(
n+ 1

i+ 1

)
n−αi ∼ 1

(i + 1)!
ni+1−αi =

1

(i+ 1)!
nβi

where Egi denotes the expectation of gi. Our first domain U− = {β < 0} is

easily understood:

Proposition 3.1: If β < 0 then a.a.s. X = ∅ and so Y = ∅.
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Proof. If β < 0 then βi < 0 for all 0 ≤ i ≤ r. Markov’s inequality gives

P(gi ≥ 1) ≤ E(gi) → 0

by (3.1), i.e., gi = 0 a.a.s. for each 0 ≤ i ≤ r, so X = ∅ a.a.s.

For the rest of this work we fix an integer 0≤�≤r and an α=(α0, . . . , αr)∈U�.

That is, for our fixed � we have

(3.2) � < β < �+ 1.

This may also be stated as follows: We assume 0 < β < r + 1, β �∈ Z, and we

set � = β�. For 0 ≤ k ≤ r let fk = fk(Y ) denote the number of k-simplices in Y .

Our first goal is to approximate fk for k ≥ �. Since for every i ≥ k each i-simplex

of X contributes
(
i+1
k+1

)
k-simplices to Y , we have fk ≤ ∑r

i=k

(
i+1
k+1

)
gi. It is only

an inequality since different i-simplices may contribute the same k-simplex.

This sum will be central in our computations so we denote ĝk =
∑r

i=k

(
i+1
k+1

)
gi

and we have

(3.3) fk ≤ ĝk.

By (3.1) we have

(3.4)

Eĝk =

r∑
i=k

(
i + 1

k + 1

)(
n+ 1

i+ 1

)
n−αi =

(
n+ 1

k + 1

) r∑
i=k

(
n− k

i− k

)
n−αi

∼
r∑

i=k

nβi

(k + 1)!(i− k)!
.

Equality holds by the identity
(
i+1
k+1

)(
n+1
i+1

)
=

(
n+1
k+1

)(
n−k
i−k

)
which is true since both

sides count the number of pairs of simplices (σ, τ) with dimσ = k, dim τ = i,

σ ⊆ τ .

Remark 3.2: If i is such that βi = β then i ≥ �. Indeed, by (3.2) we

have � < β = βi = i+ 1− αi ≤ i+ 1, so � ≤ i. Note that there may be more

than one i such that βi = β.

Recall from (2.3) that we define γk = max{βk, . . . , βr}. By Remark 3.2 we

have

(3.5) γ� = β.

We have γk ≤ β < �+ 1 by (3.2), so for every k ≥ � we have

(3.6) γk < k + 1.
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In Lemma 3.3 we give a bound on the difference ĝk − fk for k ≥ �. In the

present section it will be used for evaluating fk via an evaluation of ĝk. In the

next section it will be used for estimating the extent to which the simplices

of X overlap. Note for example that ĝk − fk = 0 iff every two simplices of X of

dimension ≥ k intersect in dimension < k.

Lemma 3.3: Let k ≥ �. For any sequence ω → ∞ we have ĝk−fk < ωn2γk−k−1

a.a.s.

Proof. For a given k-simplex σ and i ≥ k, there are
(
n−k
i−k

)
i-simplices that

contain σ, and so we have

P(σ ∈ Y ) = 1−
r∏

i=k

(1− n−αi)(
n−k
i−k).

Let Ni =
(
n−k
i−k

)
, ui = n−αi . We have

P(σ ∈ Y ) = 1−
r∏

i=k

(1− ui)
Ni =1−

r∏
i=k

(
1−Niui +

(
Ni

2

)
u2
i −

(
Ni

3

)
u3
i + · · ·

)

≥ 1−
r∏

i=k

(
1−Niui +

(
Ni

2

)
u2
i

)
≥ 1−

r∏
i=k

(1 −Niui + (Niui)
2).

The first inequality holds since for each i,
(
Ni

j

)
uj
i is decreasing in j. Indeed,

for j < Ni (
Ni

j+1

)
uj+1
i(

Ni

j

)
uj
i

=
Ni − j

j + 1
ui ≤ Niui =

(
n− k

i− k

)
n−αi

≤ ni−k−αi = nβi−k−1 ≤ nγk−k−1 < 1

by (3.6). (For the first factor i = k we have Nk = 1 and the inequality for

this factor is seen directly.) So we have P(σ ∈ Y ) ≥ ∑r
i=k Niui −

∑
j Tj

where each term Tj is a product of at least two factors of the form Niui, and

there are less than 3r+1 such terms. Again using Niui ≤ nγk−k−1 < 1 we

get P(σ ∈ Y ) ≥ (
∑r

i=k Niui)(1 − cnγk−k−1) for a constant c > 0. Thus

Efk =

(
n+ 1

k + 1

)
P(σ ∈ Y ) ≥

(
n+ 1

k + 1

)( r∑
i=k

Niui

)
(1− cnγk−k−1)

= Eĝk(1− cnγk−k−1)
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by (3.4), which may be rewritten as E(ĝk − fk) ≤ cnγk−k−1Eĝk. Now, by (3.4)

we have Eĝk ≤ c′nγk for some c′ > 0, so together

E(ĝk − fk) ≤ cc′n2γk−k−1.

Since ĝk − fk ≥ 0 we may use Markov’s inequality

P(ĝk − fk ≥ ωn2γk−k−1) ≤ E(ĝk − fk)

ωn2γk−k−1
→ 0.

We will have two occasions to use the following lemma, with different choices

of coefficients.

Lemma 3.4: Given ak, . . . , ar with ai > 0, let ga =
∑r

i=k aigi. We have:

(1) If γk > 0 then ga ∼ Aanγk a.a.s. with Aa =
∑

i≥k,βi=γk

ai

(i+1)! .

(2) If γk = 0 then for every sequence ω → ∞ we have ga ≤ ω a.a.s.

(3) If γk < 0 then ga = 0 a.a.s.

Proof. We prove in the opposite order:

(3) As in Proposition 3.1.

(2) If there are k ≤ i ≤ r with βi < 0 then (3) applies to them. For i

with βi = 0, i.e., αi = i + 1, gi is a binomial random variable with parameters(
n+1
i+1

)
, n−(i+1). We have (

n+ 1

i+ 1

)
n−(i+1) → 1

(i+ 1)!
,

so the distribution of gi converges to a Poisson distribution, the claim follows.

(1) If there are k ≤ i ≤ r with βi ≤ 0 then (3) or (2) apply to them,

taking ω = nε with 0 < ε < γk when (2) applies. For i with βi > 0, gi is

a binomial random variable with parameters
(
n+1
i+1

)
, n−αi , so by Chebyshev’s

inequality we have

P(|gi −Egi| ≥ n
2
3βi) ≤ Var(gi)

n
4
3βi

=

(
n+1
i+1

)
n−αi(1 − n−αi)

n
4
3βi

≤ (n+ 1)βi

n
4
3βi

→ 0.

By (3.1) we have

Egi ∼ 1

(i+ 1)!
nβi

so n
2
3
βi

Egi
→ 0 so gi ∼ Egi a.a.s. so gi ∼ 1

(i+1)!n
βi a.a.s. The claim follows.

We arrive at the main result of this section.
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Proposition 3.5: Let fk be the number of k-simplices in Y . For k ≥ � we

have:

(1) If γk > 0 then fk ∼ Dkn
γk a.a.s. with Dk =

∑
i≥k,βi=γk

1
(k+1)!(i−k)! .

(2) If γk = 0 then for every sequence ω → ∞ we have fk ≤ ω a.a.s.

(3) If γk < 0 then fk = 0 a.a.s.

Proof. Take ai =
(
i+1
k+1

)
in Lemma 3.4, giving ga = ĝk.

(1) We have Aa = Dk so by Lemma 3.4(1) we have ĝk ∼ Dkn
γk a.a.s. Now

let ω = n
1
2 (k+1−γk) then ω → ∞ by (3.6), and ĝk − fk < ωn2γk−k−1 = 1

ωn
γk

a.a.s. by Lemma 3.3. This gives fk ∼ Dkn
γk a.a.s.

For (2) and (3) use fk ≤ ĝk and Lemma 3.4(2),(3).

We mention that fk for k < � is given by Proposition 5.6 below (which is part

of Theorem 2.3). Namely, for k < � we have fk =
(
n+1
k+1

)
a.a.s.

4. Collapsing simplices

We recall the definition of a collapse of a simplicial complex Y . If ρ � σ are

two simplices in Y such that σ is the unique simplex in Y strictly containing ρ

(so σ is maximal in Y and dimσ = dim ρ + 1) then the removal of ρ and σ

from Y is called an elementary collapse of Y . A collapse of Y is a sequence

of elementary collapses. If Y ′ ⊆ Y is the subcomplex remaining after a collapse

of Y then Y ′ is homotopy equivalent to Y .

Recall X is the random hypergraph that produces our random simplicial

complex Y , and let k ≥ �. Let Yk = {σ ∈ Y : dimσ = k}. Let

Xk+ = {τ ∈ X : dim τ ≥ k},

which are all the simplices in X that contribute k-simplices to Y .

Definition 4.1: Let τ ∈ X and k ≥ �. We say that τ is k-good if τ ∈ Xk+

and for any other τ ′ ∈ Xk+ we have dim(τ ∩ τ ′) < k. We say that τ is k-bad

if τ ∈ Xk+ and τ is not k-good.

To avoid confusion in the sequel, we emphasize that being k-good or k-bad

is a property of simplices in X , not in Y , and it is a property of simplices of

dimension at least k, not just k. We also note that if � ≤ k ≤ i and τ is a

k-good i-simplex, then τ is also j-good for every k ≤ j ≤ i.
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Definition 4.2: Let τ ∈ X .

(1) We say τ is good if τ is k-good for some k ≥ �.

(2) If τ is good then we denote by G(τ) the minimal k ≥ � such that τ is

k-good.

Lemma 4.3: The simplicial complex Y may be collapsed onto a subcomplex

Y ′ ⊆ Y such that for every good simplex τ , if i = dim τ and k = G(τ) then:

(1) All j-faces of τ with j > k are removed.

(2) All j-faces of τ with j < k remain.

(3) Precisely
(
i
k

)
of the k-faces of τ remain.

Proof. We describe the collapse corresponding to each good simplex. Let

τ = {v0, . . . , vi} be a good i-simplex with G(τ) = k. By definition i ≥ k and

assume first that k > 0. Let τ̂ denote the subcomplex of Y consisting of τ and

all its faces, and let τ0 = {v1, . . . , vi} be the (i − 1)-face of τ opposite to v0.

For j ≤ i− 1 let Δj denote the j-skeleton of τ̂0, and let v0 ∗Δj denote the cone

over Δj with vertex v0. We collapse τ̂ onto v0 ∗Δk−1 doing it step by step

τ̂ = v0 ∗Δi−1 −→ v0 ∗Δi−2 −→ · · · −→ v0 ∗Δk−1.

For the collapse v0 ∗ Δj → v0 ∗ Δj−1 we go over all j-simplices ρ ∈ Δj , and

for each such ρ we remove the pair of simplices ρ, {v0} ∪ ρ. See Figure 1

where i = 3, k = 1. For all this to be a collapse, the following needs to hold at

each stage. If τ̂ has already been collapsed onto v0 ∗Δj with j ≥ k, and ρ ∈ Δj

is a j-simplex, then {v0} ∪ ρ is the only simplex that strictly contains ρ. This

is indeed true since ρ is a maximal simplex in Δj , and since τ was a k-good

simplex and dim ρ = j ≥ k.

Figure 1. τ̂ = v0 ∗Δ2 −→ v0 ∗Δ1 −→ v0 ∗Δ0
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We have collapsed τ̂ onto v0 ∗Δk−1. We note that Δk−1 includes
(
i
k

)
(k−1)-

simplices, and so v0∗Δk−1 includes
(
i
k

)
k-simplices as claimed in (3), completing

the case k > 0. If k = 0 then τ is disjoint from all other simplices of X , so τ̂

may be collapsed to {v0} and the claim holds as well.

In view of Lemma 4.3, for each k ≥ � we would like to have a bound on the

number of k-bad simplices.

Definition 4.4: Let Bk = Bk(X) denote the number of k-bad simplices.

Lemma 4.5: Let k ≥ �. For any sequence ω → ∞ we have

Bk ≤ ωn2γk−k−1 a.a.s.

Proof. We show Bk ≤ 2(ĝk−fk) which together with Lemma 3.3 establishes our

claim. For σ ∈ Yk, letMσ = {τ ∈ Xk+ : τ ⊇ σ} and let mσ = |Mσ| (the number

of elements in Mσ), so mσ ≥ 1. We claim ĝk =
∑

σ∈Yk
mσ. Indeed, both sides

of the equality count the number of pairs (σ, τ) ∈ Yk × Xk+ with σ ⊆ τ . On

the other hand fk =
∑

σ∈Yk
1. So

ĝk − fk =
∑
σ∈Yk

(mσ − 1) =
∑

σ∈Yk,mσ≥2

(mσ − 1).

Now if τ ∈ Xk+ is a k-bad simplex and τ ′ ∈ Xk+ , τ ′ �= τ , is such that

dim(τ ∩ τ ′) ≥ k then τ ∩ τ ′ contains a k-simplex σ. Thus, a simplex τ ∈ Xk+

is k-bad iff τ contains a k-simplex σ with mσ ≥ 2, that is, the set of all k-bad

simplices is
⋃

σ∈Yk,mσ≥2 Mσ. So we have

Bk=

∣∣∣∣ ⋃
σ∈Yk,mσ≥2

Mσ

∣∣∣∣ ≤ ∑
σ∈Yk,mσ≥2

mσ≤
∑

σ∈Yk,mσ≥2

2(mσ−1)=2(ĝk−fk).

Recall bk(Y ) denotes the kth Betti number of Y .

Proposition 4.6: For k > � let νk be as in (2.3), then the following holds:

(1) Given any sequence ω → ∞ we have bk(Y ) ≤ ωnνk a.a.s.

(2) If νk < 0 then Y is collapsible into its (k − 1)-skeleton a.a.s. so

H̃k(Y ;Z) = 0 a.a.s.
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Proof. Let Y ′ denote the collapsed complex given by Lemma 4.3 and let f ′
k

denote the number of k-simplices in Y ′.
(1) Let σ ∈ Y ′ ⊆ Y be a k-simplex, then there is τ ∈ Xk+ ⊆ X(k−1)+ such

that τ ⊇ σ, and we claim that τ is (k − 1)-bad. Indeed, otherwise τ is (k − 1)-

good so G(τ) ≤ k − 1 and so by Lemma 4.3(1) σ has been removed during

the collapse. This gives f ′
k ≤ (

r+1
k+1

)
Bk−1 since an i-simplex contains

(
i+1
k+1

)
k-simplices and

(
i+1
k+1

) ≤ (
r+1
k+1

)
. By Lemma 4.5 we get f ′

k ≤ ωn2γk−1−k a.a.s.

To obtain (1) we need to replace γk−1 with γk in the last inequality. To

achieve this we also look at the hypergraph X̃ obtained from X by deleting

all (k − 1)-simplices. Let Ỹ , Ỹ ′, f̃ ′
k etc. be the corresponding objects. The

possibilities for collapsing simplices of dimension ≥ k in Y and Ỹ are identical,

so we look at the collapse assigned to Ỹ by Lemma 4.3 and apply it to the

simplices of dimension ≥ k in Y . (Some (k− 1)-simplices of Y are also removed

in this process.) We thus obtain a collapse of Y after which f̃ ′
k k-simplices

remain, so bk(Y ) ≤ f̃ ′
k. The random model that starts with X and then deletes

all (k − 1)-simplices to obtain X̃ is equivalent to our usual model only with a

different assigned probability in dimension k − 1, namely, n−αk−1 is replaced

with 0, i.e., α̃k−1 = ∞. This gives β̃k−1 = −∞ so γ̃k−1 = γk. Being equivalent

to the usual model, the bound concluding the previous paragraph applies, and

we get

bk(Y ) ≤ f̃ ′
k ≤ ωn2γ̃k−1−k = ωn2γk−k = ωnνk a.a.s.

(2) We continue looking at the collapse of Y induced by that of Ỹ . We

have f̃ ′
k ≤ ωnνk a.a.s. and if νk < 0 then we can take ω = nε with ε > 0 such

that νk + ε < 0, so ωnνk → 0. But f̃ ′
k is a sequence of non-negative integers so

in fact f̃ ′
k = 0 a.a.s.

We remark about the proof above, that the difference between f ′
k and f̃ ′

k is

only due to our specific definition of (k− 1)-good, which in turn determines the

specific collapse of Lemma 4.3. There may be an i-simplex τ with i ≥ k which

is (k − 1)-good in X̃ , but there is a (k − 1)-simplex σ in X with σ ⊆ τ so τ

is (k − 1)-bad in X . In our modified collapse of Y using X̃, such τ gets to be

collapsed. The collapse of Lemma 4.3 with no modification will be used in the

proof of Proposition 4.9, followed by a discussion of its efficiency.

We now show that the exponents νk and the dimension �′ satisfy the properties
stated in Theorem 2.3.
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Proposition 4.7: The exponents νk defined in (2.3) and �′ defined in (2.4)

satisfy the following:

(1) ν�+1 < β.

(2) νk+1 ≤ νk − 1 for all k.

(3) � ≤ �′ ≤ 2β�.
Proof. (1) ν�+1 = 2γ�+1 − �− 1 ≤ 2β − �− 1 < β by (3.2).

(2) νk+1 = 2γk+1 − k − 1 ≤ 2γk − k − 1 = νk − 1.

(3) We have ν� = 2γ� − � = 2β − � > β > 0 by (3.5) and (3.2), so � ≤ �′ ≤ r.

(We use ν� only here, otherwise only νk with k > � is of interest.) Now as-

sume 2β� < r, otherwise we are done. If � < β < � + 1
2 then 2β� = 2� and

ν�+1 ≤ 2β − �− 1 < �, so by iterating (2) � times we have ν2�+1 < 0 so

�′ ≤ 2� = 2β�.
(ν2�+1 is indeed defined since 2� = 2β� < r.) Similarly, if � + 1

2 ≤ β < � + 1

then 2β� = 2�+1 and ν�+1 ≤ 2β− �− 1 < �+1 so by iterating (2) �+1 times

we have ν2�+2 < 0 so

�′ ≤ 2�+ 1 = 2β�.
(ν2�+2 is indeed defined since 2�+ 1 = 2β� < r.)

We now evaluate b�(Y ), again via the collapsed complex Y ′. By Lemma 4.3(3)

every �-good i-simplex τ contributes
(
i
�

)
�-simplices after being collapsed, as

opposed to the
(
i+1
�+1

)
�-simplices contained in τ before the collapse. We would

thus like to have a “collapsed version” of our quantity ĝ� where we replace the

coefficients
(
i+1
�+1

)
by

(
i
�

)
.

Lemma 4.8: Let g′ =
∑r

i=�

(
i
�

)
gi, then g′ ∼ dnβ a.a.s. with d given in (2.2).

Proof. Take k = � and ai =
(
i
�

)
in Lemma 3.4, then ga = g′. By (3.5) we have

γ� = β > 0, so case (1) of Lemma 3.4 applies. Finally, by Remark 3.2, i ≥ � for

every i such that βi = β, so Aa = d.

Proposition 4.9: b�(Y ) ∼ dnβ a.a.s. with d given in (2.2).

Proof. As before, let Y ′ denote the collapsed complex given by Lemma 4.3 and

let f ′
k denote the number of k-simplices in Y ′. For i ≥ � denote by gGi the number

of �-good i-simplices. By definition of G(τ), if τ is �-good then G(τ) = �, and

so by Lemma 4.3(3) every �-good i-simplex contributes
(
i
�

)
�-simplices to Y ′.
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By definition of �-good simplices there is no overlap in these contributions, so

we have

(4.1)

r∑
i=�

(
i

�

)
gGi ≤ f ′

� ≤
r∑

i=�

(
i

�

)
gGi +

(
r + 1

�+ 1

)
B�.

We further note that gi −B� ≤ gGi ≤ gi for every i. Substituting this into (4.1)

gives g′ − cB� ≤ f ′
� ≤ g′ + cB� for some c > 0, where by Lemma 4.8 we

have g′ ∼ dnβ a.a.s. By (3.2) we have 2β − � − 1 < β and take ε > 0 so

that δ = 2β− �− 1+ ε < β. Taking ω = nε in Lemma 4.5 we get B� ≤ nδ a.a.s.

since γ� = β by (3.5). Together we get that f ′
� ∼ dnβ a.a.s.

Now, in the proof of Proposition 4.6 we noted that f ′
�+1 ≤ cB� for some c > 0

so f ′
�+1 ≤ cnδ a.a.s. Furthermore f ′

�−1 ≤ (
n+1
�

) ≤ (n + 1)� and � < β by (3.2).

So using f ′
� − f ′

�+1 − f ′
�−1 ≤ b�(Y ) ≤ f ′

� we get b�(Y ) ∼ dnβ a.a.s.

Our collapse pattern of Lemma 4.3 involves certain choices that may seem

arbitrary and perhaps not as efficient as possible. We can now see that in

dimension � only negligible further collapse may be possible. Indeed, by the

proof of Proposition 4.9 the number of �-simplices in our particular collapse

satisfies f ′
� ∼ dnβ a.a.s. and let f ′′

� (Y ) denote the minimal number of �-simplices

in any collapse of Y . Then b�(Y ) ≤ f ′′
� (Y ) ≤ f ′

� and so also f ′′
� (Y ) ∼ dnβ a.a.s.

We would like to compare the behavior of bk(Y ) described in Propositions 4.6

and 4.9 to that of fk(Y ) described in Proposition 3.5. For k = � we have the

same exponent β by (3.5). As to the coefficient, in general d < D� since each

term in the sum for d is �+1
i+1 times the corresponding term in the sum for D�.

This reflects the fact that when collapsing an �-good i-simplex τ , a fraction(
i
�

)(
i+1
�+1

) =
�+ 1

i+ 1

of the �-faces of τ survive the collapse.

For k > �, the difference ek = νk−γk between the corresponding exponents is

ek = νk−γk = γk−k which is negative, and drastically more so from dimension

to dimension. Indeed, as in the proof of Proposition 4.7(1),(2) we get e�+1 < 0

and ek+1 ≤ ek − 1 for all k. This reflects the increasing proportion of collapse

that takes place as we go up in the dimensions.

This completes our analysis regarding the homologies of Y in dimensions k≥�.

The homologies H̃k(Y ;Z) for k < � are addressed in the next section. At this

point the collapsed complex Y ′ has completed its role in our computations and

we return to our original random complex Y .
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5. The homology H̃k(Y ;Z) for k < �

In case � = 0 our analysis is already complete, so we assume � > 0. We

analyze H̃�−1(Y ;Z) by reduction to the �-dimensional Linial–Meshulam model

appearing in [MW]. We start with the full (� − 1)-skeleton K on the vertex

set {0, . . . , n} and use our random hypergraph X to add �-simplices to K by

a certain rule presented below. This modified model for a random complex

produces an �-complex that we denote Ŷ . We will make sure that the �-simplices

are added independently with probabilities bounded below by cna with a > −1.

It then follows from Theorem 1.1 of [HKP] that H̃�−1(Ŷ ;Z) = 0 a.a.s. We will

use this to deduce our desired results regarding our original random complex Y .

For this construction, choose one index i such that βi = β and fix it for the

rest of this section. We have i ≥ � by Remark 3.2, and let

Xi = {τ ∈ X : dim τ = i}.
In our modified random model we use Xi for adding �-simplices to K. But note

that if we add toK all �-faces of the simplices inXi then, if i > �, the �-simplices

will not be added independently (since for example we would haveP(f� = 1) = 0

and P(f� =
(
i+1
�+1

)
) > 0). To circumvent this problem, we will add only one �-

face of each τ ∈ Xi. In order that the �-faces will be added with sufficiently

large probability, we wish to have a function that chooses an �-face from each i-

simplex in a way that every �-simplex is chosen by sufficiently many i-simplices.

Let Sj = Sj(n) denote the set of all j-simplices on our set {0, . . . , n} of vertices.

Lemma 5.1: For every sufficiently large n there exists a function h : Si → S�

satisfying the following two properties:

(1) h(τ) ⊆ τ for every τ ∈ Si.

(2) |h−1(σ)| ≥ (n−�
i−�)

2(i+1
�+1)

for every σ ∈ S�.

Proof. Assume first that i > �. We prove existence of a function h satisfy-

ing (1) and (2) using the probabilistic method. For each τ ∈ Si we choose h(τ)

randomly from among the
(
i+1
�+1

)
�-faces of τ , with equal probabilities and in-

dependently. The function h satisfies property (1) by definition. If we show

that there is a positive probability that h satisfies property (2), then there must

exist at least one such function h.

Fix one σ ∈ S�. Each τ ∈ Si that contains σ will choose σ to be h(τ) with

probability 1

(i+1
�+1)

, independently. So F = |h−1(σ)| is a binomial random variable
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with parameters
(
n−�
i−�

)
, 1

(i+1
�+1)

, and we have

EF =

(
n−�
i−�

)
(
i+1
�+1

) .
By Chernoff’s bound (see, e.g., Theorem 2.1 of [JLR]),

P(F < EF −R) ≤ exp
(
− R2

2EF

)
.

Taking R = 1
2EF we get

P
(
F <

1

2
EF

)
≤ exp

(
− 1

8
EF

)
≤ exp(−cni−�).

This is true for every σ ∈ S�, thus the probability that there exists some σ ∈ S�

with |h−1(σ)|< (n−�
i−�)

2(i+1
�+1)

is at most
(
n+1
�+1

)
exp(−cni−�). We assumed here that i>�,

so for sufficiently large n this probability is strictly less than 1, and so for each

such n there must exist a function h with the desired property.

In case i = � take h to be the identity, giving |h−1(σ)| = 1 ≥ 1
2 .

For each sufficiently large n we choose one function hn provided by Lemma 5.1.

We will use this sequence of functions hn to define our modified random model.

To avoid confusion we emphasize that the probabilistic argument in the proof

of Lemma 5.1 was only a method for proving that functions hn with the desired

properties exit. But once the sequence of functions hn is chosen, they are fixed

once and for all and are not random objects in our modified random model.

Accordingly, the sets h−1
n (σ) are fixed beforehand once and for all.

Finally, our modified random complex Ŷ is defined as follows. Recall

Xi = {τ ∈ X : dim τ = i} where X is the random hypergraph that produces

our random simplicial complex Y . We start with the full (�− 1)-skeleton K on

the vertex set {0, . . . , n}, and for each τ ∈ Xi we add to K the �-simplex hn(τ).

Lemma 5.2: H̃�−1(Ŷ ;Z) = 0 a.a.s.

Proof. An �-simplex is included in Ŷ iff one of the i-simplices in h−1
n (σ) is

chosen in the random process defining X . Since the sets h−1
n (σ) are disjoint, it

follows that the �-simplices are included in Ŷ independently. We now evaluate

the probability that a given �-simplex σ is included in Ŷ . Denote N =
(
n−�
i−�

)
,

u = n−αi , and Nσ = |h−1
n (σ)|, then eN ≤ Nσ ≤ N with e = 1

2(i+1
�+1)

, by
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Lemma 5.1. We have

P(σ ∈ Ŷ ) = 1− (1− u)Nσ ≥ Nσu− (Nσu)
2

since the terms in the alternating binomial sum are decreasing as in the proof

of Lemma 3.3, using Nσu ≤ Nu ≤ ni−�−αi ≤ nβ−�−1 < 1. (Here again, in

case i = � we have Nσ = 1 and the inequality is seen directly.) Thus we have

for sufficiently large n

P(σ ∈ Ŷ ) ≥ eNu− (Nu)2 = (e−Nu)Nu ≥ cNu ≥ c′ni−�−αi = c′nβ−�−1

since i was chosen such that βi = β. By (3.2) we have β − � − 1 > −1, so as

mentioned in the opening paragraph of this section, it follows from Theorem 1.1

of [HKP] that H̃�−1(Ŷ ;Z) = 0 a.a.s.

Returning to our original random complex Y we get the following.

Corollary 5.3: H̃�−1(K ∪ Y ;Z) = 0 a.a.s.

Proof. We have that the (�−1)-skeleton of Ŷ coincides with that of K ∪ Y , and

the set of �-simplices of Ŷ is contained in that ofK∪Y . Thus H̃�−1(K∪Y ;Z) is a

quotient of H̃�−1(Ŷ ;Z) and so it follows from Lemma 5.2 that H̃�−1(K∪Y ;Z)=0

a.a.s.

Lemma 5.4: If H̃�−1(K ∪ Y ;Z) = 0 then Y ⊇ K, so K ∪ Y = Y .

Proof. Assume on the contrary that there exists an (�−1)-simplex ρ �∈ Y . Let σ

be an �-simplex such that ρ ∈ ∂σ. Then ∂σ is an (� − 1)-cycle in K ∪ Y which

cannot be a boundary inK∪Y since ρ is not contained in any �-simplex ofK∪Y .

(Note that if �− 1 = 0 then ∂σ is indeed a reduced cycle in K ∪ Y .)

This leads us to our two concluding propositions.

Proposition 5.5: H̃�−1(Y ;Z) = 0 a.a.s.

Proof. By Corollary 5.3 we have H̃�−1(K∪Y;Z)=0 a.a.s. but then by Lemma 5.4

we have K ∪ Y = Y so in fact H̃�−1(Y ;Z) = 0 a.a.s.

Proposition 5.6: Y contains the full (�−1)-skeleton a.a.s. and so H̃k(Y ;Z) = 0

for all k < �− 1 a.a.s.

Proof. By Corollary 5.3 we have H̃�−1(K ∪ Y ;Z) = 0 a.a.s. so by Lemma 5.4

we have Y ⊇ K a.a.s.
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For a different proof of Proposition 5.6 see Lemma 11.6 of [FMN].

Finally, Propositions 4.6, 4.7, 4.9, 5.5, 5.6 together constitute our desired The-

orem 2.3. This is complemented by Proposition 3.1 that covers the case β < 0.
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