FRAMINGS AND PROJECTIVE FRAMINGS FOR 3-MANIFOLDS
TAHL NOWIK

ABSTRACT. We give an elementary and easily visualizable proof of the fact that any ori-
entable 3-manifold admits a framing (i.e. is parallelizable) and any non-orientable 3-manifold
admits a projective framing. The proof uses only basic facts about immersions of surfaces

in 3-space.

1. INTRODUCTION

A framing for a smooth n-manifold M is a smooth choice of ordered basis (vy,...,v,) for
the tangent space at each point of M. A projective framing is a smooth choice of a pair of
ordered bases of the form {(vy,...,v,),(—v1,...,—v,)}. It has long been established that
any orientable 3-manifold admits a framing ([S]) and any non-orientable 3-manifold admits
a projective framing ([HH]). The original proofs rely on the notion of characteristic classes.
We present a proof for compact M, which will only use basic facts about immersions of
surfaces in 3-space.

We now present the facts on immersions that we will need. Denote H = (3Z)/(2Z), which
is a cyclic group of order 4. Let U denote an annulus or Mobius band. There are two regular
homotopy classes of immersions of U into R3. To each such class we attach a value in #H
as follows: For U an annulus, the regular homotopy class of immersions which includes an
embedding whose image is S' x [0,1] C R? x R = R?, will have value 0 € #. The other class,
(containing an embedding differing from the previous embedding by one full twist) will have
value 1 € H. For U a Mobius band we attach once and for all the value % € H to one of the
classes and the value —1 € H to the other (which again differ by one full twist). Now let F
be a closed surface and i : ' — R® an immersion. We define a map ¢' : H,(F,Z/2) — H as
follows: Given = € H,(F,Z/2) let ¢ C F be an embedded circle which represents z. Let U
be a thin neighborhood of ¢ in F, then U is an annulus or Mobius band. We define ¢*(z) to

be the value in H attached above to the immersion i|y. It has been shown in [P] that ¢* is
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FIGURE 1

indeed well defined on Hy(F,Z/2) and satisfies the following property:
(1) d(e+y) =7d(2)+d)+z-y

where z - y denotes the intersection form on Hy(F,Z/2). Note z -y € Z/2 C H.

We remark that the notation in [P] differs from ours in that # is taken there to be Z /47
rather than (%Z) /27.. And so the numerical value of ¢* appearing there is twice the value here,
and our property (1) appearing above is replaced there by ¢'(z +v) = ¢'(z) +g'(y) +2(z - y).

We point out that the above facts about immersions are indeed basic, in the sense that they
may be obtained without knowledge of the Smale-Hirsch Theorem. E.g. for the classification
of regular homotopy classes of immersions of U into R® where U is an annulus or Mobius
band, one needs to show that the easily constructed map into m1(SOj) is bijective. In
general one would use the Smale-Hirsch Theorem, but in this case surjectivity follows by

direct construction of the two immersions, and injectivity follows by familiarity with the

“belt trick”.

2. PROOF OF THEOREM

We will prove the statement for M a closed 3-manifold. The statement for M with
boundary will follow by restricting a framing from the double of M. So let M be a closed
3-manifold, and let ' C M be a Heegard surface, i.e. F splits M into two handlebodies A, B
(orientable or non-orientable) with common boundary F'. Let ay,...,a, C F be a system of
disjoint circles which may be compressed in A, reducing A to a ball, and let by,...,b, C F
be such system compressible in B. Then a thin neighborhood in F' of each of the a;s and b;s
is an annulus. We fix some immersion i : F — R3 satisfying g'(a;) = 0 forall 1 < k < n, e.g.

we may take the immersion depicted in Figures 1a and 1b for the case where F' is orientable



FRAMINGS AND PROJECTIVE FRAMINGS FOR 3-MANIFOLDS 3

or non-orientable, respectively. (We allow aj, to denote both the circle in F' and its homology

class in H,(F,Z/2).)

Lemma 2.1. There exists an h : F' — F which 1s a composition of Dehn twists along some

of the ays, such that g*°"(b;) =0 for all1 < k < n.

Proof. For any diffeomorphism h : F — F, define ¢, : Hi(F,Z/2) — Z/2 by ¢un(z) =
g'(h«(z)) — g*(z), where h, : Hi(F,7Z/2) — Hy(F,7/2) is the induced homomorphism. Note
that indeed ¢, (z) € Z/2 (since if ¢ is an embedded circle in F' then ¢ and h(c) either both
have annulus neighborhood or both have Mobius band neighborhood), and by (1), ¢ is a

linear functional. Let hy : F' — F denote the Dehn twist along aj, then hj, is given by
hk*(x) =zxz+ (x . ak)ak. We get (by (1)) for all z € Hl(F,Z/2):

(2) P (z) = gi(x + (z - ax)ax) — 91(93) = gl((l' cap)ag) + (2 ar) =z - 4.

(Indeed it is visually clear in Figure 1, that if ¢ is an embedded circle in F' and U a neigh-
borhood of ¢, then a Dehn twist along a; will add one twist to |y for each intersection of ¢
with ay.)

Let Va,Vp C Hy(F,7Z/2) be the subspaces spanned by the axs and bys respectively, then
the intersection form vanishes on V4 and Vp. It follows by (1) that g'|y, is identically 0
and g'|y, is a Z/2 valued linear functional. By (2) each ¢, vanishes on V4, and since the
intersection form on H;(F,Z/2) is non-degenerate, ¢, , . .., ¢p, span all linear functionals on
H,(F,Z/2) which vanish on V4. In particular, they span a linear functional 1) vanishing on V4
and satisfying ¥|v, = ¢'|v,. Now if ¢ = Gn; +Pny, ot ony, (L< 1 <ja <0 <jp <),
then let h = hj, 0hj,0---0h; . We have ¢, = 9 (both are given by z — z-(aj, +aj, +- - -+aj,)),
and so for all 1 < k£ < n: gi°h(bk) = gi(h*(bk)) = gi(bk) + ¢n(br) = 2gi(bk) = 0. ]

We replace our chosen immersion ¢ with toh, where h : F' — F is the map given by Lemma
2.1, and name it 7 again. So now we have g*(a;) = 0 and ¢*(b;) = 0, for all 1 < k < n.

We will first construct a (projective) framing on TM|p. Let TF, C TM, denote the
tangent spaces of /' and M at p € F. Let n, € TM, (p € F) be a smooth choice of
nonzero vector which is pointing into B. If F' is orientable then there exists a smooth choice
of unit normal u, for i(F) C R®. And so the differential of i together with the choice of

n

P with which we pull back the

and u, determine an isomorphism from 7'M, to TR?’i(p),

standard framing of TRR?;,) to TM,. If F is non-orientable then a normal to i(F) may

not be continuously chosen. Let u, be one of the two unit normals at i(p). We define the
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isomorphism from 7'M, to TRSi(p) as the composition of the isomorphism which uses u,, as

before, with a 7 rotation around wu, in the positive sense defined by the direction of wu,.

2 D
When choosing the opposite wu,, then this isomorphism will differ by the reflection defined
by u,, composed with a 7 rotation around u,, that is, they will differ by —Id. So such pair
of pullbacks define a projective framing on 7'M |p.

The next step is to extend the framing to a thin neighborhood of the compressing discs of
the ais and bys in A, B. Let d be one of the circles a;, or b;. Let E be a thin neighborhood
of the compressing disc for d, then F = D? x [0,1], and U = 8D? x [0,1] C E is a thin
neighborhood of d in F. For orientable ' we now look at the restriction to U of the framing
we have chosen on F. If F' is non-orientable, then since U is orientable, there exists a
continuous choice of unit normal w, for i(U), which selects a proper (i.e. non-projective)
framing from the projective framing that has been restricted from /. We will now show that
such proper framing on U may be extended to E. This follows from the following four simple

facts: Fact 1: If two framings on U are homotopic, and one of them is extendible to £, then

the other is extendible as well. Fact 2: The framing constructed in the non-orientable case

us

5 rotation, is homotopic to that pulled

by pulling back via an isomorphism which included a
back without the 7 rotation. Fact 3: Since g'(d) = 0, i|y is regularly homotopic to an
embedding which can be extended to an embedding e : E — R3. If the choice of u, is carried
continuously along the regular homotopy, then the regular homotopy induces a homotopy
of the pulled back framings. Furthermore, we may choose the regular homotopy so that the
final u, will point inward to e(E), and we may similarly choose the regular homotopy so
that the final u, will point outward. Fact 4: For embedding e : E — R3, let n, be a smooth
choice on U of vector pointing inward to E, and w, the unit normal to e(U) pointing inward
to e(£). Then the framing on U pulled back using n,, u,, is homotopic to the restriction of
the framing on the whole F which is the pullback via e of the standard framing of R3. The
same is true if both n, and u, are chosen to point outward. (Note that it was necessary to
have both the inward and outward cases, since our n,, points outward for the a;s and inward
for the bys.)

It remains to extend the framing to the remaining 3-balls in A, B. Since a ball D is

orientable, we may select a proper framing from the perhaps projective framing we already

have on D. This may always be extended to a framing on D, e.g. since m3(S03) = 0.
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