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Factorized groups

A group G is called factorized, if

G = AB = {ab | a ∈ A, b ∈ B}

is the product of two subgroups A and B of G .

More generally, consider a group G = A1....An which is the
product of finitely many pairwise permutable subgroups A1, ..., An

such that AiAj = AjAi for all i , j ∈ {1, . . . , n}.

Problem. What can be said about the structure of the
factorized group G if the structures of its subgroups Ai are
known?



Factorized subgroups

Let N be a normal subgroup of a factorized group G = AB. Then
clearly the factor group G/N inherits the factorization

G/N = (AN/N)(BN/N).

Definition (a) A subgroup S of G = AB is factorized if
S = (A ∩ S)(B ∩ S) and A ∩ B ⊆ S .

(b) If U is a subgroup of G = AB, the X (U) denotes the smallest
factorized subgroup of G = AB which contains U, X (U) is called
the factorizer of U in G .



Groups with a triple factorization

Lemma. Let N be a normal subgroup of G = AB. Then the
factorizer of N has the form

X (N) = AN∩BN = N(A∩BN) = N(B∩AN) = (A∩BN)(B∩AN).

Therefore the critical situation that has to be studied is the
following triply factorized group

G = AB = AM = BM with a normal subgroup M of G .

If in particular M is abelian, then (A ∩M)(B ∩M) is a normal
subgroup of G, which we may factor out to have in addition

A ∩M = B ∩M = 1

(in this case A and B are complements of M in G ).



Construction of triply factorized groups

Let R be a radical ring. Then the adjoint group A = R◦ operates
on the additive group M = R+ via

xa = x(1 + a) = x + xa(a ∈ A, x ∈ M)

Form the associated group

G (R) = AnM = {(a, x) | a ∈ A, x ∈ M}

Take for A the set of all (a, 0), a ∈ A, for M the set of all
(0, x), x ∈ M, and for B the diagonal group of all (x , x), x ∈ R.
Then we have

G (R) = AM = BM = AB, where M is a normal subgroup of G
such that A ∩M = B ∩M = A ∩ B = 1.

Here A and B are isomorphic to R◦ and M is isomorphic to R+.



Reference

By using various radical rings many more interesting examples can
be constructed.

A general reference is the monograph

Products of groups Ref. [AFG]

by B.A., Silvana Franciosi, Francesco de Giovanni

Oxford Mathematical Monographs

Clarendon Press, Oxford (1992)



Triply factorizations with three abelian subgroups

Proposition. (see [AFG], Proposition 6.1.4)

Let the group G be triply factorized by two abelian subgroups A, B
and an abelian normal subgroup M of G such that

G = M o A = M o B = AB and A ∩ B = 1.

Then there exists a radical ring R and an isomorphism α from
G (R) onto G such that A(R)α = A, B(R)α = B and M(R)α = M.



Hyperabelian groups and finiteness conditions

A group G is hyperabelian if every nontrivial epimorphic image of
G contains a nontrivial abelian normal subgroup.
Thus in particular, every soluble group is hyperabelian.

A group-theoretical property X is called a finiteness condition if
every finite group belongs to X.

The following group-theoretical properties are finiteness conditions:

I the class of groups with minimum condition,

I the class of groups with maximum condition,

I the class of minimax groups,

I the class of groups with finite Prüfer rank,

I the class of groups with finite torsionfree rank

I the class of groups with finite abelian section rank.



The main theorem

Several authors have contributed to the following

Main Theorem.

Let G = AB be a hyperabelian group (in particular a soluble
group). If the two subgroups A and B satisfy any of the
above finiteness conditions X, then also G is an X-group.

All these results are proved by a reduction to a triply factorized
group as explained above and then considering G as a ZA-module.
Thus also Representation Theory and Cohomology Theory may be
applied.



Semidirect products of groups and derivations

Let a group A act on a group M, i.e. there is a homomorphism
from A into the automorphism group Aut(M) of M, and let
G = M o A be the semidirect product of M by A.

A mapping δ : A→ M is a derivation (or a 1-cocycle) from A into
M if (ab)δ = (aδ)bbδ for all elements a, b ∈ A.

For instance, for each m ∈ M the mapping
δ : a→ [a,m] = a−1m−1am with a ∈ A is a derivation from A into
M, because [ab,m] = [a,m]b[b,m] for all a, b ∈ A. Such a
derivation is called inner.

If A acts trivially on M, then every non-trivial homomorphism
δ : A→ M is a non-inner derivation from A into M and conversely.



If N is an A-invariant subgroup of M, then the full preimage B of
A in N (i.e. the set of all a ∈ A such that aδ ∈ N) is a subgroup of
A, because 1δ = 1 and (a−1)δ = a(aδ)−1a−1.

On the other hand, the image Aδ of A in M under δ is not
necessarily a subgroup of M. If for some subgroup N of M there
exists a subgroup C of A such that N is the set of all cδ with
c ∈ C , then we will say that N is a derivation image of C .

The following result describes some properties of derivations in
terms of the complements of M in the semidirect product
G = M o A.



Triply factorized groups and derivations

Theorem.

Let A be a group acting on a group M and let G = M o A be the
semidirect product of M and A. If δ : A→ M is a derivation and
B = {aaδ | a ∈ A}, then B is a complement to M, and the
following holds:

1. The derivation δ is inner if and only if B is conjugate to A in
G ,

2. kerδ = A ∩ B and in particular δ is injective if and only if
A ∩ B = 1,

3. The derivation δ is surjective if and only if G = AB. In other
words, M is a derivation image of A if and only if
G = M o A = M o B = AB.



Bijective Derivations and triply factorized groups

As a particular case of this theorem we have the following
characterization of bijective derivations in terms of triply factorized
groups.

Corollary.

A derivation δ from A to M is bijective if and only if in the
semidirect product G = M o A there exists a complement B of M
in G such that

G = M o A = M o B = AB and A ∩ B = 1.



Braces

Definition. An additive abelian group V with a multiplication
VxV → V is called a (right) brace if for all u, v ,w ∈ V the
following holds

1. (u+v)w=uw+vw,

2. u(vw+v+w) = (uv)w + uv + uw,

3. the map v → uv + v is bijective.

Every radical ring R is a brace under the addition and
multiplication in R. Every brace whose multiplication is either
associative or two-sided distributive is a radical ring.

As in a radical ring, the set of all elements of any brace V forms a
group with neutral element 0 under the adjoint multiplication
u ◦ v = u + v + uv , which is also called the adjoint group V ◦ of
V .



Braces and triply factorized groups

Theorem.

Let A be a group and V be an A-module. Then the following
statements are equivalent:

(1) V is a brace whose adjoint group is isomorphic to A,

(2) there exists a bijective derivation d : A→ M such that
u.v = ud−1(v)− u for all u, v ∈ V ,

(3) the integer group ring ZA contains a right ideal a such that V
is the brace determined by a,

(4) in the semidirect product G = M o A there exists a subgroup
B such that G = M o A = M o B = AB and A ∩ B = 1.



Some solubility criteria for factorized groups

When is a factorized group soluble or at least generalized soluble in
some sense?

The most important criterion is the following

Theorem (N. Itô 1955). If the group G = AB is the product of
two abelian subgroups A and B, then G is metabelian.

Question. Let the group G = AB be the product of two
abelian-by-finite subgroups A and B, (i.e. A and B have abelian
subgroups of finite index, perhaps even with index at most 2)

Does then G have a soluble (or even metabelian) subgroup of
finite index?



Some previous results

This seemingly simple question has a positive answer for linear
goups (Ya. Sysak 1986) and for residually finite groups (J.
Wilson 1990).

Theorem (N.S. Chernikov 1981). If the group G = AB is the
product of two central-by-finite subgroups A and B, then G is
soluble-by-finite.
(It is unknown whether G is metabelian-by-finite in this case.)

Theorem (O. Kegel 1961, H. Wielandt 1958, L. Kazarin 1981).
Let the finite group G = AB be the product of two subgroups A
and B, which both have nilpotent subgroup of index at most 2.
Then G is soluble.
(It is unknown whether this holds for infinite groups in general)



Generalized dihedral groups

A group is dihedral if it is generated by two involutions.

Definition. A group G is generalized dihedral if it is of dihedral
type, i.e. G contains an abelian subgroup X of index at most 2
and an involution τ which inverts every element in X .

Then A = Xo <a> is the semi-direct product of an abelian
subgroup X and an involution a, so that xa = x−1 for each x ∈ X .

Clearly every (finite or infinite) dihedral group is also generalized
dihedral. A periodic generalized dihedral group is locally finite and
every finite subgroup is contained in a finite dihedral subgroup.



Products of generalized dihedral subgroups

The following solubility criterion widely generates Itô’s theorem.

Theorem 1. (B.A., Ya. Sysak, J. Group Theory 16 (2013),
299-318).

(a) Let the group G = AB be the product of two subgroups A and
B, each of which is either abelian or generalized dihedral. Then G
is soluble.

(b) If, in addition, one of the two subgroups, B say, is abelian,
then the derived length of G does not exceed 5.



Products of two (locally cyclic)-by-(index at most 2)
subgroups

A group A is locally cyclic, if every finitely generated subgroup is
cyclic.

Corollary.

Let the group G = AB be the product of two subgroups A and B.

(a) If both A and B contain torsionfree locally cyclic subgroups of
index at most 2, then G is soluble and metabelian-by-finite.

(b) If A and B are cyclic-by-(index at most 2), then G is
metacyclic-by-finite.



Some special cases of Theorem 1 that were proved
previously

Let the group G = AB be the product of two generalized dihedral
subgroups A and B.

1. The second case of the corollary was first proved in
B.A., Ya. Sysak, Arch. Math. 90 (2008), 101-111.

2. The special case of the theorem when A and B are periodic
generalized dihedral was already treated in
B.A., A. Fransman, L. Kazarin, J. Alg. 350 (2012), 308-317.

3. If A and B are Chernikov groups and (abelian)-by-(index at
most 2), and one of the two is generalized dihedral, then G is
a soluble Chernikov group. This was shown in
B.A., L. Kazarin, Israel J. Math. 175 (2010), 363-389.



Remarks on the proof of Theorem 1

The proof of Theorem 1 is elementary and almost only uses
computations with involutions. Extensive use is made by the fact
that every two involutions of a group generate a dihedral subgroup.

A main idea of the proof is to show that

the normalizer in G of a non-trivial normal subgroup of one
of the factors A or B has a non-trivial intersection with the
other factor.

If this is not the case we may find commuting involutions in A and
B and produce a nontrivial abelian normal subgroup by other
computations.

We may assume that |A ∩ B| ≤ 2.



Properties of generalized dihedral subgroups

Lemma. Let A be generalized dihedral. Then the following holds

1) every subgroup of X is normal in A;

2) if A is non-abelian, then every non-abelian normal subgroup of
A contains the derived subgroup A′ of A;

3) A′ = X 2 and so the commutator factor group A/A′ is an
elementary abelian 2-group;

4) the center of A coincides with the set of all involutions of X ;

5) the coset aX coincides with the set of all non-central
involutions of A;

6) two involutions a and b in A are conjugate if and only if
ab−1 ∈ X 2;

7) if A is non-abelian, then X is characteristic in A.



Products of pairwise permutable abelian subgroups

Consider groups of the form G = A1...An with pairwise commuting
abelian subgroups Ai

Theorem (H. Heineken and J. Lennox 1983).

(a) A product of finitely many pairwise permutable finitely
generated abelian groups is polycyclic.

(b) A product of finitely many pairwise permutable cyclic
subgroups is supersoluble.

Theorem (M. Tomkinson 1986).

A product of finitely many pairwise permutable abelian minimax
subgroups is a soluble minimax group.

(Here a minimax group is a group with a finite series such that its
factors satisfy the minimum or the maximum condition).



Products of pairwise permutable abelian subgroups
of finite Prüfer rank

A group G has finite Prüfer rank r if every finitely generated
subgroup of G can be gererated by r elements, and r is minimal
with this property.

Theorem 2. (B. A. and Ya. Sysak, Advances in Group Theory
and Applications 2 (2016), 13-24).

Let the group G = A1A2....An be the product of finitely many
pairwise permutable abelian subgroups A1,A2, ...,An, each of
which has finite Prüfer rank. Then G is hyperabelian with finite
Prüfer rank.



Remarks on the proof of Theorem 2

Every hyperabelian product of two subgroups with finite Prüfer
rank has likewise finite Prüfer rank by the ”Main Theorem” above;
see ([AFG], 4.6.11 and 4.6.12).

To show that G is hyperabelian it suffices to show that the group
G 6= 1 contains a nontrivial abelian normal subgroup.

If n=2, then G is metabelian by Ito’s theorem and if G 6= 1, then
there exists an abelian normal subgroup N 6= 1 of G contained in
A1 or A2 by a theorem of D.I. Zaicev (see [AFG], Theorem 7.1.2).

If n ≥ 3, and assume that A1A2 6= 1. Then there exists a normal
subgroup N 6= 1 of A1A2 contained in A2 without loss by Zaicev.

Hence, by induction on n, the normal subgroup NG of G is
hyperabelian with finite Prüfer rank. This implies that there exists
a normal subgroup M 6= 1 of NG which is a finite abelian p-group
of torsionfree abelian.



Products of pairwise permutable abelian subgroups
of finite abelian section rank

A group G has finite abelian section rank if it has no infinite
elementary abelian p-section for any prime p.

Theorem.

Let the group G = A1A2....An be the product of finitely many
pairwise permutable abelian subgroups A1,A2...An, each of which
has finite abelian section rank. Then G is hyperabelian with finite
abelian section rank.

Remark. Use that every hyperabelian product of two subgroups
with finite abelian section rank has likewise finite abelian section
rank by the ”Main Theorem” above (see [AFG], 4.6.11).



Periodic products G = ABC of three pairwise
permutable locally cyclic groups A, B, C

A group A is locally cyclic, if every finitely generated subgroup is
cyclic, i.e. if only if, A is abelian group of rank 1.

By the above theorem every group G = ABC with pairwise
permutable locally cyclic subgroups A, B and C is
hyperabelian.

On the other hand, there exist periodic products G = ABC of
three pairwise permutable locally cyclic subgroups A, B, C
which are not soluble (see [AFG], Proposition 7.6.3).

Question. Is every periodic product of pairwise permutable locally
cyclic subgroups A, B and C locally supersoluble?



An example

Groups of the form G = ABC with pairwise permutable abelian
subgroups A, B and C may be very complicated and for instance
contain free nonabelian subgroups of infinite rank.

Let Q2 be the ring of rational numbers with odd denominator and
2Q2 its ideal with even numerators. If U is the multiplicative group
of Q2, then

U = 〈−1〉 ×
∏

p〈
1

p
〉

with free abelian subgroup
∏

p〈
1
p 〉 of infinite Prüfer rank. Consider

the ring R of all (2× 2)-matrices over Q2 and put

G =
(
1 + 2Q2 2Q2
2Q2 1 + 2Q2

)
.

Then G is a group under matrix multiplication. The Jacobson
radical J of R consists of all (2× 2)-matrices over 2Q2 and G is
isomorphic to the adjoint group of J.



Put

A =

{(
1 + a 0

0 1 + b

)
| a, b ∈ 2Q2

}
B =

{(
1 + c c − d

0 1 + d

)
| c , d ∈ 2Q2

}
,

C =

{(
1 + e 0
−e + f 1 + f

)
| e, f ∈ 2Q2

}
.

Then A,B,C are abelian subgroups of G , each of which is
isomorphic to U × U. We also have that B = x−1Ax and
C = y−1Ay with x =

(
1 1
0 1

)
and y =

(
1 0
1 1

)
.

It can easily be verified that G = ABC and the subgroups A, B
and C are pairwise permutable. The matrices g =

(
1 2
0 1

)
and

h =
(
1 0
2 1

)
are contained in G , and it is well-known that the

subgroup 〈g , h〉 is free non-abelian. In particular, G is non-soluble.


