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Abstract

We give a complete description of all order 1 invariants of planar curves.
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1. Introduction

A planar curve is an immersion of S' in R?. The study of invariants of planar curves has
been initiated by V.I. Arnold in [2,3], where he presented the three basic order 1 invariants
Jt,J~, St. Various explicit formulas for these and other invariants appear in [5,18-20]. Other
developments of interest may be found in [1,4,10,22,24]. The study of order 1 and higher order
invariants has in general split into the study of J-invariants, as in [6,7,9,17], and S-invariants as
in [8,21,23], where J-invariants are invariants which are unchanged when passing a triple point,
and S-invariants are invariants which are unchanged when passing a tangency. But as we shall
see, the space of invariants spanned by the order 1 J- and S-invariants is much smaller than the
full space of order 1 invariants.

In this work we give a complete presentation of all order 1 invariants of planar curves. Since
the vector space in which the invariants take their values is arbitrary, the presentation is in terms
of a universal order 1 invariant. The corresponding description for spherical curves, i.e. immer-
sions of S! in S2, appears in [16]. Analogous study for immersions of surfaces in 3-space has
been carried out in [11-15].
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The structure of the paper is as follows. In Section 2 we present the basic definitions, and
construct our invariant F of planar curves. In Section 3 we construct an abstract invariant, as op-
posed to the explicit invariant F', and show that the abstract invariant is universal (Theorem 3.6).
In Section 4 we prove our main result, namely, that a slight modification F of the explicit invari-
ant F is universal (Theorem 4.5). In Section 5 we prove the main algebraic fact used in the proof
of Theorem 4.5.

2. Definitions and statement of results

By a curve we will always mean an immersion ¢ : §' — R2. Let C denote the space of all
curves. A curve will be called stable if its only self intersections are transverse double points.
The generic singularities a curve may have are either a tangency of first order between two
strands, which will be called a J-type singularity, or three strands meeting at a point, each two
of which are transverse, which will be called an S-type singularity. Singularities of type J and S
appear in Figs. 2 and 3.

A generic singularity can be resolved in two ways, and there is a standard way defined in [2]
for considering one resolution positive, and the other negative, as we now explain. For J-type
singularity, the positive resolution is that where two additional double points appear. For S-type
singularity, the sign of the resolution is defined as follows. When resolving an S-type singularity
in either way, a small triangle appears. There are two ways for defining an orientation on each of
the three edges of this triangle. The first is the orientation restricted from that of the curve itself.
The second is the restriction of the orientation of the triangle, which is determined by the cyclic
order in which the curve visits the three edges of the triangle. Now, the positive resolution of
an S-type singularity is that where the number of edges of the triangle for which the above two
orientations coincide, is even.

We denote by C,, € C (n > 0) the space of all curves which have precisely n generic singularity
points (the self intersection being elsewhere stable). In particular, Cy is the space of all stable
curves. An invariant of curves is a function f :Cy — W, which is constant on the connected
components of Cp, and where W in this work will always be a vector space over Q.

Given a curve ¢ € C,, with singularities located at pi,..., p, € R2, and given a subset
A C{p1,..., pn}, we define c4 € Cp to be the stable curve obtained from ¢ by resolving all
singularities of ¢ at points of A into the negative side, and all singularities not in A into the pos-
itive side. Given an invariant f : Co — W we define the “nth derivative” of f to be the function
f®™ :C, — W defined by

fPO="> (=D f(ca)

AC{pi,..s Pn}

where |A| is the number of elements in A. An invariant f : Co — W is called of order n if
f D (ey=0forall c € Cn+1- The space of all W valued invariants on Cy of order n is denoted
V, =V, (W). Clearly V,, C V,, for n < m. In this work we give a full description of V;. We will
construct a “universal” order 1 invariant, by which we mean the following:

Definition 2.1. An order 1 invariant f: Co — W will be called universal, if for any W and any
order 1 invariant f : Cyp — W, there exists a unique linear map ¢ : W — W such that f=d¢o f
In other words, for any W, the natural map HomQ(VT/, W) — V(W) givenby ¢ — ¢ o f, is an
isomorphism.
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Definition 2.2. A standard annulus will be an annulus A of the form A = R2 — U, where U C R?
is a circular open disc (i.e. U is a disc geometrically, not just topologically). An immersion
e: [0, 1] - A will be called a simple arc if

(1) e(0),e(1) € 0A.
(2) The ends of e are perpendicular to 0 A.
(3) The self intersections of e are transverse double points.

Let Z° C Z denote the set of odd integers. Let DZ denote the set of all columns (Z;) with
ai€Zandap € Z°.

Definition 2.3. Let A be a standard annulus, and let e be a simple arc in A.

(1) Foradouble point v of e we define i (v) € {1, —1}, where i (v) = 1 if the orientation at v given
by the two tangents to e at v, in the order they are visited, coincides with the orientation of
A (restricted from R?). Otherwise i (v) = —1.

(2) We define the fop index of e, I1(e) € Z by I1(e) = ZU i (v) where the sum is over all double
points v of e.

(3) We define the bottom index of e, I;(e), to be the index defined in [8], that is, I(e) =
(¢ — w)/m where ¢ is the total angle of rotation of the radius vector (from the center of
U to e) along e, and w is the total angle of rotation of the tangent vector along e. Since by
definition of simple arc the ends of e are perpendicular to d A, we have that I>(e) is an odd
integer, that is, I(e) € Z°.

(4) We define the double index of e to be I (e) = (}1()) € DZ.

Define X to be the vector space over Q with basis all symbols XZ;:?Z‘ where ay, b; € Z,
ar,by € Z°. For ¢ € Cy, let v be a double point of ¢, and let uy, uy be the two tangents at v
ordered by the orientation of R?. Let U be a small circular disc neighborhood centered at v,
and let A =R? — U. Assume the strands of ¢ cross dU perpendicularly, so c| c—1(4) defines two
simple arcs ¢y, ¢ in A. The ordering cy, ¢ is chosen so that the tangent u; leads to ¢;, i =1, 2.

They will be called the exterior arcs of c. We denote I (c1) by (Z;Ez;) and I(cp) by (Z;EZ;) We
define F : Cp — X as follows:

_ a1 ()51 (v)
F@O=) Xo
v

where the sum is over all double points v of c.

For ¢ € C let w(c) denote the Whitney winding number of ¢, and let G : Cy — X be the order
0 invariant defined by G(c) = X{}'°. Let F : Co — X be defined by F(c) = F(c) + G(c). In
this work we will prove that F is a universal order one invariant.

Often one is interested in order 1 invariants only up to order 0 invariants, and in that case the
addition of G is not needed. Our definition of universal order 1 invariant however requires that
all order 1 invariants be obtained by composition with linear maps (in a unique way). For this a
correction such as G is needed, as will be explained after the proof of Theorem 4.5. We will see
(Lemma 4.2) that if F(c) # 0 then w(c) can be computed from F(c), so in terms of separating
curves, the only difference between F and F is that F separates the two different embedded
curves, whereas F vanishes on both.
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Fig. 1. Representatives for the regular homotopy classes of simple arcs in A.

3. An abstract universal order one invariant

In this section we will construct an “abstract” universal order 1 invariant, as opposed to the
“concrete” invariant described in the previous section. This will be an intermediate step in prov-
ing that the concrete invariant is universal.

Lemma 3.1. Let e be a simple arc in A with initial point i and final point f, withi # f. Let 0
be the angle from i to f, in the positive direction, see Fig. 1. Let ¢ be the total angle of rotation
of the radius vector (from the center of U to e) along e, and w the total angle of rotation of the
tangent vector along e. Then I1(e) = 2¢p —w — 0 +m)/2m.

Proof. Both sides of the equality are invariant under regular homotopy in A, keeping the initial
and final points and tangents fixed (for the invariance of I note that i # f). So, it is enough
to check the equality on representatives of the various regular homotopy classes of simple arcs,
such as those of the form appearing in Fig. 1. They are arcs that begin by spiraling around U a
number of times and may then include a number of “curls.” To verify the equality on such arcs,
one can first check it for embedded arcs, and then check that it is preserved when adding a round
tour around U and when adding a curl. O

Lemma 3.2. If e, ¢’ are two simple arcs in A with the same initial point i and final point f, with
i # f, then I(e) = 1(¢) iff e and €' are regularly homotopic in A, keeping the initial and final
points and tangents fixed.

Proof. Let I} = I1(e), I, = I>(e). Let 6, ¢, w be as in Lemma 3.1. Then by Lemma 3.1, I} =
(2¢ — w — 0 + ) /27, and by definition, I> = (¢ — w) /7. These formulas are invertible, giving
¢o=2nlj —nlh+6 —mand w=2r1) —2n1l; + 6 — m. Since the pair ¢, w characterizes the
regular homotopy class of e, so does the pair I, I,. O

Two curves ¢, ¢’ € C; will be called equivalent if there is an ambient isotopy of R? bringing
a neighborhood U of the singular point of ¢ onto a neighborhood U’ of the singular point of ¢/,
such that the configuration near the singular point precisely matches and such that the exterior
arcs in A = R — U are regularly homotopic in A. We always assume, as before, that the strands
of ¢ cross dU perpendicularly, and so the exterior arcs are simple arcs. Note that the crossing
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points with oU are all distinct (even for J type singularities). By Lemma 3.2 a pair of exterior
arcs with same initial and final points, are regularly homotopic in A iff their double indices are
the same. So we have:

Proposition 3.3. Two curves ¢, ¢’ € Cy are equivalent iff they have the same singularity configu-
ration and the same corresponding double indices of exterior arcs.

The following is clear from the definition of order 1 invariant:

Lemma 3.4. Let f : Co — W be an invariant, then f is of order 1 iff for any two equivalent
e, eCp, fDe)= FD(.

We will attach a symbol to each equivalence class of curves in C; as follows. For J type singu-
larities there are three distinct configurations which we name J T4, T8 see Fig. 2. The J A JB
singularities are symmetric with respect to a 7 rotation, which interchanges the two exterior arcs,
and so, by Proposition 3.3, the equivalence class of a J4 or J5 singularity is characterized by

a symbol J( N and ](B;l) o) () (Z;) € DZ), where (§!), (Zl) is an unordered pair, regis-
ay by ay
tering the double indices of the two exterior arcs. The J* configuration, on the other hand, is
not symmetric, and so characterized by a symbol J( 0. with (3), (2‘) an ordered pair, with
a
say, (;’;) corresponding to the lower strand in Fig. 2. (We w111 shortly see that this ordering may
however be disregarded.)

As to S type singularities, there are four types, as seen in Fig. 3, depending on the relative
orientations of the three strands participating in the triple point, and the way they are connected
to each other. The distinction between them will be incorporated into the way we register the
double indices of the exterior arcs. We will have a cyclicly ordered triple (3!), (2;) (¢) e DZ
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registering the double indices of the three exterior arcs, in the cyclic order they appear along S',
and each may appear with or without a hat, according to the following rule. For given exterior
arc e with double index (Z;) let u1 be the initial tangent of e and u»> the initial tangent of the

following segment. Then if > is pointing to the right of u; then (3!) will appear with a hat, and
if uy is pointing to the left of u; then (Z;) will appear unhatted. Since the ordering is cyclic, this
ives four t f S bols, S« erns Sz eins S T e S~ 3 ., which
gives four types of S symbols (aé)y(bl)’(ré) aé)’(bl)’( N Z;)~(Z;),(2;) Z;)’(’Z;)’(Z;) whic
correspond to the four types of S singularities.
Let I denote the vector space over Q with basis all the above symbols, J

(-G (2;) ¢
B _ —

Ty D6 S@CH- @00y S@. g Y et generie pathin s
that is, a path (regular homotopy) [0, 1] — C, whose image hes in Co UCy and which is transverse
with respect to C;. We denote by v(y) € I the sum of symbols of the singularities y passes, each
added with + or — sign according to whether we pass it from its negative side to its positive side,
or from its positive side to its negative side, respectively. Let N C F be the subspace generated
by all elements v(y) obtained from all possible generic loops y in C (i.e. closed paths), and let
G=F/N.

For an order 1 invariant f : Co — W, since by Lemma 3.4 (1) coincides on equivalent curves
in Cy, it induces a well-defined linear map f O.F > w.

The following is clear:

Lemma 3.5. If y is a generic path in C, from c1 to c3, then fV(v(y)) = f(c2) — f(c).

From Lemma 3.5 it follows that f (D yanishes on the generators of N, so it also induces a
well-defined linear map f: G — W.

Let I, € Cg be a curve with Whitney number m, chosen once and for all as base curve for its
regular homotopy class. Let G=Go @m <7 Qum, where {u,, }mez 18 a set of new independent
vectors. We define an order 1 invariant f Co — G as follows: For any ¢ € Co there is a generic
path y from I3, to ¢, where m is the Whitney number of c. Let f(c) =uy +v(y) e G. By
definition of N, v(y) € G is indeed independent of the choice of path y. From Lemma 3.4 it is
clear that fis an order 1 invariant, and we will now see that it is universal:

Theorem 3.6. f : Co — G is a universal order 1 invariant.

Proof. Foran order 1 invariant f : Co — W, define the linear map @ : G W by @l = f M
and @ ¢ (up) = f(I}), m € Z. We claim @ o f f and that @ is the unique linear map
satisfying this property. Indeed, let ¢ € Cp and let y be a generic path from I3, to ¢ where m
is the Whitney number of ¢. Then by Lemma 3.5 f(c) = f(In) + fV(w(y) = s (um) +
@ (w(y)) = Df(Flc)).

For uniqueness, it is enough to show that f (Co) spans G. We have Uy = f () formeZ
so it remains to show that G C span f (Co). Indeed for any generating symbol 7 of G, T is the
difference f(c) - f(c’ ) for two curves ¢, ¢’ € Cy, namely, the two resolutions of a curve in C;
whose symbolis 7. 0O

The following is also clear:
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Lemma 3.7. Let f : Co — W be an order 1 invariant. Then f is a universal order 1 invariant iff
@ : G — W (appearing in the proof of Theorem 3.6) is an isomorphism.

We present two specific subfamilies of the set of generators of N. They appear in Figs. 4, 5.
The figures are schematic, only indicating the way the strands involved in the local configura-
tion are connected to each other. The two exterior arcs for the intersection point appearing in the
left most curves, labeled a and b, are assumed to have double indices (Z;) and (l;;) respectively.
To obtain the double indices for the tangency points, note that exterior arcs that may be obtained
from each other by sliding thJe:ir ends along d A have the same bottom indel( The elemint obtained
from Fig. 4 is J(Zé) ( ) J( ) (Zé , that is, in G we have the relation J(Zé) ( J(Z;)’(Z;) 0,

and so from now on we will snnply regard the double indices of J" @).( B as being un-ordered
{lz

(as is true by definition for the J4 and J5 symbols). The relation obtained from Fig. 5 is

—JA _1. =0, or after index shift: J o =J4
(‘”“)( DoTECRD DG DO

4. Proof of main result

Returning to our invariant F : Co — X, we look at F(_ It is easy to see that indeed the
value of F() depends only on the symbol of a given curve ¢ € C1, which by Lemma 3.4 proves
that indeed F is an order 1 invariant. We will need the value of F") only on the symbols of
type J* and J4, which are demonstrated in Figs. 6, 7. Again, the figures are schematic, only
indicating the way the strands involved in the local configuration are connected to each other.
The two exterior arcs for the tangency point appearing in the middle curves, labeled a and b,



434 T. Nowik / Advances in Mathematics 220 (2009) 427-440

(O)j(@)](e)

- D+ _ ya1.b1 by.a;
Fig.6. FOt ) )= Xy, + Xy

¢
(=0 &= =0
i 1 A _ yap.b+1 by,a;+1
Fig. 7. F( )(J )= Xaz,bz +Xb27“2 ’

GG

are assumed to have double indices (5!) and (Z;) respectively. In Fig. 6 the two new intersection

points # and v contribute additional terms Xz;zzl and Xzzl’gzl respectively, and in Fig. 7 u and v
- ay,by+1 by,ay+1

contribute X o'y and X by.ay

unchanged, so we have:

respectively. The contribution of all other intersection points is

° F(l)(]+ , )=Xal,bl _i_Xblsal
1

GD-GY az,by by.az’
D/ 7A __ yai,bi1+1 by,a1+1
o F (J(Zl),(’b’l))_xaz,bz T X
2 2

We define Y to be the vector space over Q generated by the symbols Y ,:’ s nE Z,k,leZ°,
and with the relation

We define the map ¥ : X — Y by
b +b
W(XZ,I ) = Yl?,l :

For each m € 7Z define the linear functional g;, : Y — Q as follows:

k—1 ifn—k—Il=mandk+1[=0,
gn(Y{)=1U—k)/2 ifn—k—I=mandk+1==2,
0 otherwise.

Let Y € Y denote the subspace defined by the family of all equations g,, =0, m € Z, that is, the
intersection of kernels of all g,,,. Let X = & ~1(Y).

We now look at the order 1 invariant K =¥ o F : Cy — Y. The invariant K is closely related
to the invariant defined by M.E. Kazarian in [8]. Let J denote the subspace of G spanned by all

symbols of type J, then by the relation JB | =7 *}l 1« 1, itis also spanned by all symbols
@.6H 7.0
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of type J*, JA. It is clear from our explicit formulas for F(!) on the symbols of type J*, J4,
that KD = (@ o F)(V =@ o FD vanishes on J, and so induces a map KV : G/J — Y. As we
shall now explain, the result in [§] may be stated, in the language of the present work, as follows:

Theorem 4.1 (M.E. Kazarian). KV : G/J — Y is injective, with image Y.
To make precise the relation between our K and the invariant of [8] we first prove:

Lemma 4.2. If ¢ € Cy is a curve with Whitney winding number m, then for each intersection
point v of ¢, the two double indices (Z;), (g) attached to v satisfy a1 + by — a» — by =m.
Proof. For the two exterior arcs ¢y, cy of v, let 61, ¢, w; and 0;, ¢, wr be the correspond-
ing angles as in Lemma 3.1, then 61 + 6, = 27 and (w1 + w2)/27 =m. So I1(c1) + I1(c2) —
L(ct) — L) = 2p1 —w1 — 01 + 1) /27 + 2o — w2 — O +7) /21 — (P — w1) /70 — (P2 —
wm)/m=m. O

Accordingly, we define X C X to be the subspace spanned by all X Zlb witha+b—k—Il=m
and Y C Y to be the subspace spanned by all Y,:’)l with n —k — 1 =m. We have X = P, X",
Y =6p,, Y, F maps all curves with Whitney number m into X" and ¥ maps X" into Y.
In a similar way each generating symbol of G is related to a specific regular homotopy class
and accordingly G and J split into €0,, G™ and D,, J™. Finally, define Y C Y” to be the
subspace defined by the equation g,, =0, then Y = hD,, Y™. Each Y” is naturally isomorphic
to A2A of [8, Remark 1], where ¥";***! € Y™ is identified with e A ¢; € A2A. This induces
a projection p : Y — AZ?A, mapping any Y, to ex A ;. The invariant S of [8, Remark 1] is
precisely p o K. Now [8, Theorem 2] relates to each regular homotopy class separately, the
space I1/Iy appearing there is the space of S-invariants on a given regular homotopy class, up
to constants. An S-invariant is by definition an invariant f such that f( vanishes on J, and so
I /1y is precisely the dual to our G /J™. So, the statement of [8, Theorem 2] is that the dual to
our KM : G™/J™ — Y™ is an isomorphism. It follows that this map itself is an isomorphism,
and so KV : G/J — Y is an isomorphism.

We now look at the following commutative diagram:

inc quot

0 J G G/J 0
Idl J/F(l) lK(l)
0 J X Y 0.
F(l)\J '

The algebraic portion of our work is the following theorem, whose proof we defer to Section 5:

FO
Theorem 4.3. The sequence 0 — J —|J> XL Y — 0is exact.

It follows from Theorems 4.1, 4.3, and the commutative diagram, that:

Theorem 4.4. FV) : G — X is injective, with image X.
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We may now prove our main result:

Theorem 4.5. For ¢ € Cy let w(c) denote the Whitney winding number of ¢, and let G : Cy — X
be the order O invariant defined by G(c) = w<c) O Let F: Co — X be defined by F(c) F(c)+
G(c), then F is a universal order one mvarlant.

Proof. By Lemma 3.7 it is enough to show that @& : :G — Xis an isomorphism. Indeed, by

a)(c) 0

Theorem 4.4, @3|c = F() = F( s injective, and onto X. Now, the values X{ ) for G were

precisely chosen so that {F(F Vimez ={PgWm)}mez will be a basis for X/X. ThlS is verified by
evaluating the functionals g;, oW (which are the defining equations of Xin X) on F (Iy). Indeed,
from [8] and our definition of g, we know g, (¥ (F (I 7))) = gm(K (I }y)) =26, m/8m 0 and so
gm © lI/(F(Fm/)) = 28m.m"8m’.0 + 28m.m' = 2(1 4 8,7.0)8m . It follows that @5 : G — Xisan
isomorphism. O

We now see why we needed to add to F a correcting order O invariant such as G. From the
proof of Theorem 4.5 we see that @ : G — Xis non-injective and non-surjective. @ being
non-injective means that not all order 1 invariants may be realized as ¢ o F' (¢ : X — W a linear
map). Indeed g,,, o ¥ (F (I}y)) = 28, Sy 0 implies that any order O invariant of the form ¢ o F
vanishes on all curves with Whitney number m # 0. @f being non-surjective means that the
choice of ¢ is non-unique, that is, there are ¢ # v with ¢ o F = ¢ o F. Adding G to F solved
both injectivity and surjectivity problems. (If non-surjectivity were the only problem, then it
would be fixed simply by diminishing the target space X.)

We conclude this section by explaining the remark made in the introduction, that the space
of invariants spanned by all order 1 J- and S-invariants is much smaller than the full space of
order 1 invariants. Indeed, let S € G be the subspace spanned by all symbols of type S. By
definition, an order 1 invariant f is a J- or S-invariant, iff 1) vanishes on S or J respectively.
Therefore an invariant f is the sum of J- and S-invariants iff £(1) vanishes on SNJ. By observing
relations in N coming from loops as in [16, Figs. 6, 7], one can show that S N J is the subspace

+ A
of G spanned by all elements of the form J @), (}b);) J(Zéﬁ) (}2) and J "), (ié) J(Z;E) (1;2)
ay, by € Z,ay, by € Z°. Given that the set of symbols of type J*, J 4 s independent in G (a fact
that will be proved in Section 5), we see SN J is a fairly large subspace of G.

5. The exact sequence

FO
In this section we prove Theorem 4.3, stating that the sequence 0 — J —|J> XL Y0

is exact. Forn € Z and k <[ € Z° let AZ’ ; be the following set of symbols, viewed as elements
in G:

no_ [+ . _ A o
Ak‘l—{J(Z)’(?).a—i—b—n}U{JZ),(;[,).a+b—n 1}.

Let J} , = span A7 ; € J. We point out that since the pair (i), (?) is unordered, the meaning of
the pair a, b in the conditions a +b =n and a +b =n — 1 depends on whether k =/ or k < /. If
k =1 then a, b runs over all unordered pairs {a, b}, whereas if k <[ then the pairing of a with k
and b with [ serves to distinguish them and so in this case a, b runs over all ordered pairs (a, b).
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Forn € Z and k <1 € Z° define Xz ; to be the span of all symbols of the form Xk | b and Xl k
with a + b = n. Then X is the direct sum of all XZ ;- Here there is also a difference between the

cases k =1/ and k < [. When k = [ a basis for Xz,k is {Xk’k }leZ, whereas when k < [ a basis for
X0 is (X Yiez X} iz Let B, = F(D(A} ) € X. That is

Bkl_{XZIb—I—Xlk a+b_n} { ab+1 +Xba+1. a+b=n—1}.
We see B,’C’l < X} ;> and so F(l)(,‘]]’Z 1) € X} - By, being simply the image of A} ;, the meaning
of the pair a, b here is the same as noted above for A} ;.
The main step in proving Theorem 4.3 is the followmg
Proposition 5.1.
(1) Foranyn € Z,k € Z°, B is a basis for X ;
(2) ForanyneZ,k <l eZ°, B,?’ ; Is an independent set spanning a subspace of codimension 1
in X} .

Proof. We first look at the following model space. Let E be the vector space with basis all
symbols E;, i € Z. Let D be the following set of element in E:

D={E_;+ Ei}izoU{E_;i + E1ti}i>o0.
We claim that D is a basis for E. Indeed, order the symbols E; as follows:
Eo, E1, E_1, Ey, E_», E3, E_3, ....
Order the elements of D by alternatingly taking an element from the first and second set, that is
2Ey, Eo+Ey, E_1+E, E 1 +E, E )+ E), E o+ E3 E 3+ E3, ...

By induction, the span of the first m elements in the first list coincides with that of the second
list. This establishes our claim, and we now prove (1) and (2) of the proposition.
Proof of (1): Assume first that n is even, and let n = 2m. Define an isomorphism ¢ : E — X’,Z k

by ¢(E;) = X} """ for all i € Z. Then for all i >0

o @(E-i+E) =X A XIS = FOU s o),
1— 1 1—i)+1 =i, (m+i)+1
e 9(E_i + E14i) = Xm+z ,m—i + XlTk —imAl+i Xm+l J(m—1—i)+ + Xlrcrfk i,(m+i)+1 _
1 (J )
(m-H) (/11 1- l)

That is, ¢ maps D bijectively onto Bk &> and so B,’: ¢ 18 a basis for Xk k-
For n odd, let n = 2m + 1. This time we define the 1s0morph1sm ¢:E— Xk « by o(E;) =

X,’Z,:” M1l for all i € 7. We have for all i > 0,
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o 9(E_; +E;) = m i,(m+i)+1 _I_Xm+1 Sm=i)+1 _ (l)(‘](z?n l)(m_H))
L4 @(E i + E1+l) - m lm+1+l + Xm+1+l et - F(l)('](m 1)(m+l+t))

That is, again, ¢ maps D onto B,?’k, and so B,?’k is a basis for Xgﬁk.

Proof of (2): Let E/ be another copy of E defined with symbols {Elf } and construct the corre-
sponding basis D', then D U D' is a basis for E @ E'. Assume first that n is even and n = 2m.
Letgp . EDE — X} ; be the isomorphism defined as follows:

0: p(E) = X}, Lm+i and for i
0: p(E)) =X;'jk 7 and for i

QO(E)_ m lm-‘rl‘
L
.go(Ei)_X,Q’fl’m L

e Fori

//\ //\
\\/ \\/

e Fori
Then the value of ¢ on D U D’ is as follows:

* 9(2Eo) =2X,'/" ¢ B},
* QEy) =2X" ¢ B},

Fori > 1:
] @(E—l + E ) - m+l mi + Xm bt - F(l)(‘](111+l) (m z))
. QD(E/ +E = m+z m—i + Xm im+i F(l)(-](m . (mﬂ))

(Note that F(‘)(J(m) (m)) is skipped here.)

Foralli > 0:
o 0(E_i + E1i) = m+z (m—1-i)+1 + Xm 1—i,(m+i)+1 F(l)(.](er,) o | l))
o @(E/ + El-H) _ m+z (m—1-i)+1 + Xlrcny[flfl,(m+t)+l F(l)(J(m . l) (m_H ).

That is, the set ¢ (D U D"), which is a basis for X} ;, does not precisely coincide with B,?’ ;- The
only difference is that the two elements 2X Zl lm, 2X) m "™ that appear in ¢ (D U D’), are replaced in
B}, by the one element X;"}" + X;}" = FOWUH, ™, (m)). It follows that B ; is independent and
span By is of codimension 1 in X7 .

Fornoddletn =2m+ 1.Letp :E®E — Xﬁ ; be the isomorphism defined as follows:

e Fori (p(E)— m+zm+1 i

(p(E)— m+z m+1—i

0,p(E)=X mJ” MmH1=1 and for i
0,9p(E)=X m+’ M1 and for i

//\ //\
\\/ \\/

e Fori
Then the value of ¢ on D U D’ is as follows:

o 9(2Ey) =2X;""* ' ¢ B,
o pQE) =2X""" ¢ B,
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Fori > 1:

o Q(E_i+ Ep)= X[ h0mtoth g i mmotl - F“)(J(m iy

o QB+ E) = X[ X S O ),

1

(Note that F(l)(J(m) (,,,)) is skipped here.)

Foralli > 0:

e (E_i+Ei+))=X m fomt1+i +Xm+l+'m i F(l)(J(m 9, (m+l+1))

° QU(E/_l l+z) - m b +Xm+]+l e F(l (J(m+l+z) (m 1))

Again, the set (D U D’), which is a basis for Z ;» does not coincide with B,'{” ;- The two
elements 2X,’; '"+1 ,2X, m’m+1 that appear in ¢(D U D"), are replaced in B} ; by the one element
X mtl Xm 1 = F(l)(](m) (m)) Again it follows that B}, is 1ndependent and span By, is

of codimension 1 in Xk ;- 0

Proposition 5.1 states in particular that foranyn € Z, k <1 € Z°, F m(Aﬁ, ;) is an independent
set. This implies that A} ; itself is independent, and so a basis for J} ;, and that F M) n, =
XZ ; is injective. We have already noted that the symbols of type J *+,J4 spanJ and so J is the
sum of all J]ZY Since X is the direct sum of all Xk /> and each F(V | m, is injective, we obtain that
J is the direct sum of all J” kil (And since we have seen A} kil is a basis for J7 ks We also obtain that

the set of all symbols of type J T, J4 is a basis for J.)
Forn € Z and k <1 € Z° define Y"l = span{Y,?l} C Y. Then for k = we have dimYZ,l =0
and for k <[ we have dim Y} =1 Y is the direct sum of all Yk ;> and lP(Xk D EYY,

Now, to prove Theorem 4.3 it is enough to show that for each n € Z and k < l € Z°, the

F()

restricted sequence 0 — Ji ; — X, £, Yj, = 0 is exact. Clearly ¥ o FV|j =0, and

l1/|Xn : Xz ;= Y”l is surjective, and we have also established that F(l)ljzl : Jkl - X k. 18 in-
JeCtIVC Since F(l)(J" ) = span B}/ ;, and since by Proposition 5.1 codim(span B/ ) =dimY} ,

1ndeed0—>J —>X YZZ—>0isexact,andsoO—>J]—>X—)Y—)Olsexact
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