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Abstract Small oscillations evolved a great deal from Klein to Robinson. We propose a concept of solution of
differential equation based on Euler’s method with infinitesimal mesh, with well-posedness based on a relation of
adequality following Fermat and Leibniz. The result is that the period of infinitesimal oscillations is independent
of their amplitude.
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1 Small oscillations of a pendulum

The breakdown of infinite divisibility at quantum scales makes irrelevant the mathematical definitions of derivatives
and integrals in terms of limits as x tends to zero. Rather, quotients like �y

�x need to be taken in a certain range, or
level. The work [15] developed a general framework for differential geometry at level λ, where λ is an infinitesimal
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but the formalism is a better match for a situation where infinite divisibility fails and a scale for calculations needs
to be fixed accordingly. In this paper, we implement such an approach to give a first rigorous account “at level λ”
for small oscillations of the pendulum.

In his 1908 book Elementary Mathematics from an Advanced Standpoint, Felix Klein advocated the introduction
of calculus into the high school curriculum. One of his arguments was based on the problem of small oscillations
of the pendulum. The problem had been treated until then using a somewhat mysterious superposition principle
involving a hypothetical circular motion of the pendulum. Klein advocated what he felt was a better approach,
involving the differential equation of the pendulum; see [13], p. 187.

The classical problem of the pendulum translates into the second-order nonlinear differential equation ẍ =
− g

�
sin x for the variable angle x with the vertical direction, where g is the constant of gravity and � is the length

of the (massless) rod or string. The problem of small oscillations deals with the case of small amplitude, i.e., x is
small, so that sin x is approximately x .

Then the equation is boldly replaced by the linear one ẍ = − g
�
x , whose solution is harmonic motion with

period 2π
√

�/g.
This suggests that the period of small oscillations should be independent of their amplitude. The intuitive solution

outlined above may be acceptable to a physicist, or at least to the mathematicians’ proverbial physicist. The solution
Klein outlined in his book does not go beyond the physicist’s solution.

The Hartman–Grobman theorem [6,7] provides a criterion for the flow of the nonlinear system to be conjugate
to that of the linearized system, under the hypothesis that the linearized matrix has no eigenvalue with vanishing
real part. However, the hypothesis is not satisfied for the pendulum problem.

To give a rigorous mathematical treatment, it is tempting to exploit a hyperreal framework following [15]. Here
the notion of small oscillation can be given a precise sense, namely oscillation with infinitesimal amplitude.

However, even for infinitesimal x one cannot boldly replace sin x by x . Therefore, additional arguments are
required.

The linearization of the pendulum is treated in [18] using Dieners’ “Short Shadow” Theorem; see Theorem 5.3.3
and Example 5.3.4 there. This text can be viewed as a self-contained treatment of Stroyan’s Example 5.3.4.

The traditional setting exploiting the real continuum is only able to make sense of the claim that the period of
small oscillations is independent of the amplitude by means of a paraphrase in terms of limits. In the context of an
infinitesimal-enriched continuum, such a claim can be formalized more literally; see Corollary 6.1. What enables
us to make such distinctions is the richer syntax available in Robinson’s framework.

Terence Tao has recently authored a number of works exploiting ultraproducts in general, and Robinson’s
infinitesimals in particular, as a fundamental tool; see e.g., [19,20]. In the present text, we apply such an approach
to small oscillations.

Related techniques were exploited in [14]. See also [16].

2 Vector fields, walks, and integral curves

The framework developed in [17] involves a proper extension ∗
R ⊇ R preserving the properties of R to a large

extent discussed in Remark 2.2. Elements of ∗
R are called hyperreal numbers. A positive hyperreal number is called

infinitesimal if it is smaller than every positive real number.
We choose a fixed positive infinitesimal λ ∈ ∗

R (a restriction on the choice of λ appears in Sect. 6). Given a
classical vector field V = V (z) where z ∈ C, one forms an infinitesimal displacement δF (z) = λV (z) with the aim
of constructing the integral curves of the corresponding flow Ft in the plane. Note that a zero of δF corresponds to
a fixed point (i.e., a constant integral “curve”) of the flow. The infinitesimal generator is the function F : ∗

C → ∗
C,

also called a prevector field, defined by

F(z) = z + δF (z), (1)
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where δF (z) = λV (z) in the case of a displacement generated by a classical vector field as above, but could be a
more general internal function F as discussed in [15].

We propose a concept of solution of differential equation based on Euler’s method with infinitesimal step size,
with well-posedness based on a property of adequality (see Sect. 3), as follows.

Definition 2.1 The hyperreal flow, or walk, Ft (z) is a t-parametrized map ∗
C → ∗

C defined whenever t is a
hypernatural multiple t = Nλ of λ, by setting

Ft (z) = FNλ(z) = F◦N (z), (2)

where F◦N is the N -fold composition.

The fact that the infinitesimal generator F given by (1) is invariant under the flow Ft of (2) receives a transparent
meaning in this framework, expressed by the commutation relation F ◦ F◦N = F◦N ◦ F due to transfer (see
Remark 2.2) of associativity of composition of maps.

Remark 2.2 The transfer principle is a type of theorem that, depending on the context, asserts that rules, laws
or procedures valid for a certain number system, still apply (i.e., are transferred) to an extended number system.
Thus, the familiar extension Q ⊆ R preserves the property of being an ordered field. To give a negative example,
the extension R ⊆ R∪{±∞} of the real numbers to the so-called extended reals does not preserve the property
of being an ordered field. The hyperreal extension R ⊆ ∗

R preserves all first-order properties, including the
identity sin2 x + cos2 x = 1 (valid for all hyperreal x , including infinitesimal and infinite values of x ∈ ∗

R). The
natural numbers N ⊆ R are naturally extended to the hypernaturals ∗

N ⊆ ∗
R. For a more detailed discussion, see

the textbook Elementary Calculus [12].

Definition 2.3 The real flow ft on C for t ∈ R when it exists is constructed as the shadow (i.e., standard part) of
the hyperreal walk Ft by setting ft (z) = st

(
FNλ(z)

)
where N = ⌊ t

λ

⌋
, while �x� rounds off the number x to the

nearest hyperinteger no greater than x , and “st” (standard part or shadow) rounds off each finite hyperreal to its
nearest real number.

For t sufficiently small, suitable regularity conditions ensure that the point FNλ(z) is finite so that the shadow is
defined.

The usual relation of being infinitely close is denoted ≈. Thus z, w satisfy z ≈ w if and only if st(z − w) = 0.
This relation is an additive one (i.e., invariant under addition of a constant).

The appropriate relation for working with small prevector fields is not additive but rather multiplicative (i.e.,
invariant under multiplication by a constant), as detailed in Sect. 3.

3 Adequality

We will use Leibniz’s notation �� to denote the relation of adequality (see below). Leibniz actually used a symbol
that looks more like � but the latter is commonly used to denote a product. Leibniz used the symbol to denote a
generalized notion of equality “up to” (though he did not distinguish it from the usual symbol = which he also used
in the same sense). A prototype of such a relation (though not the notation) appeared already in Fermat under the
name adequality. For a re-appraisal of Fermat’s contribution to the calculus see [10]; for Leibniz’s, see [4,11]; for
Euler see [1,2]; for Cauchy’s contribution, see [3,5,8,9]. We will use the sign �� for a multiplicatively invariant
relation among (pre)vectors defined as follows.

Definition 3.1 Let z, w ∈ ∗
C. We say that z and w are adequal and write z �� w if either z

w
≈ 1 (i.e., z

w
− 1 is

infinitesimal) or z = w = 0.

This implies in particular that the angle between z, w (when they are nonzero) is infinitesimal, but �� is a stronger
condition. If one of the numbers is appreciable, then so is the other and the relation z �� w is equivalent to z ≈ w.
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234 V. Kanovei et al.

If one of z, w is infinitesimal then so is the other, and the difference |z−w| is not merely infinitesimal, but so small
that the quotients |z − w|/z and |z − w|/w are infinitesimal, as well.

We are interested in the behavior of orbits in a neighborhood of a fixed point 0, under the assumption that the
infinitesimal displacement satisfies the Lipschitz condition. In such a situation, we have the following theorem.

Theorem 3.2 Assume that for some finite K , we have δF (z) − δF (w) < Kλ|z − w|. Then prevector fields defined
by adequal infinitesimal displacements produce hyperreal walks that are adequal at each finite time, or in formulas:
if δF �� δG then Ft �� Gt when t is finite.

This was shown in [15, Example 5.12].

4 Infinitesimal oscillations

Let x denote the variable angle between an oscillating pendulumand the downward vertical direction. By considering
the projection of the force of gravity in the direction ofmotion, one obtains the equation ofmotionm�ẍ = −mg sin x
where m is the mass of the bob of the pendulum, � is the length of its massless rod, and g is the constant of gravity.
Thus we have a second-order nonlinear differential equation

ẍ = − g
�
sin x . (3)

The initial condition of releasing the pendulum at angle a (for amplitude) is{
x(0) = a,

ẋ(0) = 0.
We replace (3) by the pair of first-order equations
{ ẋ =

√
g
�
y,

ẏ = −
√

g
�
sin x,

and initial condition (x, y) = (a, 0). We identify (x, y) with z = x + iy and (a, 0) with a + i0 as in Sect. 2. The
classical vector field corresponding to this system is then

X (x, y) =
√

g
�
y − i

√
g
�
sin x . (4)

The corresponding prevector field F is defined by the infinitesimal displacement δF (z) = λ

√
g
�
y − iλ

√
g
�
sin x so

that F(z) = z + δF (z). We are interested in the flow of F , with initial condition a + 0i , generated by hyperfinite
iteration of F .

Consider also the linearization, i.e., prevector field E(z) = z + δE (z) defined by the displacement

δE (z) = λ

√
g
�
y − iλ

√
g
�
x = −iλ

√
g
�
z

where as before z = x + iy. We are interested in small oscillations, i.e., the case of infinitesimal amplitude a. Since
sine is asymptotic to the identity function for infinitesimal inputs, we have δE �� δF . Due to the multiplicative
nature of this relation, the rescalings of E and F by change of variable z = aZ remain adequal and therefore define
adequal walks and identical real flows by Theorem 3.2.

5 Adjusting linear prevector field

We will compare E to another linear prevector field

H(x + iy) = e−iλ
√

g
� (x + iy)

=
(
x cos λ

√
g
�

+ y sin λ

√
g
�

)
+

(
−x sin λ

√
g
�

+ y cos λ

√
g
�

)
i
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Small oscillations of the pendulum 235

given by clockwise rotation of the x, y plane by infinitesimal angle λ

√
g
�
, so that

δH (z) =
(
e−iλ

√
g
� − 1

)
z.

The corresponding hyperreal walk, defined by hyperfinite iteration of H , satisfies the exact equality

Ht (a, 0) =
(
a cos

√
g
�
t,−a sin

√
g
�
t

)
(5)

whenever t is a hypernaturalmultiple of λ. In particular, we have the periodicity property H 2π√
g/�

(z) = z and therefore

Ht+ 2π√
g/�

= Ht (6)

whenever both t and 2π√
g/�

are hypernatural multiples of λ. Note that we have δE (z) = −iλ
√

g
�
z and δH (z) =

(
e−iλ

√
g
� − 1

)
z. Therefore

δH (z)

δE (z)
= e−iλ

√
g
� − 1

−iλ
√

g
�

= 1

λ

√
g
�

(
sin λ

√
g
�

+ (
cos λ

√
g
�

− 1
)
i

)

The usual estimates give

sin λ

√
g
�

λ

√
g
�

≈ 1,
cos λ

√
g
�

− 1

λ

√
g
�

≈ 0 (7)

so δH (z)
δE (z) ≈ 1 + 0i = 1, that is δH (z) �� δE (z). By Theorem 3.2 the hyperfinite walks of E and H sat-

isfy Et (a, 0) �� Ht (a, 0) for each finite initial amplitude a and for all finite time t which is a hypernatural multiple
of λ.

6 Conclusion

The advantage of the prevector field H is that its hyperreal walk is given by an explicit formula (5) and is there-
fore periodic with period precisely 2π√

g
�

, provided we choose our base infinitesimal λ in such a way that 2π

λ

√
g
�

is

hypernatural.
We obtain the following consequence of (6): modulo a suitable choice of a representing prevector field

(namely, H ) in the adequality class, the hyperreal walk is periodic with period 2π
√

�/g. This can be summa-
rized as follows.

Corollary 6.1 The period of infinitesimal oscillations of the pendulum is independent of their amplitude.

If one rescales such an infinitesimal oscillation to appreciable size by a change of variable z = aZ where a
is the amplitude, and takes standard part, one obtains a standard harmonic oscillation with period 2π

√
�/g. The

formulation contained in Corollary 6.1 has the advantage of involving neither rescaling nor shadow-taking.

Acknowledgments We are grateful to Jeremy Schiff for drawing our attention to the Hartman–Grobman theorem, and to Semen
Kutateladze and Dalibor Pražák for some helpful suggestions. M. Katz was partially supported by the Israel Science Foundation Grant
No. 1517/12.

123

Author's personal copy



236 V. Kanovei et al.

References

1. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Schaps, D., Sherry, D.,
Shnider, S.: Is mathematical history written by the victors? Not. Am. Math. Soc. 60(7), 886–904 (2013). http://www.ams.org/
notices/201307/rnoti-p886.pdf. arXiv:1306.5973

2. Bair, J., Błaszczyk, P., Ely, R., Henry, V., Kanovei, V., Katz, K., Katz, M., Kutateladze, S., McGaffey, T., Reeder, P., Schaps, D.,
Sherry, D., Shnider, S.: Interpreting the infinitesimal mathematics of Leibniz and Euler. J. Gen. Philos. Sci. (2016). doi:10.1007/
s10838-016-9334-z

3. Bascelli, T., Bottazzi, E., Herzberg, F., Kanovei, V., Katz, K., Katz, M., Nowik, T., Sherry, D., Shnider, S.: Fermat, Leibniz, Euler,
and the gang: the true history of the concepts of limit and shadow. Not. Am. Math. Soc. 61(8), 848–864 (2014)

4. Bascelli, T., Błaszczyk, P., Kanovei, V., Katz, K., Katz, M., Schaps, D., Sherry, D.: Leibniz vs Ishiguro: closing a quarter-century
of syncategoremania. HOPOS J. Int. Soc. Hist. Philos. Sci. 6(1) (2016). doi:10.1086/685645. arXiv:1603.07209

5. Borovik, A., Katz, M.: Who gave you the Cauchy–Weierstrass tale? The dual history of rigorous calculus. Found. Sci. 17(3),
245–276 (2012). doi:10.1007/s10699-011-9235-x

6. Grobman, D.: Homeomorphisms of systems of differential equations. Doklady Akademii Nauk SSSR 128, 880–881 (1959)
7. Hartman, P.: A lemma in the theory of structural stability of differential equations. Proc. Am. Math. Soc. 11(4), 610–620 (1960)
8. Katz, K., Katz, M.: Cauchy’s continuum. Perspect. Sci. 19(4), 426–452 (2011). arXiv:1108.4201. http://www.mitpressjournals.

org/doi/abs/10.1162/POSC_a_00047
9. Katz, K., Katz, M.: A Burgessian critique of nominalistic tendencies in contemporary mathematics and its historiography. Found.

Sci. 17(1), 51–89 (2012). doi:10.1007/s10699-011-9223-1. arXiv:1104.0375
10. Katz, M., Schaps, D., Shnider, S.: Almost equal: the method of adequality from Diophantus to Fermat and beyond. Perspect. Sci.

21(3), 283–324 (2013)
11. Katz, M., Sherry, D.: Leibniz’s infinitesimals: their fictionality, their modern implementations, and their foes from Berkeley to

Russell and beyond. Erkenntnis 78(3), 571–625 (2013). doi:10.1007/s10670-012-9370-y. arXiv:1205.0174
12. Keisler, H.J.: Elementary Calculus: An Infinitesimal Approach, 2d edn. Prindle, Weber & Schimidt, Boston (1986). http://www.

math.wisc.edu/~keisler/calc.html
13. Klein, F.: ElementaryMathematics fromanAdvancedStandpoint.Vol. I.Arithmetic,Algebra,Analysis. Translation byE.R.Hedrick

and C. A. Noble [Macmillan, New York, 1932] from the third German edition [Springer, Berlin, 1924]. Originally published as
Elementarmathematik vom höheren Standpunkte aus (Leipzig, 1908)

14. Lobry, C., Sari, T.: Non-standard analysis and representation of reality. Internat. J. Control 81(3), 517–534 (2008)
15. Nowik, T., Katz, M.: Differential geometry via infinitesimal displacements. J. Logic Anal. 7(5), 1–44 (2015). http://www.

logicandanalysis.org/index.php/jla/article/view/237/106. arXiv:1405.0984
16. Pražák, D., Rajagopal, K., Slavík, J.: A non-standard approach to a constrained forced oscillator. Preprint (2016)
17. Robinson, A.: Non-Standard Analysis. North-Holland Publishing, Amsterdam (1966)
18. Stroyan, K.: Advanced Calculus Using Mathematica: NoteBook Edition (2015)
19. Tao, T.: Hilbert’s Fifth Problem and Related Topics. Graduate Studies in Mathematics, vol. 153. American Mathematical Society,

Providence (2014)
20. Tao, T., Van Vu, V.: Sum-avoiding sets in groups. arXiv:1603.03068 (2016)

123

Author's personal copy

http://www.ams.org/notices/201307/rnoti-p886.pdf
http://www.ams.org/notices/201307/rnoti-p886.pdf
http://arxiv.org/abs/1306.5973
http://dx.doi.org/10.1007/s10838-016-9334-z
http://dx.doi.org/10.1007/s10838-016-9334-z
http://dx.doi.org/10.1086/685645
http://arxiv.org/abs/1603.07209
http://dx.doi.org/10.1007/s10699-011-9235-x
http://arxiv.org/abs/1108.4201
http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047
http://www.mitpressjournals.org/doi/abs/10.1162/POSC_a_00047
http://dx.doi.org/10.1007/s10699-011-9223-1
http://arxiv.org/abs/1104.0375
http://dx.doi.org/10.1007/s10670-012-9370-y
http://arxiv.org/abs/1205.0174
http://www.math.wisc.edu/~keisler/calc.html
http://www.math.wisc.edu/~keisler/calc.html
http://www.logicandanalysis.org/index.php/jla/article/view/237/106
http://www.logicandanalysis.org/index.php/jla/article/view/237/106
http://arxiv.org/abs/1405.0984
http://arxiv.org/abs/1603.03068

	Small oscillations of the pendulum, Euler's method, and  adequality
	Abstract
	1 Small oscillations of a pendulum
	2 Vector fields, walks, and integral curves
	3 Adequality
	4 Infinitesimal oscillations
	5 Adjusting linear prevector field
	6 Conclusion
	Acknowledgments
	References




