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Abstract: The first paper in systolic geometry was published by Loewner’s student P. M. Pu over half
a century ago. Pu proved an inequality relating the systole and the area of an arbitrary metric in the real
projective plane. We prove a stronger version of Pu’s systolic inequality with a remainder term.
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1 Introduction

Loewner’s systolic inequality for the torus and Pu’s inequality [1] for the real projective plane were
historically the first results in systolic geometry. Great stimulus was provided in 1983 by Gromov’s paper
[2] and later by his book [3].

Our goal is to prove a strengthened version with a remainder term of Pu’s systolic inequality gsys2( )≤

gareaπ
2 ( ) (for an arbitrary metric g on 2�� ), analogous to Bonnesen’s inequality L A R r4π π2 2 2− ≥ ( − ) ,

where L is the length of a Jordan curve in the plane, A is the area of the region bounded by the curve, R is
the circumradius and r is the inradius.

Note that both the original proof in Pu ([1], 1952) and the one given by Berger ([4], 1965, pp. 299–305)
proceed by averaging the metric and showing that the averaging process decreases the area and increases
the systole. Such an approach involves a five-dimensional integration (instead of a three-dimensional one
given here) and makes it harder to obtain an explicit expression for a remainder term. Analogous results
for the torus were obtained in ref. [5] with generalizations in ref. [6–17].

2 The results

We define a closed three-dimensional manifold M 3 3� �⊆ × by setting

M v w v v w w v w, : 1, 1, 0 ,3 3� �= {( ) ∈ × ⋅ = ⋅ = ⋅ = }

where v w⋅ is the scalar product on 3� . We have a diffeomorphism M SO 3, �→ ( ), v w v w v w, , ,( ) ↦ ( × ),
where v w× is the vector product on 3� . Given a point v w M,( ) ∈ , the tangent space T Mv w,( ) can be
identified by differentiating the three defining equations of M along a path through v w,( ). Thus,
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T M X Y X v Y w X w Y v, : 0, 0, 0 .v w,
3 3� �= {( ) ∈ × ⋅ = ⋅ = ⋅ + ⋅ = }( )

We define a Riemannian metric gM onM as follows. Given a point v w M,( ) ∈ , let n v w= × and declare
the basis n n w v0, , , 0 , ,( ) ( ) ( − ) of T Mv w,( ) to be orthonormal. This metric is a modification of the metric

restricted to M from 3 3 6� � �× = . Namely, with respect to the Euclidean metric on 6� the above three

vectors are orthogonal and the first two have length 1. However, the third vector has Euclidean length 2 ,
whereas we have defined its length to be 1. Thus, if A T Mv w,⊆ ( ) denotes the span of n0,( ) and n,0( ), and

B T Mv w,⊆ ( ) is spanned by w v,( − ), then the metric gM on M is obtained from the Euclidean metric g on 6�

(viewed as a quadratic form) as follows:

g g g1
2

.M A B= ⇂ + ⇂ (1)

Each of the natural projections p q M S, : 2→ given by p v w v,( ) = and q v w w,( ) = exhibits M as a

circle bundle over S2.

Lemma 2.1. The maps p and q on M g, M( ) are Riemannian submersions, over the unit sphere S2 3�⊆ .

Proof. For the projection p, given v w M,( ) ∈ , the vector n0,( ) as defined above is tangent to the fiber

p v1( )− . The other two vectors, n, 0( ) and w v,( − ), are thus an orthonormal basis for the subspace of T Mv w,( )

normal to the fiber and are mapped by dp to the orthonormal basis n w, of T Sv
2. □

The projection p maps the fiber q w1( )− onto a great circle of S2. This map preserves length since the

unit vector n,0( ), tangent to the fiber q w1( )− at v w,( ), is mapped by dp to the unit vector n T Sv
2∈ . The same

comments apply when the roles of p and q are reversed.

In the following proposition, integration takes place, respectively, over great circles C S2⊆ , over the

fibers in M, over S2, and over M. The integration is always with respect to the volume element of the given
Riemannian metric. Since p and q are Riemannian submersions by Lemma 2.1, we can use Fubini’s
theorem to integrate over M by integrating first over the fibers of either p or q, and then over S2; cf. [18,
Lemma 4]. By the remarks above, if C p q w1= ( ( ))− and f S: 2 �→ , then f p f

q w C1∫ ∫∘ =
( )−

.

Proposition 2.2. Given a continuous function f S: 2 �→ +, we define m �∈ by setting

m f C S a great circlemin : .
C

2







∫= ⊆

Then,

m f f
π

1
4π

,
S S

2
2

2

2 2













∫ ∫≤ ≤

where equality in the second inequality occurs if and only if f is constant.

Proof. Using the fact that M is the total space of a pair of Riemannian submersions, we obtain

f f p f p f p m m1
2π

1
2π

1
2π

1
2π

2 ,
S S p v M S q w S2 2 1 2 1 2





























∫ ∫ ∫ ∫ ∫ ∫ ∫= ∘ = ∘ = ∘ ≥ =

( ) ( )− −

proving the first inequality. By the Cauchy-Schwarz inequality, we have
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f f1 4 π ,
S S

2

2

2 2













∫ ∫⋅ ≤

proving the second inequality. Here, equality occurs if and only if f and 1 are linearly dependent, i.e., if
and only if f is constant. □

We define the quantity Vf by setting V f ff S S
2 1

4π

2

2 2( )∫ ∫= − . Then, Proposition 2.2 can be restated as

follows.

Corollary 2.3. Let f S: 2 �→ + be continuous. Then,

f m V
π

0,
S

f
2

2

2

∫ − ≥ ≥

and V 0f = if and only if f is constant.

Proof. The proof is obtained from Proposition 2.2 by noting that a b c≤ ≤ if and only if c a− ≥

c b 0− ≥ . □

We can assign a probabilistic meaning to Vf as follows. Divide the area measure on S2 by 4π, thus
turning it into a probability measure μ. A function f S: 2 �→ + is then thought of as a random variable

with expectation E f fμ S
1

4π 2∫( ) = . Its variance is thus given by

f E f E f f f VVar 1
4π

1
4π

1
4π

.μ μ μ

S S

f
2 2 2

2

2 2













∫ ∫( ) = ( ) − ( ( )) = − =

The variance of a random variable f is non-negative, and it vanishes if and only if f is constant. This
reproves the corresponding properties of Vf established above via the Cauchy-Schwarz inequality.

Now let g0 be the metric of constant Gaussian curvature K 1= on 2�� . The double covering

ρ S g: ,2 2
0��→ ( ) is a local isometry. Each projective line C 2��⊆ is the image under ρ of a great circle of S2.

Proposition 2.4. Given a function f : 2�� �→ +, we define m �∈ by setting

m f C a projective linemin : .
C

2







��∫= ⊆

Then,

m f f2
π

1
2π

,
2

2

2

2 2















�� ��

∫ ∫≤ ≤

where equality in the second inequality occurs if and only if f is constant.

Proof. We apply Proposition 2.2 to the composition f ρ∘ . Note that we have f ρ f2
ρ C C1∫ ∫∘ =

( )−
and

f ρ f2
S2 2��

∫ ∫∘ = . The condition for f to be constant holds since f is constant if and only if f ρ∘ is constant. □

For 2�� we define V f f Vf f ρ
2 1

2π

2 1
22 2�� ��( )∫ ∫= − = ∘ . We obtain the following restatement of Proposi-

tion 2.4.
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Corollary 2.5. Let f : 2�� �→ + be a continuous function. Then,

f m V2
π

0,f
2

2

2��

∫ − ≥ ≥

where V 0f = if and only if f is constant.

Relative to the probability measure induced by g1
2π 0 on 2�� , we have E f f1

2π 2��
∫( ) = , and therefore

f VVar f
1

2π( ) = , providing a probabilistic meaning for the quantity Vf , as before.

By the uniformization theorem, every metric g on 2�� is of the form g f g2
0= , where g0 is of constant

Gaussian curvature 1+ , and the function f : 2�� �→ + is continuous. The area of g is f 2
2��

∫ , and the

g-length of a projective line C is f
C

∫ . Let L be the shortest length of a noncontractible loop. Then, L m≤

where m is defined in Proposition 2.4, since a projective line in 2�� is a noncontractible loop. Then,

Corollary 2.5 implies g Varea , 0L
f

2 2
π

2
��( ) − ≥ ≥ . If garea , L2 2

π

2
��( ) = , then V 0f = , which implies that f is

constant, by Corollary 2.5. Conversely, if f is a constant c, then the only geodesics are the projective lines,

and therefore, L cπ= . Hence, c2π areaL2
π

2 22
��= = ( ). We have thus completed the proof of the following

result strengthening Pu’s inequality.

Theorem 2.6. Let g be a Riemannian metric on 2�� . Let L be the shortest length of a noncontractible loop in

g,2��( ). Let f : 2�� �→ + be such that g f g2
0= , where g0 is of constant Gaussian curvature 1+ . Then,

g L farea 2
π

2πVar ,
2

( ) − ≥ ( )

where the variance is with respect to the probability measure induced by g1
2π 0. Furthermore, equality

garea L
π

2 2
( ) = holds if and only if f is constant.
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