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Multivariate Polynomial maps

Noncommutative and non-associative structures,

braces and applications.

Malte, March 2018

Part of this talk is extracted from a few joint works
with T.Y. Lam, A. Ozturk, J. Delenclos.
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1 Noncommutative Polynomial map in one variable.

a) Skew polynomial rings.

A a ring, σ ∈ End(K), δ a σ-derivation:

δ ∈ End(K,+) δ(ab) = σ(a)δ(b) + δ(a)b, ∀a, b ∈ K.

Define a ring R := A[t;σ, δ]; Polynomials f(t) =
∑n

i=0 ait
i ∈ R.

Degree and addition are defined as usual, the product is based on:

∀a ∈ A, ta = σ(a)t+ δ(a).

Exemples 1.1. 1) If σ = id. and δ = 0 we get back the usual

polynomial ring A[x].

2) R = C[t;σ] where σ is the complex conjugation. If x ∈ C is such

that σ(x)x = 1 then

t2 − 1 = (t+ σ(x))(t− x)

. On the other hand t2 + 1 is central and irreducible in R.
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b) Pseudo-linear maps and polynomial maps

Definitions 1.2. A a ring, σ an endomorphism of A and δ a

σ-derivation of A. Let V be a left A-module.

a) An additive map T : V −→ V such that, for α ∈ A and v ∈ V ,

T (αv) = σ(α)T (v) + δ(α)v.

is called a (σ, δ) pseudo-linear transformation (or a (σ, δ)-PLT,

for short).

b) For f(t) ∈ R = A[t;σ, δ] and a ∈ A, we define f(a) to be the only

element in A such that f(t)− f(a) ∈ R(t− a).

If R = A[t;σ, δ] and RM is a left R module. we have

t.(am) = (ta).m = σ(a)t.m+ δ(a).m

For a ∈ A and m ∈M . Hence t. is a (σ, δ)-PLT defined on M .

This leads to

RM ←→ AM + PLT

.

Examples: For a ∈ A, Ta : A→ A defined by Ta(x) = σ(x)a+ δ(x) is

a PLT. In particular, T0 = δ, T1 = σ + δ are PLT.

What is the module defined by Ta ? This is R/R(t− a). From this it

easy to check that

∀f(t) ∈ A[t;σ, δ] ∀a ∈ A, f(a) = f(Ta)(1)

In case A = K is a division ring, for f(t), g(t) ∈ A[t;σ, δ] and a ∈ K

if g(a) 6= 0 we have

fg(a) = f(ag(a))g(a).
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where for 0 6= c ∈ K ac = σ(c)ac−1 + δ(c)c−1.

If A is not a division ring ?

In general when T ∈ End(M,+) The map ϕ : R −→ End(M,+)

given by

ϕ(
n∑
i=0

ait
i) =

n∑
i=0

aiT
i.

is a ring homomorphism.

In particular, in the case of the evaluation at a ∈ A this leads to

fg(a) = (f(Ta) ◦ g(Ta))(1) = f(Ta)(g(a))

c) Counting the roots

Let A = K be a division ring, we define

E(f, a) := ker f(Ta) = {0 6= b ∈ K | f(ab) = 0} ∪ {0}

Facts and notations

a ∈ K, R = K[t;σ, δ].

1) ∆(a) := {ac = σ(c)ac−1 + δ(c)c−1 | 0 6= c ∈ K}.

2) Ta defines a left R-module structure on K via f(t).x = f(Ta)(x).

3) In fact, RK ∼= R/R(t− a) as left R-module.

4) RKS where S = EndR(RK) ∼= EndR(R/R(t− a)), a division ring.

isomorphic to the division ring C(a) := {0 6= x ∈ K | ax = a} ∪ {0}.

5) For any a ∈ K and f(t) ∈ R = K[t;S,D], ker f(Ta) is a right

vector space on the division ring C(a).

Theorem 1.3. Let f(t) ∈ R = K[t;S,D] be of degree n. We have

(a) The roots of f(t) belong to at most n conjugacy classes, say

∆(a1), . . . ,∆(ar); r ≤ n (Gordon Motzkin in ”classical” case).

(b)
∑r

i=1 dimCi
ker f(Tai) ≤ n.
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For any f(t) ∈ R = K[t;S,D] we thus ”compute” the number of

roots by adding the dimensions of the vector spaces consisting of

”exponents” of roots in the different conjugacy classes...

Theorem 1.4. let p be a prime number, Fq a finite field with q = pn

elements, θ the Frobenius automorphism (θ(x) = xp). Then:

a) There are p distinct θ-classes of conjugation in Fq.

b) 0 6= a ∈ Fq we have Cθ(a) = Fp and Cθ(0) = Fq.

(c) R = Fq[t; θ], t− a for a ∈ Fq is

G(t) := [t− a | a ∈ Fq]l = t(p−1)n+1 − t

. We have RG(t) = G(t)R.

The polynomial G(t) in the above theorem is a Wedderburn

polynomial...

d) Wedderburn polynomials and symmetric functions

Definitions 1.5. 1. (a) A monic polynomial p(t) ∈ R = K[t;S,D]

is a Wedderburn polynomial if we have equality in the ”counting

roots formula”.

(b) For a1, . . . , an ∈ K the matrix

V S,D
n (a1, . . . , an) =


1 1 . . . 1

Ta1(1) Ta2(1) . . . Tan(1)
. . . . . . . . . . . .

T n−1a1
(1) T n−1a1

(1) . . . T n−1a1
(1)
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Theorem 1.6. Let f(t) ∈ R = K[t;S,D] be a monic polynomial of

degree n. The following are equivalent:

(a) f(t) is a Wedderburn polynomial.

(b) There exist n elements a1, . . . , an ∈ K such that

f(t) = [t− a1, . . . , t− an]l where [g, h]l stands for LLCM of g, h.

(c) There exist n elements a1, . . . , an ∈ K such that

S(V )CfV
−1 +D(V )V −1 = Diag(a1, . . . , an)

Where Cf is the companion matrix of f and V = V (a1, . . . , an)

(d) Every quadratic factor of f is a Wedderburn polynomial.

Example

Construction of Wedderburn polynomials: Let a, b ∈ K be two

different elements in K.

f(t) := [t− a, t− b]l = (t− bb−a)(t− a) = (t− aa−b)(t− b).

Assume now that c ∈ K is such that f(c) 6= 0 then:

g(t) := [t− a, t− b, t− c]l = (t− cf(c))f(t).

Wedderburn polynomials can be used to develop noncommuative

symmetric functions.
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2 Iterated Ore extensions

a) Evaluation

Consider f(t1, t2) ∈ R = A[t1;σ1, δ1][t2;σ2; δ2] and a = (a1, a2) ∈ A2.

Considering f(t1, t2) as an element of R1[t2, σ2, δ2], where

R1 = A[t1;σ1; δ1], we can evaluate f(t1, b) ∈ R1 = A[t1;σ1, δ1. and

this polynomial can then be evaluated in a. In other words we must

evaluate at a the remainder of the division of f(t1, t2) by t2 − b in

R1[t2;σ2, δ2]. This leads to the following definition:

Definition 2.1. Let R1 := A[t1;σ1, δ1] be an Ore extension and

σ2, δ2 an endomorphism and a σ2-derivation of R1 respectively. We

assume that σ2(A) ⊆ A and δ2(A) ⊆ A. For (a, b) ∈ A2 and

f(t1, t2) ∈ A[t1;σ1, δ1][t2;σ2, δ − 2], we define f(a, b) to be the unique

element in A representing f(t1, t2) in R/(R1(t1 − a) +R(t2 − b)).

Exemples 2.2. 1. Let us compute (t1t2)(a, b). We have

t1t2 = t1(t2 − b) + t1b = t1(t2 − b) + σ1(b)t1 + δ1(b). This leads to

(t1t2)(a, b) = σ1(b)a+ δ1(b).

2. (t2t1)(a, b) = (σ2(t1)t2 + δ2(t1))(a, b) = (σ2(t1)(b) + δ2(t1))(a).

Notations 1. 1. Let A, σ1, σ2, δ1, δ2 be as above. We put, for

x ∈ A, T 1
a (x) = σ1(x)a+ δ1(x) and T 2

a (x) = σ2(x)a+ δ2(a).

2. For (a, b) ∈ A2 we put I1 = R1(t1 − a) +R(t2 − b) and

I := R(t1 − a) +R(t2 − b). Of course we have I1 ⊆ I ⊆ R.

It sems reasonable to require that (t2(t1− a))(a, b) = 0 for any b ∈ A.

This leads to the requirement that t2(t1 − a) ∈ I1.
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b) Good points

Theorem 2.3. With the above notations, the following are

equivalent:

1. I1 = I;

2. R(t1 − a) ⊆ I1;

3. I 6= R;

4. t2(t1 − a) ∈ I1;

5. σ2(t1 − a)b+ δ2(t1 − a) ∈ R1(t1 − a);

6. (t2t1)(a, b) = σ2(a)b+ δ2(a);

7. the map ψ : R = K[t1;σ1, δ1][t2;σ2, δ2] −→ End(K,+)defined by

ψ(f(t1, t2)) = f(T 1
a , T

2
b ) is a ring homomorphism;

8. ∀f, g ∈ R, (fg)(a, b) = (f(T 1
a , T

2
b ) ◦ g(T 1

a , T
2
b ))(1).

Definition 2.4. A point (a, b) ∈ A2 will be called a good point if one

of the equivalent statements of the above theorem holds.

Notice that the last statement of this theorem is the required

analogue of the ”product formula”.

Exemples 2.5. 1. In the classical case (σ1 = σ2 = idK and

δ1 = δ2 = 0), every point (a, b) ∈ K2 is good.

2. If K is a division ring σ1 = idK , δ1 = 0 and σ2 = id, δ2 = d/dt1,

we have for any a, b ∈ K, (t2 − b)(t1 − a) = (t1 − a)(t2 − b) + 1.

This shows that in this case there are no good points.
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3 Free Ore extensions

a) Definitions

We follow U. Martinez-Peñas and F.R. Kschischang: ”Evaluation

and interpolation over multivariate skew polynomial rings”.

A a ring, σ : A −→Mn(A) a ring morphism and an additive map

δ : A −→ An such that

δ(ab) = σ(a)δ(b) + δ(a)b

R = A〈t1, . . . , tn〉/I. where I is the ideal generated by the following

relations

∀a ∈ A, tia =
n∑
j=1

σij(a)tj + δi(a)

writing t for the column vector (t1, . . . , tn)
t we have the following

commutation rule

∀a ∈ A, ta = σ(a)t + δ(a)

For f ∈ R and a = (a1, . . . , an) ∈ An, f(a) is the (unique) element of

A representing f modulo
∑

iR(ti − ai).

Example

n = 2 and a, b ∈ A2,

(t1t2)(a, b) = σ11(b)a+ σ12(b)b+ δ1(b)

(t2t1)(a, b) = σ21(a)a+ σ22(a)b+ δ2(a)

. b) Generalized PLT

R = A[t1, . . . , tn ; (σ), (δ)], AM a left A-module .
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A GPLT T is a set of additive maps T1, . . . , Tn: Ti : M −→M such

that

∀a ∈ A, ∀m ∈M, ∀1 ≤ i ≤ n Ti(am) =
n∑
j=1

σij(a)Tj(m) + δi(a)m

As earlier:

RM ←→A M +GPLT

Example a = (a1, . . . , an) ∈ An Define Ta = (T1, . . . , Tn) by

Ti(x) =
n∑
j=1

σij(x)aj + δi(x)

We have, as in case n = 1,

There is a ring homomorphism ϕ : R −→ End(M,+) such that

ϕ(ti) = Ti.

As in the case when n = 1, for f(t) ∈ R and a = (a1, . . . , an)

f(a) = f(Ta)(1).

This leads to a product formula that can be expressed as follows

f, g ∈ R (fg)(a) = f(Ta)(g(a)).

If A = K is supposed to be a division ring, we have for F,G ∈ R and

a ∈ Fn we have that either G(a) = 0 and then also FG(a) = 0 or

G(a) = c 6= 0 and then

(FG)(a) = F(ac)G(a).

where ac = σ(c)ac−1 + δ(c)c−1
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Example

For a = (a1, . . . , an) and b = (b1, . . . , bn). One can check that the

following polynomials annihilates both a and b:

(t1 −
n∑
i=1

σ1i(b1 − a1)bi + δ1(b1 − a1))(t1 − a1)

(t2 −
n∑
i=1

σ2i(b1 − a1)bi + δ2(b1 − a1))(t1 − a1)

Facts

• Classical correspondance between subsets of Kn and polynomials

annihilating these subsets holds here...

• Lagrange interpolation holds....

• One can divide Kn into conjugacy classes and look for zeros of

polynomial inside a class. These leads to a vector space just as

E(f, a) = ker(f(Ta)) (as in the case n = 1).

c) P-independence, P-Basis

This notions are quite similar to the one in case n = 1. Briefly

• A subset of E ⊂ Kn is said to be P independent if for any a ∈ E

there exists a polynomial annihilating E{a} that doesn’t

annihilates a.

• A subset E ⊂ Kn is closed if the set of common zeros of the

polynomials that annihilate E is equal to E.

• A P-basis of a closed set C is a P idependent subset of C such

that its closure is C.
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Many questions

• Can we ”count the roots” ?

• Analogue of left common multiples (i.e. generators of

intersection of principal left ideals)?

• Analogues of Wedderburn polynomials ?

• In case A = Fq is a finite field can we imagine a similar situation

as in the case n = 1 ?

• Ring structure of R and its quotient? (remark suppose A = K is

a division ring and Λ ⊂ Kn is such that Λc ⊂ Λ, then

I(Λ) := {f ∈ R | f(Λ) = 0} is a two sided ideals)

.
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Thank you (very Malte)!

.




