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The posets Pib

Let i , b ≥ 2. Define the poset (partially ordered set)Pib by

• There is a unique minimal element 0̂

• Each element is covered by exactly i elements.

• The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0̂ at the top).

• Every extends to a 2b-gon (b edges on each side)

Note. Pib is upper homogeneous, i.e., for all t ∈ Pib, we have
{s ∈ Pib : s ≥ t} ∼= Pib.
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Fibonacci poset
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In Pib, every element of rank n− 1 is covered by i elements, giving

a first approximation pib(n)
?
= ipib(n − 1). Each element of rank

n− b is the bottom of i − 1 2b-gons, so there are (i − 1)pib(n− b)
elements of rank n that cover two elements. The remaining
elements of rank n cover one element. Hence

pib(n) = ipib(n − 1)− (i − 1)pib(n − b).
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pib(n): number of elements of Pib of rank n

In Pib, every element of rank n− 1 is covered by i elements, giving

a first approximation pib(n)
?
= ipib(n − 1). Each element of rank

n− b is the bottom of i − 1 2b-gons, so there are (i − 1)pib(n− b)
elements of rank n that cover two elements. The remaining
elements of rank n cover one element. Hence

pib(n) = ipib(n − 1)− (i − 1)pib(n − b).

Initial conditions: pib(n) = in, 0 ≤ n ≤ b − 1

⇒
∑

n≥0

pib(n)x
n =

1

1− ix + (i − 1)xb
.



The special case i = 2, b = 3

∑

n≥0

p23(n)x
n =

1

1− 2x + x3

=
1

(1− x)(1− x − x2)

⇒ p23(n) = Fn+2 − 1,

where F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.



The special case i = 2, b = 3

∑

n≥0

p23(n)x
n =

1

1− 2x + x3

=
1

(1− x)(1− x − x2)

⇒ p23(n) = Fn+2 − 1,

where F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3.

First connection with Fibonacci numbers.
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Pascal’s triangle



A generating function for the e(t)’s

Fix i and b.

tnk : kth element from left in the nth row of Pib, beginning with
k = 0.
[
n

k

]

= e(tnk )

qn: number of elements of Pib of rank n

rn =
qn − qn−1

i − 1
∈ P = {1, 2, . . . }



A generating function for the e(t)’s

Fix i and b.

tnk : kth element from left in the nth row of Pib, beginning with
k = 0.
[
n

k

]

= e(tnk )

qn: number of elements of Pib of rank n

rn =
qn − qn−1

i − 1
∈ P = {1, 2, . . . }

Theorem.
∑

k

[
n

k

]

xk =

n∏

j=1

(

1 + x rj + x2rj + · · ·+ x(i−1)rj
)

(analogue of binomial theorem, the case i = b = 2)



A Fibonacci product

Recall: F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3

In(x) =
n∏

i=1

(

1 + xFi+1

)



A Fibonacci product

Recall: F1 = F2 = 1, Fn = Fn−1 + Fn−2 for n ≥ 3

In(x) =
n∏

i=1

(

1 + xFi+1

)

I4(x) = (1 + x)(1 + x2)(1 + x3)(1 + x5)

= 1 + x + x2 + 2x3 + x4 + 2x5 + 2x6 + x7 + 2x8 + x9 + x10 + x11

When i = 2, b = 3 (so P23 = F), the previous theorem gives:

∑

k

[
n

k

]

xk = In(x).



Sum of rth powers

vr (n): sum of r th powers of coefficients of In(x)

Vr (x) =
∑

n≥0

vr (n)x
n

Recursive structure of F leads to a system of linear recurrences
from which there follows:

Theorem. For all r ≥ 0, Vr (x) is a rational function.

Computation automated by Doron Zeilberger.



Sum of rth powers

vr (n): sum of r th powers of coefficients of In(x)

Vr (x) =
∑

n≥0

vr (n)x
n

Recursive structure of F leads to a system of linear recurrences
from which there follows:

Theorem. For all r ≥ 0, Vr (x) is a rational function.

Computation automated by Doron Zeilberger.

Compare Pascal’s triangle (i = b = 2): V2(x) is algebraic but not
rational, and Vr (x) for r ≥ 3 is D-finite but not algebraic.



Some small values of Vr (x)

Theorem. V1(x) =
1

1− 2x

V2(x) =
1− 2x2

1− 2x − 2x2 + 2x3

V3(x) =
1− 4x2

1− 2x − 4x2 + 2x3

V4(x) =
1− 7x2 − 2x4

1− 2x − 7x2 − 2x4 + 2x5

V5(x) =
1− 11x2 − 20x4

1− 2x − 11x2 − 8x3 − 20x4 + 10x5

V6(x) =
1− 17x2 − 88x4 − 4x6

1− 2x − 17x2 − 28x3 − 88x4 + 26x5 − 4x6 + 4x7



Some small values of Vr (x)

Theorem. V1(x) =
1

1− 2x

V2(x) =
1− 2x2

1− 2x − 2x2 + 2x3

V3(x) =
1− 4x2

1− 2x − 4x2 + 2x3

V4(x) =
1− 7x2 − 2x4

1− 2x − 7x2 − 2x4 + 2x5

V5(x) =
1− 11x2 − 20x4

1− 2x − 11x2 − 8x3 − 20x4 + 10x5

V6(x) =
1− 17x2 − 88x4 − 4x6

1− 2x − 17x2 − 28x3 − 88x4 + 26x5 − 4x6 + 4x7

Note. Numerator is “even part” of denominator. Why?
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Structure of two consecutive ranks
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1 1

1 1 1 1

1 1 1 2 1 1 1

1 1 1 1 2 2 1 2 1 1 12

1 1 1 2 1 2 2 1 3 2 2 3 1 2 2 1 2 1 11

string sizes on last rank: 2, 3, 2, 3, 3, 2, 3, 2
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The limiting string size sequence

As n → ∞, we get a “limiting sequence”

2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, . . . .

Let φ = (1 +
√
5)/2, the golden mean.

Theorem. The limiting sequence (c1, c2, . . . ) is given by

cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋.
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Properties of cn = 1 + ⌊nφ⌋ − ⌊(n − 1)φ⌋

2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, . . . .

• γ = (c2, c3, . . . ) characterized by invariance under 2 → 3,
3 → 32 (Fibonacci word in the letters 2,3).

• γ = z1z2 · · · (concatenation), where z1 = 3, z2 = 23,
zk = zk−2zk−1

3 · 23 · 323 · 23323 · 32323323 · · ·

• Sequence of number of 3’s between consecutive 2’s is the
original sequence with 1 subtracted from each term.

2 3
︸︷︷︸

1

2 33
︸︷︷︸

2

2 3
︸︷︷︸

1

2 33
︸︷︷︸

2

2 33
︸︷︷︸

2

2 3
︸︷︷︸

1

2 33
︸︷︷︸

2

2 . . . .



Coefficients of In(x)

In(x) =

n∏

i=1

(

1 + xFi+1
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Coefficient of xm: number of ways to write m as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.
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Coefficients of In(x)

In(x) =

n∏

i=1

(

1 + xFi+1

)

Coefficient of xm: number of ways to write m as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.

Example. Coefficient of x8 in
(1 + x)(1 + x2)(1 + x3)(1 + x5)(1 + x8) is 3:

8 = 5 + 3 = 5 + 2 + 1.

Can we see these sums from F? Each path from the top to a point
t ∈ F should correspond to a sum.
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An edge labeling of F

The edges between ranks 2k and 2k + 1 are labelled alternately
0,F2k+2, 0,F2k+2, . . . from left to right.

The edges between ranks 2k − 1 and 2k are labelled alternately
F2k+1, 0,F2k+1, 0, . . . from left to right.



Diagram of the edge labeling

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).



Connection with sums of Fibonacci numbers

Let t ∈ F. All paths (saturated chains) from the top to t have the
same sum of their elements σ(t).

If rank(t) = n, this gives all ways to write σ(t) as a sum of distinct
Fibonacci numbers from {F2,F3, . . . ,Fn+1}.



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

2 + 3 = F3 + F4



An example

0 1

2 0 2 0

0 3 0 3 0 3 0 4

5 0 5 0 5 0 5 0 5 0 5 0 5 0

t

5 = F5



An ordering of N

0 1

2 0 2 0

0 3 0 3 0 3 0

5 0 5 0 5 0 5 0 5 0 5 0 5 0

3

7 2   10 5   0    8 3   11 6  1    9 4

In the limit as rank → ∞, get an interesting (dense) linear ordering
≺ of N.



When is m ≻ 0?

Zeckendorf’s theorem. Every nonnegative integer has a unique

representation as a sum of nonconsecutive Fibonacci numbers,

where a summand equal to 1 is always taken to be F2.



When is m ≻ 0?

Zeckendorf’s theorem. Every nonnegative integer has a unique

representation as a sum of nonconsecutive Fibonacci numbers,

where a summand equal to 1 is always taken to be F2.

Example. 45 = 3 + 8 + 34 = F4 + F6 + F9



When is m ≻ 0?

Zeckendorf’s theorem. Every nonnegative integer has a unique

representation as a sum of nonconsecutive Fibonacci numbers,

where a summand equal to 1 is always taken to be F2.

Example. 45 = 3 + 8 + 34 = F4 + F6 + F9

Theorem. Let m > 0. Then m ≻ 0 if and only the smallest

Fibonacci number in the Zeckendorf representation of m has even

index.



When is m ≻ 0?

Zeckendorf’s theorem. Every nonnegative integer has a unique

representation as a sum of nonconsecutive Fibonacci numbers,

where a summand equal to 1 is always taken to be F2.

Example. 45 = 3 + 8 + 34 = F4 + F6 + F9

Theorem. Let m > 0. Then m ≻ 0 if and only the smallest

Fibonacci number in the Zeckendorf representation of m has even

index.

Example. 45 ≻ 0 since F4 has even index 4.
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Recall: for P23 = F, we define
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∑

t∈F
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e(t)2

=
∑

k

[
n

k
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=
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k
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where
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∑
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k .



Second proof concerning
∑[

n

k

]2

Recall: for P23 = F, we define

v2(n) =
∑

t∈F
rk(t)=n

e(t)2

=
∑

k

[
n

k

]2

=
∑

k

c2k ,

where
n∏

i=1

(

1 + xFi+1

)

=
∑

k

ckx
k .

Theorem. V2(x) :=
∑

n≥0

v2(n)x
n =

1− 2x2

1− 2x − 2x2 + 2x3



Tautological interpretation of v2(n)

In(x) :=
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i=1

(

1 + xFi+1

)

=
∑

k

[
n

k

]

xk
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Tautological interpretation of v2(n)

In(x) :=

n∏

i=1

(

1 + xFi+1

)

=
∑

k

[
n

k

]

xk

[
n

k

]

= #

{

(a1, . . . , an) ∈ {0, 1}n :
∑

i

aiFi+1 = k

}

v2(n) :=
∑

k

[
n

k

]2

= #

{(
a1 a2 · · · an
b1 b2 · · · bn

)

:
∑

aiFi+1 =
∑

biFi+1

}

,

where each ai and bi is 0 or 1.



A concatenation product
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A concatenation product
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∑

biFi+1

}

Let

α =

(
a1 · · · an
b1 · · · bn

)

∈ Mn, β =

(
c1 · · · cm
d1 · · · dm

)
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Define

αβ =
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a1 · · · an c1 · · · cm
b1 · · · bn d1 · · · dm
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A concatenation product

Mn :=

{(
a1 a2 · · · an
b1 b2 · · · bn

)

:
∑

aiFi+1 =
∑

biFi+1

}

Let

α =

(
a1 · · · an
b1 · · · bn

)

∈ Mn, β =

(
c1 · · · cm
d1 · · · dm

)

∈ Mm.

Define

αβ =

(
a1 · · · an c1 · · · cm
b1 · · · bn d1 · · · dm

)

,

Easy to check: αβ ∈ Mn+m
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The monoid M

M := M0 ∪M1 ∪M2 ∪ · · · ,
a monoid (semigroup with identity) under concatenation. The
identity element is ∅ ∈ M0.

Definition. A subset G ⊂ M freely generates M if every α ∈ M
can be written uniquely as a product of elements of G. (We then
call M a free monoid.)

Suppose G freely generates M, and let
G (x) =

∑

n≥1 #(Mn ∩ G)xn. Then
∑

n

v2(n)x
n =

∑

n

#Mn · xn

= 1 + G (x) + G (x)2 + · · ·

=
1

1− G (x)
.



Free generators of M

Theorem. M is freely generated by the following elements:

(
0
0

) (
1
1

)

=

(
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

=

(
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

,

where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.



Free generators of M

Theorem. M is freely generated by the following elements:

(
0
0

) (
1
1

)

=

(
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

=

(
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

,

where each ∗ can be 0 or 1, but two ∗’s in the same column must
be equal.

Example.

(
1 1 1 1 0
0 0 1 0 1

)

: 1 + 2 + 3 + 5 = 3 + 8



G (x)

(
0
0

) (
1
1

)

(
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

(
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

Two elements of length one: G (x) = 2x + · · ·



G (x)

(
0
0

) (
1
1

)

(
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1

)

(
00 ∗ 0 ∗ 0 ∗ 0 ∗ · · · ∗ 0 1
11 ∗ 1 ∗ 1 ∗ 1 ∗ · · · ∗ 1 0

)

Two elements of length one: G (x) = 2x + · · ·

Let k be the number of columns of ∗’s. Length is 2k + 3. Thus

G (x) = 2x + 2
∑

k≥0

2kx2k+3

= 2x +
2x3

1− 2x2
.



Completion of proof

∑

n

v2(n)x
n =

1

1− G (x)

=
1

1−
(

2x + 2x3

1−2x2

)

=
1− 2x2

1− 2x − 2x2 + 2x3
�



Completion of proof

∑

n

v2(n)x
n =

1

1− G (x)

=
1

1−
(

2x + 2x3

1−2x2

)

=
1− 2x2

1− 2x − 2x2 + 2x3
�

Reference: arXiv:2101.02131
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