A Fibonacci Analogue of Pascal's Triangle

Richard P. Stanley
U. Miami \& M.I.T.

January 10, 2022

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with $\hat{0}$ at the top).

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with $\hat{0}$ at the top).
- Every \triangle extends to a $2 b$-gon (b edges on each side)

The posets $P_{i b}$

Let $i, b \geq 2$. Define the poset (partially ordered set) $P_{i b}$ by

- There is a unique minimal element $\hat{0}$
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with $\hat{0}$ at the top).
- Every \triangle extends to a $2 b$-gon (b edges on each side)

Note. $P_{i b}$ is upper homogeneous, i.e., for all $t \in P_{i b}$, we have $\left\{s \in P_{i b}: s \geq t\right\} \cong P_{i b}$.

Construction of $\mathfrak{F}:=\boldsymbol{P}_{23}$

Construction of $\mathfrak{F}:=\boldsymbol{P}_{23}$

Construction of $\mathfrak{F}:=\boldsymbol{P}_{23}$

Construction of $\mathfrak{F}:=P_{23}$

Fibonacci poset

Number of elements of rank n

$\boldsymbol{p}_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n

Number of elements of rank n

$p_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n
In $P_{i b}$, every element of rank $n-1$ is covered by i elements, giving
a first approximation $p_{i b}(n) \stackrel{?}{=} i p_{i b}(n-1)$. Each element of rank $n-b$ is the bottom of $i-12 b$-gons, so there are $(i-1) p_{i b}(n-b)$ elements of rank n that cover two elements. The remaining elements of rank n cover one element. Hence

$$
p_{i b}(n)=i p_{i b}(n-1)-(i-1) p_{i b}(n-b) .
$$

Number of elements of rank n

$\boldsymbol{p}_{i b}(\boldsymbol{n})$: number of elements of $P_{i b}$ of rank n
In $P_{i b}$, every element of rank $n-1$ is covered by i elements, giving a first approximation $p_{i b}(n) \stackrel{?}{=} i p_{i b}(n-1)$. Each element of rank $n-b$ is the bottom of $i-12 b$-gons, so there are $(i-1) p_{i b}(n-b)$ elements of rank n that cover two elements. The remaining elements of rank n cover one element. Hence

$$
p_{i b}(n)=i p_{i b}(n-1)-(i-1) p_{i b}(n-b)
$$

Initial conditions: $p_{i b}(n)=i^{n}, 0 \leq n \leq b-1$

$$
\Rightarrow \sum_{n \geq 0} p_{i b}(n) x^{n}=\frac{1}{1-i x+(i-1) x^{b}}
$$

The special case $\boldsymbol{i}=2, \boldsymbol{b}=3$

$$
\begin{aligned}
\sum_{n \geq 0} p_{23}(n) x^{n} & =\frac{1}{1-2 x+x^{3}} \\
& =\frac{1}{(1-x)\left(1-x-x^{2}\right)} \\
\Rightarrow p_{23}(n) & =F_{n+2}-1
\end{aligned}
$$

where $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$.

The special case $\boldsymbol{i}=2, \boldsymbol{b}=3$

$$
\begin{aligned}
\sum_{n \geq 0} p_{23}(n) x^{n} & =\frac{1}{1-2 x+x^{3}} \\
& =\frac{1}{(1-x)\left(1-x-x^{2}\right)} \\
\Rightarrow p_{23}(n) & =F_{n+2}-1
\end{aligned}
$$

where $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$.
First connection with Fibonacci numbers.

The numbers $e(t)$

For $t \in P_{i b}$, let $\boldsymbol{e}(\boldsymbol{t})$ be the number of saturated chains from $\hat{0}$ to t.

The numbers $e(t)$

For $t \in P_{i b}$, let $\boldsymbol{e}(\boldsymbol{t})$ be the number of saturated chains from $\hat{0}$ to t.
Example. $\mathfrak{F}=P_{23}$

A familiar example: P_{22}

A familiar example: P_{22}

Pascal's triangle

A generating function for the $e(t)$'s

Fix i and b.
$\boldsymbol{t}_{\boldsymbol{n k}}$: k th element from left in the nth row of $P_{i b}$, beginning with $k=0$.

$$
\left[\begin{array}{l}
\boldsymbol{n} \\
\boldsymbol{k}
\end{array}\right]=e\left(t_{n k}\right)
$$

\boldsymbol{q}_{n} : number of elements of $P_{i b}$ of rank n
$r_{n}=\frac{q_{n}-q_{n-1}}{i-1} \in \mathbb{P}=\{1,2, \ldots\}$

A generating function for the $e(t)$'s

Fix i and b.
$t_{n k}$: k th element from left in the nth row of $P_{i b}$, beginning with $k=0$.
$\left[\begin{array}{l}\boldsymbol{n} \\ \boldsymbol{k}\end{array}\right]=e\left(t_{n k}\right)$
\boldsymbol{q}_{n} : number of elements of $P_{i b}$ of rank n
$r_{n}=\frac{q_{n}-q_{n-1}}{i-1} \in \mathbb{P}=\{1,2, \ldots\}$
Theorem. $\sum_{k}\left[\begin{array}{l}n \\ k\end{array}\right] x^{k}=\prod_{j=1}^{n}\left(1+x^{r_{j}}+x^{2 r_{j}}+\cdots+x^{(i-1) r_{j}}\right)$
(analogue of binomial theorem, the case $i=b=2$)

A Fibonacci product

Recall: $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

A Fibonacci product

Recall: $F_{1}=F_{2}=1, F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 3$

$$
\begin{gathered}
\boldsymbol{I}_{\boldsymbol{n}}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right) \\
\begin{aligned}
I_{4}(x)= & (1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right) \\
= & 1+x+x^{2}+2 x^{3}+x^{4}+2 x^{5}+2 x^{6}+x^{7}+2 x^{8}+x^{9}+x^{10}+x^{11}
\end{aligned}
\end{gathered}
$$

When $i=2, b=3$ (so $P_{23}=\mathfrak{F}$), the previous theorem gives:

$$
\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}=I_{n}(x)
$$

Sum of r th powers

$\boldsymbol{v}_{r}(\boldsymbol{n})$: sum of r th powers of coefficients of $I_{n}(x)$
$V_{r}(x)=\sum_{n \geq 0} v_{r}(n) x^{n}$
Recursive structure of \mathfrak{F} leads to a system of linear recurrences from which there follows:

Theorem. For all $r \geq 0, V_{r}(x)$ is a rational function.
Computation automated by Doron Zeilberger.

Sum of r th powers

$\boldsymbol{v}_{r}(\boldsymbol{n})$: sum of r th powers of coefficients of $I_{n}(x)$
$V_{r}(x)=\sum_{n \geq 0} v_{r}(n) x^{n}$
Recursive structure of \mathfrak{F} leads to a system of linear recurrences from which there follows:

Theorem. For all $r \geq 0, V_{r}(x)$ is a rational function.
Computation automated by Doron Zeilberger.
Compare Pascal's triangle $(i=b=2): V_{2}(x)$ is algebraic but not rational, and $V_{r}(x)$ for $r \geq 3$ is D-finite but not algebraic.

Some small values of $V_{r}(x)$

Theorem. $\quad V_{1}(x)=\frac{1}{1-2 x}$

$$
\begin{aligned}
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}}
\end{aligned}
$$

$$
V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}}
$$

$$
V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}}
$$

$$
V_{6}(x)=\frac{1-17 x^{2}-88 x^{4}-4 x^{6}}{1-2 x-17 x^{2}-28 x^{3}-88 x^{4}+26 x^{5}-4 x^{6}+4 x^{7}}
$$

Some small values of $V_{r}(x)$

Theorem. $\quad V_{1}(x)=\frac{1}{1-2 x}$

$$
\begin{aligned}
& V_{2}(x)=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}} \\
& V_{3}(x)=\frac{1-4 x^{2}}{1-2 x-4 x^{2}+2 x^{3}}
\end{aligned}
$$

$$
V_{4}(x)=\frac{1-7 x^{2}-2 x^{4}}{1-2 x-7 x^{2}-2 x^{4}+2 x^{5}}
$$

$$
V_{5}(x)=\frac{1-11 x^{2}-20 x^{4}}{1-2 x-11 x^{2}-8 x^{3}-20 x^{4}+10 x^{5}}
$$

$$
V_{6}(x)=\frac{1-17 x^{2}-88 x^{4}-4 x^{6}}{1-2 x-17 x^{2}-28 x^{3}-88 x^{4}+26 x^{5}-4 x^{6}+4 x^{7}}
$$

Note. Numerator is "even part" of denominator. Why?

Structure of two consecutive ranks

Structure of two consecutive ranks

string sizes on last rank: $2,3,2,3,3,2,3,2$

The limiting string size sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

The limiting string size sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.

The limiting string size sequence

As $n \rightarrow \infty$, we get a "limiting sequence"

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

Let $\phi=(1+\sqrt{5}) / 2$, the golden mean.
Theorem. The limiting sequence $\left(c_{1}, c_{2}, \ldots\right)$ is given by

$$
c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor .
$$

Properties of $c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).

Properties of $c_{\boldsymbol{n}}=1+\lfloor\boldsymbol{n} \phi\rfloor-\lfloor(\boldsymbol{n}-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \cdots$ (concatenation), where $z_{1}=3, z_{2}=23$, $z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \cdot \cdots
$$

Properties of $c_{n}=1+\lfloor n \phi\rfloor-\lfloor(n-1) \phi\rfloor$

$$
2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, \ldots
$$

- $\gamma=\left(c_{2}, c_{3}, \ldots\right)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (Fibonacci word in the letters 2,3).
- $\gamma=z_{1} z_{2} \cdots$ (concatenation), where $z_{1}=3, z_{2}=23$,
$z_{k}=z_{k-2} z_{k-1}$

$$
3 \cdot 23 \cdot 323 \cdot 23323 \cdot 32323323 \cdot \cdots
$$

- Sequence of number of 3's between consecutive 2's is the original sequence with 1 subtracted from each term.

Coefficients of $I_{n}(x)$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Coefficients of $I_{n}(x)$

$$
I_{n}(x)=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Example. Coefficient of x^{8} in $(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right)\left(1+x^{8}\right)$ is $3:$

$$
8=5+3=5+2+1
$$

Coefficients of $I_{n}(x)$

$$
\boldsymbol{I}_{\boldsymbol{n}}(\boldsymbol{x})=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)
$$

Coefficient of x^{m} : number of ways to write m as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

Example. Coefficient of x^{8} in $(1+x)\left(1+x^{2}\right)\left(1+x^{3}\right)\left(1+x^{5}\right)\left(1+x^{8}\right)$ is $3:$

$$
8=5+3=5+2+1
$$

Can we see these sums from \mathfrak{F} ? Each path from the top to a point $t \in \mathfrak{F}$ should correspond to a sum.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

An edge labeling of \mathfrak{F}

The edges between ranks $2 k$ and $2 k+1$ are labelled alternately $0, F_{2 k+2}, 0, F_{2 k+2}, \ldots$ from left to right.

The edges between ranks $2 k-1$ and $2 k$ are labelled alternately $F_{2 k+1}, 0, F_{2 k+1}, 0, \ldots$ from left to right.

Diagram of the edge labeling

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

If $\operatorname{rank}(t)=n$, this gives all ways to write $\sigma(t)$ as a sum of distinct Fibonacci numbers from $\left\{F_{2}, F_{3}, \ldots, F_{n+1}\right\}$.

An example

$$
2+3=F_{3}+F_{4}
$$

An example

$$
5=F_{5}
$$

An ordering of \mathbb{N}

In the limit as rank $\rightarrow \infty$, get an interesting (dense) linear ordering \prec of \mathbb{N}.

When is $m \succ 0$?

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2}.

When is $m \succ 0$?

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2}.

Example. $45=3+8+34=F_{4}+F_{6}+F_{9}$

When is $m \succ 0$?

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2}.

Example. $45=3+8+34=F_{4}+F_{6}+F_{9}$
Theorem. Let $m>0$. Then $m \succ 0$ if and only the smallest Fibonacci number in the Zeckendorf representation of m has even index.

When is $m \succ 0$?

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_{2}.

Example. $45=3+8+34=F_{4}+F_{6}+F_{9}$
Theorem. Let $m>0$. Then $m \succ 0$ if and only the smallest Fibonacci number in the Zeckendorf representation of m has even index.

Example. $45 \succ 0$ since F_{4} has even index 4 .

Second proof concerning $\sum\left[\begin{array}{l}n \\ k\end{array}\right]^{2}$

Recall: for $P_{23}=\mathfrak{F}$, we define

$$
\begin{aligned}
\boldsymbol{v}_{2}(\boldsymbol{n}) & =\sum_{\substack{t \in \mathfrak{F} \\
\operatorname{rk}(t)=n}} e(t)^{2} \\
& =\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]^{2} \\
& =\sum_{k} c_{k}^{2}
\end{aligned}
$$

where $\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)=\sum_{k} c_{k} x^{k}$

Second proof concerning $\sum\left[\begin{array}{l}n \\ k\end{array}\right]^{2}$

Recall: for $P_{23}=\mathfrak{F}$, we define

$$
\begin{aligned}
\boldsymbol{v}_{2}(\boldsymbol{n}) & =\sum_{\substack{t \in \mathfrak{F} \\
\operatorname{rk}(t)=n}} e(t)^{2} \\
= & \sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]^{2} \\
= & \sum_{k} c_{k}^{2}
\end{aligned}
$$

where $\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)=\sum_{k} c_{k} x^{k}$.
Theorem. $V_{2}(x):=\sum_{n \geq 0} v_{2}(n) x^{n}=\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}}$

Tautological interpretation of $\boldsymbol{v}_{2}(\boldsymbol{n})$

$$
I_{n}(x):=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k}
$$

Tautological interpretation of $\boldsymbol{v}_{2}(\boldsymbol{n})$

$$
\begin{gathered}
I_{n}(x):=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]=\#\left\{\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}: \sum_{i} a_{i} F_{i+1}=k\right\}}
\end{gathered}
$$

Tautological interpretation of $\boldsymbol{v}_{2}(\boldsymbol{n})$

$$
\begin{gathered}
I_{n}(x):=\prod_{i=1}^{n}\left(1+x^{F_{i+1}}\right)=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right] x^{k} \\
{\left[\begin{array}{l}
n \\
k
\end{array}\right]=\#\left\{\left(a_{1}, \ldots, a_{n}\right) \in\{0,1\}^{n}: \sum_{i} a_{i} F_{i+1}=k\right\}} \\
\boldsymbol{v}_{2}(\boldsymbol{n}):=\sum_{k}\left[\begin{array}{l}
n \\
k
\end{array}\right]^{2} \\
=\#\left\{\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right): \sum a_{i} F_{i+1}=\sum b_{i} F_{i+1}\right\},
\end{gathered}
$$

where each a_{i} and b_{i} is 0 or 1 .

A concatenation product

$$
\mathcal{M}_{n}:=\left\{\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right): \sum a_{i} F_{i+1}=\sum b_{i} F_{i+1}\right\}
$$

A concatenation product

$$
\mathcal{M}_{n}:=\left\{\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right): \sum a_{i} F_{i+1}=\sum b_{i} F_{i+1}\right\}
$$

Let

$$
\alpha=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{n} \\
b_{1} & \cdots & b_{n}
\end{array}\right) \in \mathcal{M}_{n}, \quad \beta=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{m} \\
d_{1} & \cdots & d_{m}
\end{array}\right) \in \mathcal{M}_{m}
$$

Define

$$
\alpha \boldsymbol{\beta}=\left(\begin{array}{cccccc}
a_{1} & \cdots & a_{n} & c_{1} & \cdots & c_{m} \\
b_{1} & \cdots & b_{n} & d_{1} & \cdots & d_{m}
\end{array}\right),
$$

A concatenation product

$$
\mathcal{M}_{n}:=\left\{\left(\begin{array}{llll}
a_{1} & a_{2} & \cdots & a_{n} \\
b_{1} & b_{2} & \cdots & b_{n}
\end{array}\right): \sum a_{i} F_{i+1}=\sum b_{i} F_{i+1}\right\}
$$

Let

$$
\alpha=\left(\begin{array}{ccc}
a_{1} & \cdots & a_{n} \\
b_{1} & \cdots & b_{n}
\end{array}\right) \in \mathcal{M}_{n}, \quad \beta=\left(\begin{array}{ccc}
c_{1} & \cdots & c_{m} \\
d_{1} & \cdots & d_{m}
\end{array}\right) \in \mathcal{M}_{m}
$$

Define

$$
\boldsymbol{\alpha} \boldsymbol{\beta}=\left(\begin{array}{cccccc}
a_{1} & \cdots & a_{n} & c_{1} & \cdots & c_{m} \\
b_{1} & \cdots & b_{n} & d_{1} & \cdots & d_{m}
\end{array}\right)
$$

Easy to check: $\alpha \beta \in \mathcal{M}_{n+m}$

The monoid \mathcal{M}

$$
\mathcal{M}:=\mathcal{M}_{0} \cup \mathcal{M}_{1} \cup \mathcal{M}_{2} \cup \cdots,
$$

a monoid (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_{0}$.

The monoid \mathcal{M}

$$
\mathcal{M}:=\mathcal{M}_{0} \cup \mathcal{M}_{1} \cup \mathcal{M}_{2} \cup \cdots
$$

a monoid (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_{0}$.

Definition. A subset $\mathcal{G} \subset \mathcal{M}$ freely generates \mathcal{M} if every $\alpha \in \mathcal{M}$ can be written uniquely as a product of elements of \mathcal{G}. (We then call \mathcal{M} a free monoid.)

The monoid \mathcal{M}

$$
\mathcal{M}:=\mathcal{M}_{0} \cup \mathcal{M}_{1} \cup \mathcal{M}_{2} \cup \cdots
$$

a monoid (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_{0}$.

Definition. A subset $\mathcal{G} \subset \mathcal{M}$ freely generates \mathcal{M} if every $\alpha \in \mathcal{M}$ can be written uniquely as a product of elements of \mathcal{G}. (We then call \mathcal{M} a free monoid.)
Suppose \mathcal{G} freely generates \mathcal{M}, and let $G(x)=\sum_{n \geq 1} \#\left(\mathcal{M}_{n} \cap \mathcal{G}\right) x^{n}$. Then

$$
\begin{aligned}
\sum_{n} v_{2}(n) x^{n} & =\sum_{n} \# \mathcal{M}_{n} \cdot x^{n} \\
& =1+G(x)+G(x)^{2}+\cdots \\
& =\frac{1}{1-G(x)}
\end{aligned}
$$

Free generators of \mathcal{M}

Theorem. \mathcal{M} is freely generated by the following elements:

$$
\left.\begin{array}{rl}
& \binom{0}{0}
\end{array}\right)\binom{1}{1} .
$$

where each $*$ can be 0 or 1 , but two $*$'s in the same column must be equal.

Free generators of \mathcal{M}

Theorem. \mathcal{M} is freely generated by the following elements:

$$
\left.\begin{array}{rl}
& \binom{0}{0}
\end{array}\right)\binom{1}{1} .
$$

where each $*$ can be 0 or 1 , but two $*$'s in the same column must be equal.

Example. $\left(\begin{array}{lllll}1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1\end{array}\right): 1+2+3+5=3+8$

$G(x)$

$$
\begin{aligned}
& \binom{0}{0}\binom{1}{1} \\
& \left(\begin{array}{llllllllllll}
11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\
00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1
\end{array}\right) \\
& \left(\begin{array}{llllllllllll}
00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\
11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0
\end{array}\right)
\end{aligned}
$$

Two elements of length one: $G(x)=2 x+\cdots$

$G(x)$

$$
\begin{gathered}
\text { 品 } \left.\begin{array}{c}
0 \\
0
\end{array}\right) \\
\binom{1}{1} \\
\left(\begin{array}{llllllllllll}
11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\
00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1
\end{array}\right) \\
\left(\begin{array}{llllllllllll}
00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\
11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0
\end{array}\right)
\end{gathered}
$$

Two elements of length one: $G(x)=2 x+\cdots$
Let k be the number of columns of $*$'s. Length is $2 k+3$. Thus

$$
\begin{aligned}
G(x) & =2 x+2 \sum_{k \geq 0} 2^{k} x^{2 k+3} \\
& =2 x+\frac{2 x^{3}}{1-2 x^{2}} .
\end{aligned}
$$

Completion of proof

$$
\begin{aligned}
\sum_{n} v_{2}(n) x^{n} & =\frac{1}{1-G(x)} \\
& =\frac{1}{1-\left(2 x+\frac{2 x^{3}}{1-2 x^{2}}\right)} \\
& =\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}}
\end{aligned}
$$

Completion of proof

$$
\begin{aligned}
\sum_{n} v_{2}(n) x^{n} & =\frac{1}{1-G(x)} \\
& =\frac{1}{1-\left(2 x+\frac{2 x^{3}}{1-2 x^{2}}\right)} \\
& =\frac{1-2 x^{2}}{1-2 x-2 x^{2}+2 x^{3}}
\end{aligned}
$$

Reference: arXiv:2101.02131

The End

