Abelian, nilpotent and solvable quandles

David Stanovský jointly with M. Bonatto, P. Jedlička, A. Pilitowska, A. Zamojska-Dzienio

Charles University, Prague, Czech Republic

whose students are on strike today starting 12:00

Malta, March 2018

 \ldots tell you about the Gumm-Smith commutator theory

... describe abelian / solvable / nilpotent quandles

... Corollary: topologically slice knots cannot be colored by latin quandles

Abelian groups and modules

$abelian \neq commutative$

Observation: Abelian groups = \mathbb{Z} -modules

 \ldots and the only groups that can be considered as modules are abelian groups

 \Rightarrow Idea: Jonathan D. H. Smith (1970s): abelian = "module-like"

In what sense, "module-like" ?

Abelian groups and modules

$abelian \neq commutative$

Observation: Abelian groups = \mathbb{Z} -modules

 \ldots and the only groups that can be considered as modules are abelian groups

 \Rightarrow Idea: Jonathan D. H. Smith (1970s): abelian = "module-like"

In what sense, "module-like" ?

... module up to a selection of operations ... too strong ... embeds a module ... no good abstract description

... the term condition

Abelian algebras

algebra = a set + a collection of basic operations
term operation = composition of basic operations
polynomial operation = composition of basic operations and constants

An algebra A is called abelian if

$$t(\mathbf{a}, u_1, \ldots, u_n) = t(\mathbf{a}, v_1, \ldots, v_n) \implies t(\mathbf{b}, u_1, \ldots, u_n) = t(\mathbf{b}, v_1, \ldots, v_n)$$

for every term operation $t(x, y_1, \ldots, y_n)$ and every a, b, u_i, v_i in A. Equivalently, if the diagonal is a congruence block on A^2 .

Observation

Modules are abelian.

Proof:
$$t(x, y_1, \ldots, y_n) = rx + \sum r_i y_i$$
, cancel r_a , add r_b .

Abelian groups, quandles An algebra is called abelian if

 $t(\mathbf{a}, u_1, \ldots, u_n) = t(\mathbf{a}, v_1, \ldots, v_n) \implies t(\mathbf{b}, u_1, \ldots, u_n) = t(\mathbf{b}, v_1, \ldots, v_n)$

for every term operation $t(x, y_1, \ldots, y_n)$ and every a, b, u_i, v_i .

Observation

An abelian monoid is commutative and cancellative.

Proof: t(x, y, z) = yxz, $a11 = 11a \Rightarrow ab1 = 1ba$ t(x, y) = xy, $ab = ac \Rightarrow 1b = 1c$

Observation

An abelian quandle is medial.

Proof:
$$t(x, y, u, v) = (xy)(uv)$$
,
 $(yy)(uv) = (yu)(yv) \Rightarrow (xy)(uv) = (xu)(yv)$

David Stanovský (Prague)

Abelian algebras = modules, sometimes

A is a *polynomial reduct* of B = basic operations of A are polynomial operations of B

A, B are *polynomially equivalent* = both ways

Observation

Polynomial reducts of modules are abelian.

Mal'tsev operation:
$$m(x, y, y) = m(y, y, x) = x$$

Theorem (Gumm-Smith 1970s)

TFAE for algebras with a Mal'tsev polynomial operation:

abelian

2 polynomially equivalent to a module

Examples: groups, loops, quasigroups

Non-examples: quandles, monoids, semigroups

David Stanovský (Prague)

Abelian algebras = submodules, usually *polynomial subreduct* = subalgebra of a reduct

Observation

Polynomial subreducts of modules are abelian.

The converse implication is

- false in general [Quackenbush 1980s]
- but known counterexamples are rare and unnatural
- true for algebras in a variety with no "algebraically trivial" algebras (e.g. when operations are essentially unary) [Kearnes, Szendrei 1990s]
- true for finite simple algebras [Hobby, McKenzie 1980s]
- true for quandles [JPSZ]

Abelian algebras = submodules, usually *polynomial subreduct* = subalgebra of a reduct

Observation

Polynomial subreducts of modules are abelian.

The converse implication is

- false in general [Quackenbush 1980s]
- but known counterexamples are rare and unnatural
- true for algebras in a variety with no "algebraically trivial" algebras (e.g. when operations are essentially unary) [Kearnes, Szendrei 1990s]
- true for finite simple algebras [Hobby, McKenzie 1980s]
- true for quandles [JPSZ]

Remember:

abelian = abstract term condition = (almost always) submodule

Coming next: abelianness for congruences

David Stanovský (Prague)

Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are $N_i \leq G$ such that

$$1 = N_0 \le N_1 \le \dots \le N_k = G$$

and N_{i+1}/N_i is an abelian, resp. central subgroup of G/N_i , for all *i*.

Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are $N_i \leq G$ such that

$$1 = N_0 \le N_1 \le \dots \le N_k = G$$

and N_{i+1}/N_i is an abelian, resp. central subgroup of G/N_i , for all *i*.

An arbitrary algebraic structure A is solvable, resp. nilpotent, if there are congruences α_i such that

$$0_{\mathcal{A}} = \alpha_0 \le \alpha_1 \le \dots \le \alpha_k = 1_{\mathcal{A}}$$

and α_{i+1}/α_i is an abelian, resp. central congruence of A/α_i , for all *i*.

Need a good notion of *abelianness* and *centrality* for congruences.

Solvability and nilpotence, via commutator

$$G^{(0)} = G_{(0)} = G, \qquad G_{(i+1)} = [G_{(i)}, G_{(i)}], \qquad G^{(i+1)} = [G^{(i)}, G]$$

A group G is

• solvable iff
$$G_{(n)} = 1$$
 for some n

• nilpotent iff $G^{(n)} = 1$ for some n

Solvability and nilpotence, via commutator

$$G^{(0)} = G_{(0)} = G,$$
 $G_{(i+1)} = [G_{(i)}, G_{(i)}],$ $G^{(i+1)} = [G^{(i)}, G]$

A group G is

• solvable iff
$$G_{(n)} = 1$$
 for some n

• nilpotent iff $G^{(n)} = 1$ for some n

$$\alpha^{(0)} = \alpha_{(0)} = 1_A, \qquad \alpha_{(i+1)} = [\alpha_{(i)}, \alpha_{(i)}], \qquad \alpha^{(i+1)} = [\alpha^{(i)}, 1_A]$$

An arbitrary algebraic structure A is

• solvable iff
$$\alpha_{(n)} = 0_A$$
 for some n

• nilpotent iff
$$\alpha^{(n)} = 0_A$$
 for some n

Need a good notion of commutator of congruences.

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of *A*:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of *A*:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

A congruence α is called

- abelian if $C(\alpha, \alpha; 0_A)$, i.e., if $[\alpha, \alpha] = 0_A$.
- central if $C(\alpha, 1_A; 0_A)$, i.e., if $[\alpha, 1_A] = 0_A$.

Commutator theory

[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of *A*:

 $C(\alpha, \beta; \delta)$ iff for every term $t(x, y_1, \ldots, y_n)$ and every $a \stackrel{\alpha}{\equiv} b, u_i \stackrel{\beta}{\equiv} v_i$

$$t(\mathbf{a}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{a}, v_1, \ldots, v_n) \Rightarrow t(\mathbf{b}, u_1, \ldots, u_n) \stackrel{\delta}{\equiv} t(\mathbf{b}, v_1, \ldots, v_n)$$

The commutator $[\alpha, \beta]$ is the smallest δ such that $C(\alpha, \beta; \delta)$.

A congruence α is called

- abelian if $C(\alpha, \alpha; 0_A)$, i.e., if $[\alpha, \alpha] = 0_A$.
- central if $C(\alpha, 1_A; 0_A)$, i.e., if $[\alpha, 1_A] = 0_A$.

Fact (not difficult, certainly not obvious)

In groups, this gives the usual commutator, abelianness, centrality.

Deep theory: works well in varieties with modular congruence lattices.

Quandles

An algebraic structure $(Q, *, \setminus)$ is called a *quandle* if

• x * x = x

• all left translations $L_x(y) = x * y$ are automorphisms, with $L_x^{-1}(y) = x \setminus y$.

Multiplication group, displacement group:

$$\operatorname{LMlt}(Q) = \langle L_x : x \in Q \rangle \leq \operatorname{Aut}(Q)$$

 $\operatorname{Dis}(Q) = \langle L_x L_y^{-1} : x, y \in Q \rangle \leq \operatorname{LMlt}(Q)$

A quandle is called *connected* if LMlt(Q) is transitive on Q.

Affine quandles (aka Alexander) Aff(A, f): x * y = (1 - f)(x) + f(y) on an abelian group $A, f \in Aut(A)$... i.e., a reduct of a $\mathbb{Z}[t, t^{-1}]$ -module (A, +, f)

Big picture

quandle		$\mathrm{Dis}(\mathcal{Q})$
affine	\Leftrightarrow	abelian, semiregular, "balanced"
\Downarrow		\Downarrow
abelian	\Leftrightarrow	abelian, semiregular
\Downarrow		\Downarrow
nilpotent	\Rightarrow	nilpotent
	$\Leftarrow if \; Mal'tsev$	
\Downarrow		\Downarrow
solvable	\Rightarrow	solvable
	$\Leftarrow if \; Mal'tsev$	
[JPSZ, BonS]		

A quandle has a Mal'tsev operation iff all subquandles are connected.

David Stanovský (Prague)

Quandles and abelianness

Theorem (JPSZ)

TFAE for a quandle Q:

- abelian
- **2** subquandle of an affine quandle
- **3** Dis(Q) abelian, semiregular
- $Q \simeq Ext(A, f, \overline{d})$, a certain kind of extension of Aff(A, f)

Theorem (JPSZ)

TFAE for a quandle Q:

abelian and "balanced orbits"

affine

- 3 $\operatorname{Dis}(Q)$ abelian, semiregular and "balanced occurences of generators"
- $Q \simeq Ext(A, f, \overline{d})$ and \overline{d} is a multi-transversal of A/Im(1-f)

Congruences of quandles

Let $N(Q) = \{N \leq \text{Dis}(Q) : N \text{ is normal in } \text{LMlt}(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha}(Q) = \langle L_{x}L_{y}^{-1} : x \alpha y \rangle$$

$$\alpha_{N} = \{(x, y) : L_{x}L_{y}^{-1} \in N\} \leftarrow N$$

Congruences of quandles

Let $N(Q) = \{N \leq \text{Dis}(Q) : N \text{ is normal in } \text{LMlt}(Q)\}$

There is a Galois correspondence

$$Con(Q) \longleftrightarrow N(Q)$$

$$\alpha \to \text{Dis}_{\alpha}(Q) = \langle L_{x}L_{y}^{-1} : x \alpha y \rangle$$

$$\alpha_{N} = \{(x, y) : L_{x}L_{y}^{-1} \in N\} \leftarrow N$$

Proposition

TFAE for $\alpha, \beta \in Con(Q)$, Q a quandle:

- α centralizes β over 0_Q , i.e., $C(\alpha, \beta; 0_Q)$
- 2 $\operatorname{Dis}_{\beta}(Q)$ centralizes $\operatorname{Dis}_{\alpha}(Q)$ and acts α -semiregularly on Q

 α -semiregularly means $g(a) = a \Rightarrow g(b) = b$ for every $b \stackrel{\alpha}{\equiv} a$

Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

- **1** α is abelian
- **2** $\operatorname{Dis}_{\alpha}(Q)$ is abelian and acts α -semiregularly

• Q is an abelian extension of $F = Q/\alpha$, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$ where A is an abelian group, $\varphi : Q^2 \rightarrow End(A), \psi : Q^2 \rightarrow Aut(A),$ $\theta : Q^2 \rightarrow A$ satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

- **1** α is abelian
- **2** $Dis_{\alpha}(Q)$ is abelian and acts α -semiregularly

• Q is an abelian extension of $F = Q/\alpha$, i.e., $(F \times A, *)$ with $(x, a) * (y, b) = (xy, \varphi_{x,y}(a) + \psi_{x,y}(b) + \theta_{x,y})$ where A is an abelian group, $\varphi : Q^2 \rightarrow End(A), \psi : Q^2 \rightarrow Aut(A),$ $\theta : Q^2 \rightarrow A$ satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Corollary

- Q solvable (of rank n) \Rightarrow Dis(Q) solvable (of rank $\leq 2n 1$)
- Dis(Q) solvable, Q has Mal'tsev operation $\Rightarrow Q$ solvable

Central congruences and nilpotent quandles

Theorem

TFAE for a congruence α of a quandle Q:

- **1** α is central
- **2** $\text{Dis}_{\alpha}(Q)$ is central and Dis(Q) acts α -semiregularly
- Q is a central extension of F = Q/A, i.e., (F × A, *) with
 $(x, a) * (y, b) = (xy, (1 − f)(a) + f(b) + θ_{x,y})$ where A is an abelian group, θ : Q² → A satisfying the cocycle condition.

The last item only assuming that *Q* has Mal'tsev operation.

Corollary

- Q nilpotent (of rank n) \Rightarrow Dis(Q) nilpotent (of rank $\leq 2n 1$)
- Dis(Q) nilpotent, Q has Mal'tsev operation $\Rightarrow Q$ nilpotent

Extensions by constant cocycles (aka coverings)

Theorem

TFAE for a congruence α of a quandle Q:

- $\textbf{0} \ \alpha \text{ is strongly abelian}$
- 2 $\operatorname{Dis}_{\alpha}(Q) = 1$

• Q is an extension by constant cocycle of $F = Q/\alpha$, i.e., $(F \times A, *)$ with

 $(x, a) * (y, b) = (xy, \rho_{x,y}(b))$ where A is a set, $\rho : Q^2 \to Sym(A)$ satisfying the cocycle condition.

... coverings are a special case of our abelian extensions ($\varphi_{x,y} = 0$) ... coverings have a natural universal algebraic meaning (*strongly abelian congruences*)

An application to quandles

Classification of connected quandles of order p^3 [Bianco, Bonatto]

Classification of latin quandles of order pq [Bonatto]

An application to quandles

Classification of connected quandles of order p^3 [Bianco, Bonatto]

Classification of latin quandles of order pq [Bonatto]

Theorem (Stein 2001)

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Since latin quandles have Mal'tsev operation, we obtain

Corollary

Finite latin quandles are solvable.

An application to knot theory

Coloring by affine quandles +++ Alexander invariant

Theorem (Bae, 2011)

Let K be a link and f its Alexander polynomial.

- $f = 0 \Rightarrow$ colorable by every affine quandle
- $f = 1 \Rightarrow$ not colorable by any affine quandle
- else, colorable by $Aff(\mathbb{Z}[t, t^{-1}]/(f), f)$.

Corollary

• $f = 1 \Rightarrow$ not colorable by any solvable quandle (in particular, latin)

Solvability and nilpotence for loops [S., Vojěchovský]

David Stanovský (Prague)

20 / 21

Solvability and nilpotence for ???

What about other interesting classes of algebras, in particular other types of solutions to the Yang-Baxter equation?