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Goal

... tell you about the Gumm-Smith commutator theory

... describe abelian / solvable / nilpotent quandles

... Corollary: topologically slice knots cannot be colored by latin quandles
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Abelian groups and modules

abelian 6= commutative

Observation: Abelian groups = Z-modules

... and the only groups that can be considered as modules are abelian
groups

⇒ Idea: Jonathan D. H. Smith (1970s): abelian = ”module-like”

In what sense, ”module-like” ?

... module up to a selection of operations ... too strong

... embeds a module ... no good abstract description

... the term condition
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Abelian algebras

algebra = a set + a collection of basic operations
term operation = composition of basic operations
polynomial operation = composition of basic operations and constants

An algebra A is called abelian if

t(a, u1, . . . , un) = t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un) = t(b, v1, . . . , vn)

for every term operation t(x , y1, . . . , yn) and every a, b, ui , vi in A.
Equivalently, if the diagonal is a congruence block on A2.

Observation

Modules are abelian.

Proof: t(x , y1, . . . , yn) = rx +
∑

riyi , cancel ra, add rb.
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Abelian groups, quandles
An algebra is called abelian if

t(a, u1, . . . , un) = t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un) = t(b, v1, . . . , vn)

for every term operation t(x , y1, . . . , yn) and every a, b, ui , vi .

Observation

An abelian monoid is commutative and cancellative.

Proof: t(x , y , z) = yxz , a11 = 11a ⇒ ab1 = 1ba
t(x , y) = xy , ab = ac ⇒ 1b = 1c

Observation

An abelian quandle is medial.

Proof: t(x , y , u, v) = (xy)(uv),
(yy)(uv) = (yu)(yv) ⇒ (xy)(uv) = (xu)(yv)
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Abelian algebras = modules, sometimes
A is a polynomial reduct of B = basic operations of A are polynomial
operations of B
A,B are polynomially equivalent = both ways

Observation

Polynomial reducts of modules are abelian.

Mal’tsev operation: m(x , y , y) = m(y , y , x) = x

Theorem (Gumm-Smith 1970s)

TFAE for algebras with a Mal’tsev polynomial operation:

1 abelian

2 polynomially equivalent to a module

Examples: groups, loops, quasigroups

Non-examples: quandles, monoids, semigroups
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Abelian algebras = submodules, usually
polynomial subreduct = subalgebra of a reduct

Observation

Polynomial subreducts of modules are abelian.

The converse implication is

false in general [Quackenbush 1980s]

but known counterexamples are rare and unnatural

true for algebras in a variety with no “algebraically trivial” algebras
(e.g. when operations are essentially unary) [Kearnes, Szendrei 1990s]

true for finite simple algebras [Hobby, McKenzie 1980s]

true for quandles [JPSZ]

Remember:

abelian = abstract term condition = (almost always) submodule

Coming next: abelianness for congruences
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Solvability and nilpotence

A group G is solvable, resp. nilpotent, if there are Ni E G such that

1 = N0 ≤ N1 ≤ ... ≤ Nk = G

and Ni+1/Ni is an abelian, resp. central subgroup of G/Ni , for all i .

An arbitrary algebraic structure A is solvable, resp. nilpotent, if there are
congruences αi such that

0A = α0 ≤ α1 ≤ ... ≤ αk = 1A

and αi+1/αi is an abelian, resp. central congruence of A/αi , for all i .

Need a good notion of abelianness and centrality for congruences.
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Solvability and nilpotence, via commutator

G (0) = G(0) = G , G(i+1) = [G(i),G(i)], G (i+1) = [G (i),G ]

A group G is

solvable iff G(n) = 1 for some n

nilpotent iff G (n) = 1 for some n

α(0) = α(0) = 1A, α(i+1) = [α(i), α(i)], α(i+1) = [α(i), 1A]

An arbitrary algebraic structure A is

solvable iff α(n) = 0A for some n

nilpotent iff α(n) = 0A for some n

Need a good notion of commutator of congruences.
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Commutator theory
[mid 1970s by Smith, Gumm, Herrmann, ..., the Freese-McKenzie 1987 book]

Centralizing relation for congruences α, β, δ of A:

C (α, β; δ) iff for every term t(x , y1, . . . , yn) and every a
α≡ b, ui

β
≡ vi

t(a, u1, . . . , un)
δ≡ t(a, v1, . . . , vn) ⇒ t(b, u1, . . . , un)

δ≡ t(b, v1, . . . , vn)

The commutator [α, β] is the smallest δ such that C (α, β; δ).

A congruence α is called

abelian if C (α, α; 0A), i.e., if [α, α] = 0A.

central if C (α, 1A; 0A), i.e., if [α, 1A] = 0A.

Fact (not difficult, certainly not obvious)

In groups, this gives the usual commutator, abelianness, centrality.

Deep theory: works well in varieties with modular congruence lattices.
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Quandles

An algebraic structure (Q, ∗, \) is called a quandle if

x ∗ x = x

all left translations Lx(y) = x ∗ y are automorphisms, with
L−1
x (y) = x\y .

Multiplication group, displacement group:

LMlt(Q) = 〈Lx : x ∈ Q〉 ≤ Aut(Q)

Dis(Q) = 〈LxL−1
y : x , y ∈ Q〉 ≤ LMlt(Q)

A quandle is called connected if LMlt(Q) is transitive on Q.

Affine quandles (aka Alexander) Aff (A, f ):
x ∗ y = (1− f )(x) + f (y) on an abelian group A, f ∈ Aut(A)

... i.e., a reduct of a Z[t, t−1]-module (A,+, f )
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Big picture

quandle Dis(Q)

affine ⇔ abelian, semiregular, ”balanced”
⇓ ⇓

abelian ⇔ abelian, semiregular
⇓ ⇓

nilpotent ⇒ nilpotent
⇐ if Mal’tsev

⇓ ⇓
solvable ⇒ solvable

⇐ if Mal’tsev

[JPSZ, BonS]

Fact

A quandle has a Mal’tsev operation iff all subquandles are connected.
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Quandles and abelianness

Theorem (JPSZ)

TFAE for a quandle Q:

1 abelian

2 subquandle of an affine quandle

3 Dis(Q) abelian, semiregular

4 Q ' Ext(A, f , d̄), a certain kind of extension of Aff (A, f )

Theorem (JPSZ)

TFAE for a quandle Q:

1 abelian and ”balanced orbits”

2 affine

3 Dis(Q) abelian, semiregular and ”balanced occurences of generators”

4 Q ' Ext(A, f , d̄) and d̄ is a multi-transversal of A/Im(1− f )
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Congruences of quandles

Let N(Q) = {N ≤ Dis(Q) : N is normal in LMlt(Q)}

There is a Galois correspondence

Con(Q)←→ N(Q)

α→ Disα(Q) = 〈LxL−1
y : x α y〉

αN = {(x , y) : LxL−1
y ∈ N} ← N

Proposition

TFAE for α, β ∈ Con(Q), Q a quandle:

1 α centralizes β over 0Q , i.e., C (α, β; 0Q)

2 Disβ(Q) centralizes Disα(Q) and acts α-semiregularly on Q

α-semiregularly means g(a) = a ⇒ g(b) = b for every b
α≡ a
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Abelian congruences and solvable quandles

Theorem

TFAE for a congruence α of a quandle Q:

1 α is abelian

2 Disα(Q) is abelian and acts α-semiregularly

3 Q is an abelian extension of F = Q/α, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , ϕx ,y (a) + ψx ,y (b) + θx ,y )

where A is an abelian group, ϕ : Q2 → End(A), ψ : Q2 → Aut(A),
θ : Q2 → A satisfying the cocycle condition.

The last item only assuming that α has connected blocks.

Corollary

Q solvable (of rank n) ⇒ Dis(Q) solvable (of rank ≤ 2n − 1)

Dis(Q) solvable, Q has Mal’tsev operation ⇒ Q solvable
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Central congruences and nilpotent quandles

Theorem

TFAE for a congruence α of a quandle Q:

1 α is central

2 Disα(Q) is central and Dis(Q) acts α-semiregularly

3 Q is a central extension of F = Q/A, i.e., (F × A, ∗) with
(x , a) ∗ (y , b) = (xy , (1− f )(a) + f (b) + θx ,y )

where A is an abelian group, θ : Q2 → A satisfying the cocycle
condition.

The last item only assuming that Q has Mal’tsev operation.

Corollary

Q nilpotent (of rank n) ⇒ Dis(Q) nilpotent (of rank ≤ 2n − 1)

Dis(Q) nilpotent, Q has Mal’tsev operation ⇒ Q nilpotent
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Extensions by constant cocycles (aka coverings)

Theorem

TFAE for a congruence α of a quandle Q:

1 α is strongly abelian

2 Disα(Q) = 1

3 Q is an extension by constant cocycle of F = Q/α, i.e., (F × A, ∗)
with

(x , a) ∗ (y , b) = (xy , ρx ,y (b))
where A is a set, ρ : Q2 → Sym(A) satisfying the cocycle condition.

... coverings are a special case of our abelian extensions (ϕx ,y = 0)

... coverings have a natural universal algebraic meaning (strongly abelian
congruences)
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An application to quandles

Classification of connected quandles of order p3 [Bianco, Bonatto]

Classification of latin quandles of order pq [Bonatto]

Theorem (Stein 2001)

If Q is a finite latin quandle, then LMlt(Q) is solvable.

Since latin quandles have Mal’tsev operation, we obtain

Corollary

Finite latin quandles are solvable.
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An application to knot theory

Coloring by affine quandles ! Alexander invariant

Theorem (Bae, 2011)

Let K be a link and f its Alexander polynomial.

f = 0 ⇒ colorable by every affine quandle

f = 1 ⇒ not colorable by any affine quandle

else, colorable by Aff (Z[t, t−1]/(f ), f ).

Corollary

f = 1 ⇒ not colorable by any solvable quandle (in particular, latin)
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Solvability and nilpotence for loops
[S., Vojěchovský]
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Solvability and nilpotence for ???

What about other interesting classes of algebras,

in particular other types of solutions to the Yang-Baxter equation?
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