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1.45 מהדורה

שלהם האברים וכל קומוטטיביים הם ביותר: המוצלחים החוגים הם שדות הקדמה.
מקום תופסים ששדות פלא זה אין ולכן שדה, הוא פשוט חוג כל של המרכז הפיכים.
בשטחים טבעי באופן מופיעים מיוחדים ששדות מכיוון מזו, יתרה החוגים. בתורת מרכזי
באברים נתמקד במבוא עצמאית. חשיבות השדות לתורת יש המתמטיקה, של אחרים
הקורס של העיקרי החלק אלגברית. סגור בשדה מוכל שדה שכל ונראה אלגבריים,

סופיות. הרחבות באמצעות שדות החוקרת גלואה, לתורת מוקדש
החבורות, תורת את הולידה ,1830 בסביבות גלואה אווריסט שייסד גלואה, תורת
הגאומטריות הבעיות עת: אותה של במתמטיקה המרכזיות הבעיות מקבוצות שתיים ופתרה
,5 ≤ n ממעלה הפולינומית המשוואה את לפתור ניתן שלא וההוכחה מחד, קדם ימי של
גלואה, של התאוריה ויסודות השדות לתורת כללי מבוא לצד מציגה, זו חוברת מאידך.

אלו. לשאלות פתרון גם

9.2013 וישנה, עוזי
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1 פרק

מבוא

הביבליוגרפית. ברשימה למצוא אפשר בפרט גלואה תורת ועל בכלל השדות תורת על ספרים

החוגים מתורת רקע 1.1

הכלים את להציג נועד זה סעיף החוגים. מתורת בסיסיים בכלים משתמשת השדות תורת
מן תועלת להפיק החוגים בתורת מלא קורס למד שלא למי גם ולאפשר בקצרה, האלה

שלנו. הקורס

ואידאלים חוגים 1.1.1

הוא ואחד) (אפס קבועים ושני וכפל) חיבור (הנקראות פעולות שתי עם אלגברי מבנה
תכונת ומתקיימת לכפל, ביחס מונויד לחיבור, ביחס אבלית חבורה מהווה הוא אם חוג,
הדוגמאות בין .x(y + z) = xy + xz ,(x + y)z = xy + xy הדיסטריבוטיביות:
אוסף הוא החוג של המרכז פולינומים. וחוגי מטריצות חוגי השלמים, חוג המוכרות:

כלומר החוג, של אבר כל עם המתחלפים האברים

Z(R) = {c ∈ R : cx = xc(∀x ∈ R)}.

אבר את הכוללת החוג של תת־קבוצה .x, y לכל xy = yx אם קומוטטיבי הוא חוג
בעצמו. חוג כמובן הוא תת־חוג תת־חוג. נקראת וכפל, חיסור לחיבור, וסגורה היחידה

קומוטטיבי. תת־חוג תמיד הוא חוג של המרכז לדוגמא,
וסגורה וחיסור לחיבור הסגורה I ⊆ R אברים קבוצת הוא R חוג של אידיאל
מסמנים כזה במקרה .x ∈ Rו־ a ∈ I לכל xa, ax ∈ I כלומר 'מבחוץ', כפל לפעולת
הוא Rc = {xc : x ∈ R} אז החוג, של במרכז איבר הוא c ∈ R אם לדוגמא, .I�R

.c על־ידי הנוצר האידיאל הנקרא אידיאל,
ולהכפיל: לחבר לחתוך, אפשר אידיאלים

IJ =
{∑

aibi : a1, . . . , an ∈ I, b1, . . . , bn ∈ J
}
.
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החוגים מתורת רקע מבוא1.1. .1 פרק

הכפל לפעולת ביחס חוג היא R/I = {x+ I : x ∈ R} המנה חבורת אז I�R אם
החבורות. מתורת נורמלית לתת־חבורה אנלוגי הוא אידיאל זה, במובן .Rמ־ המושרית
פעולות עם ,n מודולו המספרים חוג הוא Z/nZ המנה וחוג ,nZ�Z ,n לכל לדוגמא,
אידיאל אמיתי. אידיאל נקרא כולו לחוג שווה שאינו אידיאל המודולריות. והכפל החיבור
אמיתי אידיאל כל מקסימלי. אידיאל הוא אחר אמיתי אידיאל באף מוכל שאינו אמיתי

צורן). של הלמה מן נובעת זו (טענה מקסימלי אמיתי באידיאל מוכל

שדות 1.1.2

שדות. הם Cו־ R ,Q לדוגמא, הפיך. הוא x ̸= 0 איבר כל שבו קומוטטיבי חוג הוא שדה
מספר p כאשר ,Fp = Z/pZ למשל סופיים, שדות גם יש שדה. אינו Z זאת לעומת

ראשוני. טבעי
בעל חופשי, הוא שדה מעל מודול כל בתכלית: פשוטה שדות מעל המודולים תורת
מכל איזומורפיזם, כדי עד יחיד, וקטורי מרחב יש ממד); (הקרויה היטב מוגדרת דרגה

ממד.
נקראת פעולות) לאותן (ביחס בעצמה שדה שהיא F ⊆ K תת־קבוצה שדה. K יהי

תת־שדה.

לחיבור סגורה היא אם תת־שדה היא ∅ ̸= F ⊆ K תת־קבוצה (*) 1.1.1 תרגיל
להפכי. סגור הוא אם תת־שדה הוא F ⊆ K תת־חוג ולהפכי. לכפל ונגדי,

שלמות בתחומי יסוד מושגי 1.1.3

אידיאל כל שבו שלמות תחום שלמות. תחום נקרא אפס מחלקי לו שאין קומוטטיבי חוג
תחום על מוגדרת אם ראשי. תחום נקרא אחד) איבר על־ידי נוצר (כלומר ראשי הוא
x ∈ a−Rb איבר יש b ̸= 0 ולכל a שלכל כך d :R→N ∪ {−∞} פונקציה R שלמות

ראשי. תחום הוא אוקלידי תחום כל אוקלידי. תחום הוא R אז ,d(x) < d(b)ש־ כך
(היינו טריוויאלי הוא p = ab פירוק כל אם אי־פריק הוא R שלמות בתחום p איבר
איבר כל .p | b או p | aש־ נובע p | abמ־ אם ראשוני הוא p איבר הפיך). הגורמים אחד
שהמושגים כך ראשוני, הוא אי־פריק איבר כל ראשי, בתחום אי־פריק. הוא ראשוני
יחיד באופן ראשוניים של למכפלה לפרק אפשר איבר כל ראשי, בתחום מתלכדים.
המצב כללי (באופן בהפיכים). וכפל הגורמים, סדר החלפת עד־כדי היא (היחידות
של פירוק הוא 2 · 3 = −

√
−6
√
−6 ,Z[

√
−6] השלמות בתחום לדוגמא, יותר. מסובך

האלה הגורמים מן אחד אף שונות. דרכים בשתי אי־פריקים לגורמים 6 מספר, אותו
ראשוני.) אינו

עד (יחיד d אותו הוא a, b ∈ R של המקסימלי המשותף המחלק ראשי. תחום R יהי
לכל x | dו־ d | a, bש־ לכך שקולה זו הגדרה .Ra + Rb = Rdש־ כך בהפיך) כפל כדי
לינארי צירוף הוא 1 אם ורק אם ,Ra + Rb = R אם זרים הם a, b האברים .x | a, b
השאריות משפט הפיך. הוא x | a, b משותף מחלק כל אם ורק אם ,(R (מעל שלהם
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מבוא .1 החוגיםפרק מתורת רקע .1.1

אם יותר, כללי (ובאופן R/Rab ∼= R/Ra × R/Rb אז זרים, a, b שאם קובע הסיני
(.R/Ra1 · · · at ∼= R/Ra1 × · · · ×R/Rat אז בזוגות, זרים a1, . . . , at

כך M ′�R אידיאל אין (כלומר, מקסימלי אידיאל M�Rו־ קומוטטיבי חוג R אם
,p אי־פריק איבר לכל ראשי, בתחום שדה. הוא R/M המנה חוג אז ,(M ⊂ M ש־′

שדה. היא R/Rp המנה ולכן מקסימלי, הוא Rp האידיאל

שדה מעל הפולינומים חוג 1.1.4

מוגבל, אינו N כאשר ,R[λ] =
{∑N

n=0 anλ
n : a0, . . . , aN ∈ R

}
החוג חוג. R יהי

במקום לחזור: אפשר הזו הבניה על .R מעל אחד במשתנה הפולינומים חוג נקרא
חשוב: אינו המשתנים הוספת שסדר משום ,R[λ1, λ2] כותבים (R[λ1])[λ2]

(R[λ1])[λ2] ∼= (R[λ2])[λ1].

.R[a1, . . . , an] = (R[a1, . . . , an−1])[an] באינדוקציה מגדירים יותר כללי באופן
המעלה פונקציית באמצעות אוקלידי חוג הוא F [λ] החוג שדה, הוא R = F כאשר
הטובות התכונות כל עליו וחלות ראשי הוא ולכן ,d(

∑
anλ

n) = maxn : an ̸= 0
הקודם. בתת־הסעיף שהוזכרו

אי־פריקים. לגורמים יחיד פירוק יש f ∈ F [λ] פולינום לכל בפרט,

וקטורי, מרחב הוא F [λ]/⟨f⟩ המנה חוג .n ממעלה פולינום ,f ∈ F [λ] יהי 1.1.2 טענה
.
{
xi + ⟨f⟩ : i = 0, . . . , n− 1

}
הבסיס עם

מקסימלי, אידיאל ⟨f⟩ = R[λ]f אם ורק אם שדה הוא F [λ]/⟨f⟩ המנה חוג
השאריות משפט לפי אז זרים, g, h כאשר f = gh אם אי־פריק. f אם ורק אם
אז ,f = gn1

1 · · · g
nt
t נפרק אם לכן, .F [λ]/⟨f⟩ ∼= F [λ]/⟨g⟩ × F [λ]/⟨h⟩ הסיני

ורק אם (שדה מקומי חוג הוא F [λ]/⟨gn⟩ מהצורה חוג .F [λ]/⟨f⟩ ∼=
∏

F [λ]/⟨gni
i ⟩

.(n = 1 אם

כמכפלה לפירוק ניתן אינו F [λ]/⟨g(λ)n⟩ש־ הראה אי־פריק. פולינום g יהי 1.1.3 תרגיל
טריוויאליים. לא אידמפוטנטים הזה בחוג שאין להראות יש הדרכה. חוגים. של

שדות של בניות 1.1.5

בהמשך). אחרות (נציג שדות של בניות כמה להלן

מנה: חוגי .1

שדה. הוא R/M ,M מקסימלי אידיאל ולכל R קומוטטיבי חוג לכל (א)

הוא R/pR אז אי־פריק. איבר p ∈ R ויהי ראשי, תחום R יהי בפרט, (ב)
אברים. p בן סופי שדה הוא Z/pZ למשל, שדה.
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החוגים מתורת רקע מבוא1.1. .1 פרק

לעסוק נחזור שדה. הוא F [λ]/⟨f⟩ אז אי־פריק, הוא f ∈ F [λ] אם בפרט, (ג)
.(2.1.1 (טענה בהמשך זו בבניה

שברים: שדה .2

השוויון שבו ,
{
a
b : a, b ∈ R, b ̸= 0

}
השברים שדה שלמות. תחום R יהי (א)

הטבעיות לפעולות ביחס שדה הוא ,ab′ = a′b אם a
b = a′

b′ ש־ כך מוגדר
.q(R)ב־ מסמנים R של השברים שדה את .ab

a′

b′ =
aa′

bb′ ו־
a
b +

a′

b′ =
ab′+a′b

bb′

(ליתר שווה F שדה של השברים שדה .Q הוא Z של השברים שדה למשל,
להציג אפשר שבר כל ראשי, תחום R אם עצמו. לשדה איזומורפי) דיוק,

זרים. a, b כאשר a
b בצורה

גם שברים שדה של הבניה ובזכות שלמות, תחום הוא שדה של תת־חוג כל
בשדה. מוכל שלמות תחום כל נכון: ההיפך

הפונקציות שדה נקרא F [λ] של השברים שדה אז שדה, F אם בפרט, (ב)
לב (שימו F (λ)ב־ אותו ומסמנים ,F מעל אחד) (במשתנה הרציונליות
חוג של במקרה המרובעים הסוגריים לעומת זה, במקרה העגולים לסוגריים
f, g כאשר f(λ)

g(λ) מהצורה השברים הם F (λ) השדה אברי הפולינומים.)
שברים. של הטבעיות הפעולות עם ,g ̸= ו־0 פולינומים

חוג של השברים שדה ,λ1, . . . , λn משתנים מספר לכל יותר, כללי באופן (ג)
משתנים, nב־ הרציונליות הפונקציות שדה נקרא F [λ1, . . . , λn] הפולינומים

.F (λ1, . . . , λn)ב־ אותו ומסמנים

הטורים ,an ∈ F שבו ,
∑∞

n=−N anλ
n הפורמליים הטורים אוסף שדה. F יהי .3

לורן טורי של השדה נקרא אינסופיים), להיות (ועשויים כלשהי בנקודה מתחילים
הפונקציות שדה את המכיל שדה, אכן זהו .F ((λ))ב־ אותו ומסמנים ,F מעל

.F (λ)

להומומורפיזם המשכה יש ,F ↪→K חוגים של הומומורפיזם לכל (*) 1.1.4 תרגיל
ההומומורפיזם עם המתלכד F (λ)מ־ הומומורפיזם היא (המשכה F (λ) ↪→K(λ)

.(F על הנתון

פולינומים של אי־פריקות 1.1.6

אי־פריק פולינום p אם ורק אם שדה היא F [λ]/⟨p⟩ המנה שראינו, כפי שדה. F יהי
הפולינום של רביעית, (שיטה זוויות משלוש פולינומים של באי־פריקות נדון .(F (מעל

.(1.2.13 במסקנה מוצגת המינימלי,

שורשים

ממעלה בפולינומים רק כאן נדון ולכן אי־פריק, לעולם הוא ראשונה ממעלה פולינום
(וראה f(a) = 0 אם f ∈ F [λ] הפולינום של שורש הוא a ∈ F איבר יותר. גבוהה

.(1.2.4 תת־סעיף
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מבוא .1 החוגיםפרק מתורת רקע .1.1

.f(λ) את מחלק λ − a אם ורק אם f ∈ F [λ] של שורש הוא a (*) 1.1.5 תרגיל
deg(r) < deg(λ− כאשר f(λ) = q(λ)(λ− a)) + r(λ) כתוב שארית: עם חילוק הדרכה.

.a) = 1

מאידך, פריק. הוא שורש עם (1 < (ממעלה פולינום לכן,

שורש. לו יש אז פריק, 3 או 2 ממעלה פולינום אם (*) 1.1.6 תרגיל

אינה זו טענה שורש. לו יש אם ורק אם פריק הוא נמוכה ממעלה פולינום כך, אם
ומעלה: מ־4 במעלות נכונה

שורשים. שם לו שאין ,4 ממעלה ,Q מעל פריק לפולינום דוגמא תן (*) 1.1.7 תרגיל

f ו־= F = q(R) ראשי, תחום Rש־ נניח שורשים? אין שלפולינום מראים איך
כפל על־ידי כזו לצורה להביא אפשר F מעל פולינום (כל anλ

n + · · · + a0 ∈ R[λ]
בסקלר).

אז ,f של שורש הוא זרים) c, d (כלומר c
d ∈ F מצומצם שבר אם (*) 1.1.8 תרגיל

אז ,(1 הוא שלו המוביל המקדם (כלומר מתוקן הפולינום אם בפרט, .c | a0ו־ d | an
.Rב־ למעשה נמצא F ב־ שלו שורש כל

אחרת. חשובה מסקנה יש 1.1.5 לתרגיל

לזה. זה זרים λ− a′ ,λ− a הפולינומים ,a ̸= a′ לכל (*) 1.1.9 תרגיל

המעלה על עולה אינו כלשהו, שדה מעל f ̸= 0 פולינום של השורשים מספר 1.1.10 מסקנה
שלו.

אייזנשטיין קריטריון

נקרא anλn + · + a0 ∈ R[λ] פולינום ראשוני. p ∈ Rש־ נניח שלמות. תחום R יהי
.p2 ̸ | a0 ,p | an−1, . . . , a0 ,p ̸ | an הבאים: התנאים מתקיימים אם אייזנשטיין פולינום

.R מעל אי־פריק הוא אייזנשטיין פולינום 1.1.11 טענה

מקיים שכן לכזה הקריטריון, את מקיים שאינו מפולינום לעבור מאפשר הבא התרגיל
אותו:

f(ax + b) גם ,a ̸= 0 ,a, b ∈ R לכל אז R מעל פריק f(x) אם (*) 1.1.12 תרגיל
פריק.

הצבה מצא הדרכה. .Z מעל אי־פריק x6 + x3 + ש־1 הראה (**) 1.1.13 תרגיל
.p = 3 עבור התנאי את יקיים הפולינום שאחריה
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שדות של הרחבות מבוא1.2. .1 פרק

גאוס של הלמה

מעוניינים שאנחנו אלא .R חוג מעל אי־פריק הוא פולינום שבו מקרה מציגה 1.1.11 טענה
אינה R מעל אי־פריקות וא־פריורי ,(R של השברים שדה (למשל שדה מעל באי־פריקות

מועילה:

אי־פריק f אם .f ∈ R[λ] שלמות, תחומי הם R ⊆ R1ש־ נניח (**) 1.1.14 תרגיל
נכון. בהכרח אינו ההיפך אבל ,R מעל אי־פריק גם הוא אז R1 מעל

בפרט,

אי־פריק f אם .f ∈ R[λ] ,F = q(R) שלמות, תחום Rש־ נניח (**) 1.1.15 תרגיל
נכון. בהכרח אינו ההיפך אבל ,R מעל אי־פריק גם הוא אז F מעל

הזו. לבעיה פתרון מספקת הבאה הלמה

אז ,R מעל אי־פריק f ∈ R[λ] אם ראשי. תחום R יהי גאוס) של (הלמה 1.1.16 טענה
.F מעל גם אי־פריק f

שדות של הרחבות 1.2

הדגש .F של הרחבה נקרא K זה במקרה שדות; של הרחבה נקרא F ⊆ K שדות זוג
שאי־ למשוואות פתרונות כביכול וכולל ,F השדה את מרחיב K שהשדה כך על הוא
הסימון עם קשר שום לזה (אין K/F ב־ גם מסמנים כזו הרחבה .F ב־ לפתור אפשר
ההרחבה של ביניים שדות נקראים F ⊆ L ⊆ K המקיימים שדות מנה). חוג של הזהה

.K/F

פשוט חוג הוא שדה 1.2.1

ל־0. פרט אידיאלים לו שאין חוג הוא פשוט חוג

שדה. הוא אם ורק אם פשוט הוא קומוטטיבי חוג (*) 1.2.1 תרגיל

חשובה: מסקנה יש זו לעובדה

הוא שדה, F כאשר ,F→A יחידה) עם חוגים (של הומומורפיזם כל (*) 1.2.2 תרגיל
חד־חד־ערכי). הומומורפיזם (כלומר שיכון

השדה של הרחבה מגדיר הוא כלומר שיכון, הוא שדות בין הומומורפיזם כל בפרט,
רבים במקרים טבעי. באופן שיכון מגדירה F ⊆ K הכלה כל הגדול. השדה לתוך הקטן

דרכים. בכמה גדול בשדה השדה אותו את לשכן אפשר

הטבעי). השיכון (והוא Q ↪→K יחיד שיכון יש אז ,Q ⊆ K אם .1 (**) 1.2.3 תרגיל

.Rב־ Q[
√
2] של שונים שיכונים שני מצא .2

.R לתוך Q[
√
−2] של שיכון אף שאין הראה .3
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מבוא .1 שדותפרק של הרחבות .1.2

הרחבה של יוצרים 1.2.2∩
L∈Λ L החיתוך אז ביניים. שדות של אוסף Λ ויהי שדות, F ⊆ E יהיו 1.2.4 הערה

שדה. הוא

הכוללים K של תת־השדות חיתוך .S ⊆ K איברים קבוצת עם שדות F ⊆ K יהיו
ביותר הקטן השדה זהו .F (S)ב־ אותו ומסמנים ,S על־ידי הנוצר תת־השדה הוא S את
השווה שדה, הוא S של באיברים פולינומים של המנות אוסף .S ואת F את הכולל

.F (S)ל־ לפיכך
אחד, באיבר כזו, הרחבה .F (a) השדה את ולקבל S = {a} לבחור אפשר בפרט,

פשוטה. הרחבה נקראת

שדה.
∪

F∈Λ F אז לינארית, סדורה שדות קבוצת Λ אם 1.2.5 הערה

הרחבה בשדה פולינומים 1.2.3

פולינום כל ולכן ,K[λ]ב־ מוכל F [λ] הפולינומים חוג שדות. של הרחבה F ⊆ K תהי
להשתנות עשויות שלהם שהתכונות F [λ]ב־ אברים יש .K מעל פולינום גם הוא F מעל

יותר. הגדול לחוג כשעוברים
הרחבה שדה מעל ולהתפרק F מעל אי־פריק להיות עשוי f ∈ F [λ] פולינום לדוגמא,

למכפלה Q[
√
2] מעל מתפרק אבל ,Q מעל אי־פריק x4 + 1 למשל, .F של K

(x2 +
√
2x+ 1)(x2 −

√
2x+ 1).

מעודן F מעל איפריקים לגורמים f של הפירוק יחיד, הוא K מעל שהפירוק מכיוון
.F מעל אי־פריק גורם (K (מעל מחלק K מעל אי־פריק גורם כל :Kב־

.f, g ∈ F [λ] ו־ שדות, F ⊆ K ש־ נניח 1.2.6 טענה

המשותף למחלק שווה F מעל כפולינומים f, g של המקסימלי המשותף המחלק .1
.K מעל כפולינומים שלהם המקסימלי

בפרט: .2

.K מעל גם זרים הם אז ,F מעל זרים הם f, g ∈ F [λ] פולינומים אם (א)

.F מעל גם f | g אז ,K מעל f | gו־ f, g ∈ F [λ] אם (ב)

מעל המקסימלי המשותף המחלק dK ויהי ,F מעל המקסימלי המשותף המחלק dF יהי הוכחה.
מאידך, .K[λ] בחוג f, g את מחלק dF ש־ משום ,dK של ההגדרה לפי dF | dK מחד, .K
בסקלר, כפל כדי שעד מכאן .K מעל dK | dF ולכן ,a, b ∈ F [λ] עבור dF = af + bg

.dK = dF
שלהם המקסימלי משותף המחלקה אם ורק אם זרים f, gש־ משום מהראשונה נובעת השניה הטענה
� .f הוא המקסימלי המשותף המחלק אם ורק אם f | gו־ ,1 הוא
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שדות של הרחבות מבוא1.2. .1 פרק

שדה הפולינום; את בוחנים שמעליו בשדה תלוי אי־פריק' 'פולינום המושג לסיכום,
המושגים אבל יותר. גדול שדה מעל ופריק אחד, שדה מעל אי־פריק להיות יכול

הבסיס. בשדה תלויים אינם ו־'מחלק' זרים' 'פולינומים

הערה. .1.2.6 טענה ראה ;F (λ)∩K[λ] = F [λ] ,K/F הרחבה לכל (**) 1.2.7 תרגיל
תת־קבוצות כעל K[λ] ועל F (λ) על לחשוב יש משמעות תהיה שלחיתוך כדי פורמלית

.K(λ) של

המינימלי והפולינום הצבה 1.2.4

,a ∈ A לכל אז .(F את מכיל שלו שהמרכז A חוג (היינו, F מעל אלגברה A תהי
לפי המוגדר ההומומורפיזם הוא F [λ]→A ההצבה הומומורפיזם

Φa : f(λ) 7→ f(a).

שלא הוא דבר של פירושו טרנסצנדנטי. aש־ אומרים אפס, הוא Φa של הגרעין אם
האפס). לפולינום כמובן (פרט a את המאפס פולינום קיים

הפולינומים. לחוג איזומורפי F [a] טרנסצנדנטי, a אם (*) 1.2.8 תרגיל

של fa יוצר יש זה במקרה אלגברי. a אז אפס, אינו Ker(Φa)�F [λ] הגרעין אם
משפט לפי .a של המינימלי הפולינום שהוא בסקלר), כפל כדי עד (יחיד Ker(Φa)

הראשון, האיזומורפיזם

(1.1) F [λ]/⟨fa⟩ ∼= Im(Φa) = F [a].

מתלכדות: שתיהן הנוחות ולמרבה כפולה, משמעות יש למינימליות

המאפסים הפולינומים בקבוצת מינימלית מעלה בעל הוא המתוקן הפולינום 1.2.9 טענה
יחס לגבי המינימום גם הוא (ולכן a את המאפס אחר פולינום כל מחלק והוא ,a את

החלוקה).

אז .fa מינימלי פולינום עם ,F מעל אלגברי איבר a ∈ A יהי 1.2.10 מסקנה

dim(F [a]) = deg(fa).

.1.1.2 מטענה מתקבל והממד ,A של תת־אלגברה היא F [λ]/⟨fa⟩ ∼= ImΦa = F [a] הוכחה.
�

שדה. F [a] ואז אי־פריק, fa המינימלי הפולינום אז שלמות, תחום A אם 1.2.11 טענה
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מבוא .1 שדותפרק של הרחבות .1.2

או f1(a) = 0 נובע f1(a)f2(a) = (f1f2)(a) = מ־0 אז fa = f1f2 אם הוכחה.
האידיאל ראשי, תחום F [λ]ש־ ומכיוון המעלה. של למינימליות בסתירה ,f2(a) = 0
� מקסימלי. הוא יוצר אי־פריק שאיבר

בפולינום מתחלק אינו (אם aב־ פולינום לכל אלגברי, a שכאשר הוא זו בטענה החידוש
לעובדה חישובית הוכחה להלן .1 היא שמכפלתם כך aב־ אחר פולינום יש המינימלי)

זו: שימושית

של המינימלי הפולינום הוא ,F מעל אי־פריק פולינום ,faש־ נניח (**) 1.2.12 תרגיל
ש־ כך α(λ), β(λ) ∈ F [λ] קיימים ולכן ,fa(λ)ל־ זר g(λ) אז g(a) ̸= 0 אם .a

.g(a)−1 = β(a)ש־ הראה .α(λ)fa(λ) + β(λ)g(λ) = 1

:1.1.6 בתת־סעיף שהבטחנו לאי־פריקות הנוסף הקריטריון היא האחרונה הטענה

a של המינימלי הפולינום אז .a ∈ K ויהי שדות, של הרחבה K/F תהי 1.2.13 מסקנה
.(F (מעל אי־פריק הוא F מעל

שלמות.) תחום הוא Kש־ משום 1.2.11 מטענה (מיידי
.a על־ידי הנוצר תת־השדה את F (a)ב־ נסמן שדה. Aש־ נניח כעת

ולכן ,(1.2.11 (הערה שראינו כפי שדה הוא F [a] = ImΦa אלגברי, a כאשר 1.2.14 הערה
.F (a) = F [a]

רציונליות פונקציות לשדה איזומורפי F (a) אז טרנסצנדנטי, a אם (*) 1.2.15 תרגיל
.F (λ)

Q[λ]/
⟨
λ2 − 16

⟩
̸∼= ואילו Q[λ]/

⟨
λ2 − 7

⟩ ∼= Q[
√
7] מדוע הסבר (*) 1.2.16 תרגיל

.Q[
√
16]

הרחבות של ממד 1.2.5

.dimK V ב־ K שדה מעל V וקטורי מרחב של הממד את נסמן
בסקלר הכפל (עם F מעל וקטורי מרחב הוא K אז שדות, של הרחבה K/F את
הוא הממד .[K :F ] = dimF Kב־ נסמן שאותו ממד, יש ולכן ,(Kב־ מכפל המושרה

השדות. בתורת ביותר חשוב אינווריאנט

הממד כפליות

אז תת־שדה. F ⊆ K כאשר ,K שדה מעל וקטורי מרחב V יהי 1.2.17 טענה

dimF V = [K :F ] dimK V.

,F ⊆ K ⊆ E הרחבות בשרשרת בפרט 1.2.18 מסקנה

[E :F ] = [E :K] · [K :F ].
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שדות של הרחבות מבוא1.2. .1 פרק

פשוטה הרחבה של הממד

.F מעל a של המינימלי הפולינום לדרגת שווה [F [a] :F ] הממד שראינו, כפי

אז .E ⊇ L בשדה איבר a ∈ E ויהי שדות, של הרחבה F ⊆ L תהי 1.2.19 טענה

[L[a] :L] ≤ [F [a] :F ].

של המינימלי הפולינום את (L (מעל מחלק L מעל a של המינימלי הפולינום הוכחה.
� .F מעל איבר אותו

,L = F [ρα] ,F = Q קח אמיתי: אי־שוויון להיות יכול 1.2.19 בטענה 1.2.20 דוגמא
.2 = [L[a] :L] < [F [a] :F ] = 3 אז .ρ = −1+

√
−3

2 ו־ α3 = 2 כאשר a = α

אז ,[L[a] :L] = [F [a] :F ]− 1 ומתקיים ,a ∈ Eו־ F ⊆ L ⊆ E אם (**) 1.2.21 תרגיל
לגורמים L מעל מתפצל F מעל a של המינימלי הפולינום הדרכה. .F [a] ↪→L שיכון יש

.(λ− a′)g(λ)

.[F [a, b] :F ] ≤ [F [a] :F ][F [b] :F ] אז ,L = F [b] קח 1.2.19 בטענה 1.2.22 מסקנה
כי מזה נובע באינדוקציה

(1.2) [F [a1, . . . , an] :F ] ≤
∏

[F [ai] :F ].

לכל שם לחבורות, האנלוגית הטענה מן הפוך 1.2.19 במסקנה אי־השוויון 1.2.23 הערה
מתקיים H1, H2 ≤ G

[G :H1 ∩H2] ≥ [H1 :H1 ∩H2] · [H2 :H1 ∩H2],

,a, b ∈ G ואברים H תת־חבורה ,G חבורה לכל ובפרט

[⟨H, a, b⟩ :H] ≥ [⟨H, a⟩ :H] · [⟨H, b⟩ :H].
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2 פרק

גלואה תורת

פיצול שדות 2.1

מפצל שדה 2.1.1

שורש. fל־ יש F [λ]/⟨f⟩ בשדה אז אי־פריק. פולינום f ∈ F [λ]ש־ נניח 2.1.1 טענה

� .f של שורש הוא λ+ ⟨f⟩ש־ ישיר חישוב באמצעות הראה הוכחה.

.f של שורש יש שבה F של K הרחבה יש ,F שדה מעל f פולינום כל עבור 2.1.2 טענה

ולכן ,gל־ שורש בו שיש שדה הוא F [λ]/⟨g⟩ אז ,f של אי־פריק גורם g יהי הוכחה.
� .fל־

קיימים אם F ב־ מתפצל f הפולינום מתוקן. פולינום f ∈ F [λ] יהי 2.1.3 הגדרה
.f את מפצל F ש־ אומרים זה במקרה .f(λ) =

∏
(λ− αi) ש־ כך α1, . . . , αn ∈ F

מושג להכליל עלינו .f של מפצל שדה נקראת מתפצל הפולינום שבה E/F הרחבה
,ϕ :F [λ]→E[λ] הפולינומים חוגי של שיכון משרה ϕ :F→E שיכון כל שיכונים: עבור זה
את מפצל שהשיכון נאמר .ϕ(anλn+ · · ·+ a0) = ϕ(an)λ

n+ · · ·+ϕ(a0) הנוסחה לפי
.Eב־ מתפצל ϕ(f) אם f ∈ F [λ]

באינדוקציה: נובע 2.1.2 מטענה

.(deg f)! על עולה אינו שממדו מפצל, שדה יש שדה מעל f פולינום לכל 2.1.4 מסקנה

F1 = ניקח ;f של g אי־פריק גורם של שורש a יהי .n = deg(f) נסמן הוכחה.
יש האינדוקציה הנחת לפי .f(λ) = (λ − a)f1(λ) לכתוב אפשר F1 מעל .F [λ]/⟨g⟩
,f את מפצל E כמובן, .[E :F1] ≤ (n − ש־!(1 כך ,F1 מעל f1 של E מפצל שדה
� .[E :F ] = [E :F1][F1 :F ] ≤ (n− 1)! deg(g) ≤ n! ומתקיים
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פיצול שדות גלואה2.1. תורת .2 פרק

פיצול שדה 2.1.2

.f של מינימלי מפצל שדה K אם ,f של פיצול שדה היא K/F הרחבה .f ∈ F [λ] יהי
תופעה מסביר מה מפצל. אינו F ⊆ K ′ ⊂ K ביניים שדה אף אז ,f את מפצל K כלומר,
,f(λ) =

∏
(λ− αi) לינאריים לגורמים הפולינום את לפצל אפשר K השדה מעל כזו?

.α1, . . . , αn ∈ K ′ אם ורק אם F ⊆ K ′ ⊂ K תת־שדה מעל מתפצל הפולינום ואז
מכיל E אז ,αi ∈ E עם f(λ) =

∏
(λ−αi) כלומר ,f את המפצל שדה E שאם מכאן

זוהי ,2.1.4 מסקנה של ההוכחה לפי .K = F [α1, . . . , αn] פיצול, שדה שהוא תת־שדה
.[K :F ] ≤ n! שלה שהממד הרחבה

פיצול שדה K אז ,F מעל f ∈ F [λ] של פיצול שדה K ו־ F ⊆ L ⊆ K אם 2.1.5 הערה
יוצרים. אותם עם ,L מעל גם

שיכונים 2.1.3

אחת פשוט. קומוטטיבי חוג הוא שדה החוגים, תורת של המבט מנקודת ציינו, שכבר כפי
היא: התוצאות

שיכון. הוא שדות של הומומורפיזם כל 2.1.6 מסקנה

נקרא ϕ :L ↪→E שיכון שיכון. ϕ :F ↪→E ויהי ,F ⊆ Lש־ כך שדות F,L,E יהיו
(ראו בדיאגרמה זה מצב לשרטט אפשר .ϕל־ שווה F ל־ ϕ של הצמצום אם ,ϕ של המשכה
התמונה ,F המוצא בנקודת איבר לכל אם קומוטטיבית שהדיאגרמה אומרים להלן).
הדיאגרמה .a ∈ F לכל ϕ(a) = ϕ(a) אם כלומר, הדרכים; בשתי שווה E ביעד

:ϕ של המשכה הוא ϕ אם ורק אם קומוטטיבית

L
ϕ // E

F
?�

OO

ϕ // E

ההמשכות מספר את nL
F ↪→Eב־ נסמן שיכון, F ↪→E ו־ שדות של הרחבה L/F אם 2.1.7 הגדרה

.L ↪→E לשיכון השיכון של

או Q השדה הוא F0 (כלומר F של הראשוני תת־השדה F0 יהי (**) 2.1.8 תרגיל
.F0 ↪→F יחיד שיכון שיש הראה .(Z/pZ השדות אחד

הוא nF
F0⊆Kש־ הראה ,F0 ראשוני שדה אותו חולקים F,K אם (*) 2.1.9 תרגיל

.Kב־ F של השיכונים מספר

.nQ[i]
Q⊆C = 2 כלומר דרכים, בשתי C ב־ משוכן Q[i] 2.1.10 דוגמא
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גלואה תורת .2 פיצולפרק שדות .2.1

f ∈ F [λ] ויהי פשוטה, הרחבה F1 = F [a] תהי שיכון. φ :F ↪→E יהי 2.1.11 למה
בפרט: .Eב־ φ(f) של השורשים למספר שווה nF1

F ↪→E אז .a של המינימלי הפולינום

.nF1
F ↪→E ≤ [F1 :F ] מתקיים .1

.Eב־ אחד שורש לפחות יש φ(f)ל־ אם ורק אם F1→E ל־ φ של המשכה יש .2

אין לגורמים שלו בפירוק אם שם, ספרבילי הוא E בשדה המתפצל g שפולינום נאמר
השורשים ש'כל לומר מקובל מדוייקת פחות בצורה .((λ− α)2 (מהצורה כפול גורם אף

כלל). Eב־ תלויה אינה זו שתכונה נראה (בהמשך מזה' זה שונים Eב־ f של

שיכון. φ :F ↪→E יהי 2.1.12 משפט

,K/F סופית הרחבה לכל .1
nK
F ↪→E ≤ [K :F ].

אז ,Eב־ מתפצלת φ(f) שתמונתו f פולינום של שורשים על־ידי F מעל נוצר K אם .2

.φ של K ↪→E הרחבה יש (א)

.nK
F ↪→E = [K :F ] אז Eב־ ספרבילי φ(f) אם (ב)

.n על באינדוקציה הטענה את נוכיח .K = F [a1, . . . , an] כתוב ,1 עבור הוכחה.
אל השיכון של המשכות nF1

F ↪→E ≤ [F1 :F ] יש 2.1.11 למה לפי .F1 = F [a1] נסמן
המשכות nK

F1 ↪→E ≤ [K :F1] יש מאלה אחת לכל האינדוקציה, הנחת לפי .φ1 :F1→E
בסך־הכל נקבל הראשונות ההמשכות כל על נסכם ואם ,K→Eל־

(2.1) nK
F ↪→E =

∑
φ1

nK
φ1 :F1→E ≤

∑
φ1

[K :F1] ≤ [F1 :F ][K :F1] = [K :F ]

.K אל המשכות
f של שורשים כולם a1, . . . , anש־ נניח שהפעם אלא אופן, באותו נוכיח 2 את
שורשים Eב־ יש כי 1 ≤ nF1

F ↪→E 2.1.11 למה לפי .F1 = F [a1] ניקח שוב .Kב־
f1 | f כאשר ,Eב־ ספרבילי φ(f1) אם מתקיים nF1

F ↪→E = [F1 :F ] והשוויון ,φ(f)ל־
.φ(f) של מהספרביליות נובע זה ,n = 1 אם .a1 של המינימלי הפולינום הוא

ולכל ,F1 מעל שורשים אותם על־ידי נוצר שדה K ,F1 מעל פולינום הוא f כעת,
כל ראשית, האינדוקציה, הנחת לפי .φ′(f) = φ(f) את מפצל E ,φ′ :F1→E שיכון
אז Eב־ ספרבילי φ(f) אם ושנית, ,K ↪→E לשיכון להמשיך אפשר F1 ↪→E שיכון
יש Eב־ ספרביליים φ(f1) וגם φ(f) גם אם לכן, .nK

F1 ↪→E = [K :F1] שוויון מתקיים
� ספרבילי. φ(f1) גם ספרבילי φ(f) כאשר אבל ;nK

F ↪→F = [K :F ] שוויון

מפצל. שדה בכל משוכן f של פיצול שדה כל אז ;F מעל פולינום f יהי 2.1.13 מסקנה
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ספרביליות גלואה2.2. תורת .2 פרק

� (א2)2.1.12. משפט של התנאים חלים מפצל, שדה Eו־ פיצול שדה K אם הוכחה.

איזומורפיזם. עד־כדי יחיד פיצול שדה יש F שדה מעל פולינום לכל 2.1.14 משפט

Kמפצל ′ כי על שהוא ,K ↪→K ′ שיכון יש ,2.1.13 מסקנה לפי פיצול. K,Kשדות ′ יהיו הוכחה.
� מינימלי.

הידיעה. בהא נתון), שדה (מעל פולינום של הפיצול שדה על לדבר אפשר מעתה
Q מעל λ2 + 1 ∈ Q[λ] של הפיצול שדה למשל, הבסיס: בשדה תלוי אכן הפיצול שדה

.C הוא R מעל פולינום אותו של הפיצול שדה אבל ,Q[i] הוא

שיכון. F ↪→Eו־ שדות, F ⊆ L ⊆ K יהיו 2.1.15 מסקנה
את הממשיך ϕ :L→E שיכון ולכל ,nL

F ↪→E = [L :F ] אז ,nK
F ↪→E = [K :F ] אם

.K ↪→E לשיכון המשכה יש F ↪→E הנתון השיכון

בדרך. שלב בכל שוויון שיש ומכאן ימין, ואגף שמאל אגף לזה זה שווים (2.1) באי־השוויון הוכחה.
� .nK

ϕ :L→E = [K :L] ≥ 1 בפרט

ספרביליות 2.2

שדה של מאפיין 2.2.1

הסדר אם 0 או השדה, של החיבורית בחבורה 1 של הסדר הוא F השדה של המאפיין
תמיד הוא שדה של חיובי מאפיין .charF ב־ מסמנים F של המאפיין את אינסופי. הוא
תת־השדה .F של הראשוני תת־השדה נקרא 1 על־ידי הנוצר תת־השדה ראשוני. מספר
.p במאפיין Z/pZ לשדה או אפס, במאפיין Qל־ שווה והוא במאפיין, רק תלוי הראשוני

.Fp = Z/pZ איזשהו של או Q של עותק מכיל שדה שכל מכאן

מאפיין. אותו השדות לשני ,K/F הרחבה בכל (*) 2.2.1 תרגיל

לכן .a, b ∈ F לכל (a + b)p = ap + bp אז ,p ממאפיין שדה F אם 2.2.2 הערה
מסמנים הזה השיכון של התמונה את .F→F שדות של (!) שיכון היא x 7→ xp הפונקציה

.F ל־ איזומורפי שהוא ,F של תת־שדה זהו ;F p = {ap : a ∈ F}

.F p ̸= F ש־ כך p ממאפיין F לשדה דוגמא תן (*) 2.2.3 תרגיל

.F p = F ומתקיים p > 0 שהמאפיין או אפס, שלו המאפיין אם מושלם הוא שדה 2.2.4 הגדרה
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גלואה תורת .2 ספרביליותפרק .2.2

ספרביליים פולינומים 2.2.2

שלו הפיצול בשדה שורשיו כל אם (F (מעל ספרבילי הוא f ∈ F [λ] פולינום 2.2.5 הגדרה
מזה. זה שונים F מעל

f אז .F מעל (מתוקנים) אי־פריקים לגורמים פירוק f = f1 · · · ft ש־ נניח 2.2.6 הערה
לגורמים ,f של הפיצול שבשדה (משום וספרביליים. שונים fiה־ כל אם ורק אם ספרבילי

משותפים). שורשים אין שונים אי־פריקים

ספרבילי. אינו (x2 + 1)2 לדוגמא,

ספרבילי. הוא שלו אי־פריק גורם כל אם ספרבילי, לפולינום קורא Jacobson 2.2.7 הערה
בספרו למשל נמצאת שלנו ההגדרה .Q מעל ספרבילי כן דווקא (x2 + 1)2 זו, הגדרה לפי

יותר. מקובלת והיא ,Lang של

ספרבילי. g גם אז ,F מעל g | fו־ ספרבילי f ∈ F [λ] אם 2.2.8 מסקנה

.(
∑

aiλ
i)′ =

∑
aiiλ

i−1 החוק לפי פורמלית נגזרת מגדירים F [λ] הפולינומים חוג על

.(fg)′ = fg′ + f ′g לייבניץ כלל את הוכח (*) 2.2.9 תרגיל

.(f, f ′) = 1 אם ורק אם ספרבילי f ∈ F [λ] הפולינום 2.2.10 טענה

.K הפיצול בשדה המקסימלי המשותף המחלק את לחשב אפשר 1.2.6 טענה לפי הוכחה.
ואז ,a ∈ K לאיזשהו f(λ) = (λ − a)2g(λ) לכתוב אפשר אז ספרבילי אינו f אם
מתחלקים ששניהם משום f(λ)ל־ זר אינו f ′(λ) = 2(λ − a)g(λ) + (λ − a)2g′(λ)
ai ∈ K עבור f(λ) =

∏
(λ−ai) נכתוב ספרבילי. שהפולינום נניח מאידך, .(λ−a)ב־

לייבניץ כלל לפי אז מזה, זה השונים

f ′(λ) =

n∑
i=1

(λ− a1) · · · (λ− ai−1)(λ− ai+1) · · · (λ− an),

אבל ;f ′(λ) של שורש אינו aj אף כלומר ,f ′(aj) =
∏

i ̸=j(aj − ai) ̸= 0 ,j לכל ולכן
� זרים. שהפולינומים ומכאן ,f(λ) של היחידים השורשים הם a1, . . . , an

charF ̸= אם ורק אם ספרבילי λ5 + λ2 + 1 ∈ F [λ] הפולינום (**) 2.2.11 תרגיל
.53, 61

שקולים: הבאים התנאים אז אי־פריק. פולינום g ∈ F [λ] יהי 2.2.12 טענה

ספרבילי. אינו g .1

.g′ = 0 .2
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.g(λ) = g1(λ
p)ש־ כך g1 פולינום ויש p = charF > 0 .3

ורק אם (g, g′) ̸= 1 אם ורק אם (g, g′) = g אי־פריק, gש־ מכיוון :(1) ⇔ (2) הוכחה.
ומתקיים המעלה, בגלל g′ ̸= ל־0 אפשרי אינו g = (g, g′) | g′ אבל ספרבילי. אינו g אם

.g = 0 אם
nan = 0 אז ,0 = g′ =

∑
iaiλ

i−1 אם .g(λ) =
∑

aiλ
i נכתוב :(2) ⇔ (3)

ולא ,p כלשהו, ראשוני הוא המאפיין לכן בשדה. n = ש־0 כך ,n = deg(g) כאשר
g(λ) = כלומר, .pל־ זר i לכל ai = 0 ולכן ,i לכל בשדה iai = 0 לזה, בנוסף אפס.
אז g(λ) = g1(λ

p) אם מאידך .g1(λ) =
∑

aiλ
i/p כאשר

∑
ai(λ

p)i/p = g1(λ
p)

בדיקה לפי (או פנימית לנגזרת הכלל לפי g′(λ) = (λp)′g′1(λ
p) = pλp−1g′1(λ

p) = 0
� ישירה).

בשדה: תלויה אינה ספרביליות

אם F מעל כפולינום ספרבילי f אז .f ∈ F [λ] ויהי שדות, F ⊆ K יהיו 2.2.13 מסקנה
.K מעל כפולינום ספרבילי הוא אם ורק

� בשדה. תלויה שאינה בנגזרת, רק תלויה הספרביליות 2.2.12 טענה לפי הוכחה.

g(λ) ו־= ספרבילי, ולא אי־פריק g ∈ F [λ] אם ,2.2.12 לטענה בהמשך 2.2.14 הערה
.deg(g) = pdeg(g1)ו־ אי־פריק g1 אז ,g1(λp)

הספרבילי במקרה שיכונים 2.2.3

:2.1.11 ללמה בהמשך

nF1
F ↪→E = אז ;F של פשוטה הרחבה F1 = F [a] ותהי שיכון F ↪→E יהי 2.2.15 למה

.Eב־ ומתפצל ספרבילי f אם ורק אם [F1 :F ]

:2.1.12.2 משפט לפי אופן, באותו

אז מפצל. שדה E ו־ ,F מעל f של פיצול שדה K ,F מעל פולינום f יהיו 2.2.16 משפט
ספרבילי. f אם ורק אם nK

F⊆E = [K :F ]

ספרביליות הרחבות 2.2.4

ספרבילי. שלו המינימלי הפולינום אם ספרבילי איבר הוא K/F הרחבה של איבר 2.2.17 הגדרה
ספרביליים. שלה האיברים כל אם ספרבילית הרחבה נקראת ההרחבה

הפולינום הדרכה. ספרבילי. הוא a ∈ F כל ,K/F הרחבה בכל (*) 2.2.18 תרגיל
ספרבילי. פולינום שהוא ,λ− a הוא שלו המינימלי

לפי הדרכה. ספרבילית. היא אפס במאפיין שדות של הרחבה כל (*) 2.2.19 תרגיל
ספרבילי. הוא אפס במאפיין אי־פריק פולינום כל 2.2.12 טענה
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הוא אז ,F מעל ספרבילי a אם .a ∈ E ויהי שדות, F ⊆ K ⊆ E יהיו 2.2.20 טענה
.K מעל ספרבילי

מעל a של המינימלי הפולינום את (K (מעל מחלק K מעל a של g המינימלי הפולינום הוכחה.
� ספרבילי. g גם 2.2.8 מסקנה ולפי ,K מעל ספרבילי f 2.2.13 מסקנה לפי .f ב־ נסמן שאותו ,F

ספרבילית. לא להרחבה טיפוסית דוגמא להלן

אז .a ̸∈ F ו־ ap ∈ F ש־ נניח .a ∈ E ויהי ,p ממאפיין שדות F ⊆ E יהיו 2.2.21 טענה

.λp − ap הוא F מעל a של המינימלי הפולינום .1

.F מעל ספרבילי אינו a .2

מעל a של המינימלי הפולינום g(λ) יהי .f(λ) = λp − ap של שורש הוא aש־ ברור הוכחה.
g(λ) = (λ− a)k ולכן ,f(λ) = (λ− a)p ששם אלא ,E מעל גם ולכן ,F מעל g | f אז .F
נובע k < p אם ;ak ∈ F שלו החופשי המקדם ולכן ,g(λ) ∈ F [λ] מאידך .k ≤ p לאיזשהו
� ספרבילי. לא f ש־ ומכאן ,f ′ = 0 אבל להנחה. בסתירה ,a ∈ F מכאן

אם ספרבילי a אז .a ∈ K ויהי ,p ממאפיין שדות של הרחבה K/F תהי 2.2.22 טענה
.F [ap] = F [a] אם ורק

וקיים ספרבילי, אינו g אז ספרבילי אינו a האיבר אם .F מעל a של המינימלי הפולינום g יהי הוכחה.
dim(F [ap]) = deg(g1) < deg(g) = dim(F [a]) זה במקרה ;g(λ) = g1(λ

p)ש־ כך g1
מעל ספרבילי אינו a אז ,F [ap] ⊂ F [a] אם שני, מצד .F [ap] ⊂ F [a] ולכן ,1.2.10 מסקנה לפי
� .2.2.20 טענה לפי F מעל גם ספרבילי אינו ולכן ,2.2.12 טענה לפי F [ap]

אם ורק אם ספרבילית K/F אז .p ממאפיין סופית שדות הרחבת K/F תהי 2.2.23 משפט
.(F ואת Kp את המכיל K של ביותר הקטן תת־השדה הוא FKp (כאשר FKp = K

לפי a ∈ F [a] = F [ap] ⊆ FKp מתקיים a ∈ K לכל אז ספרבילית, K/F אם הוכחה.
.K = FKp ולכן 2.2.22 טענה

להגיע עלינו ;F מעל ספרבילי לא איבר a ∈ K ויהי ,K = FKpש־ נניח שני, מצד
K = ובנוסף ,F [ap] מעל ספרבילי אינו a ולכן ,F [ap] ⊂ F [a] ,2.2.22 טענה לפי לסתירה.
נשלים .ap ∈ F ש־ להניח נוכל וכך ,F [ap]ב־ F את כך, אם נחליף, .FKp ⊆ F [ap]Kp

העתקה נגדיר .K =
∑

Faiש־ כך ,a1 = a עם ההרחבה, של a1, . . . , an לבסיס {a} ∑את
Fapi ש־= מכיוון .P (ai) = api לפי ,F מעל לינאריים כמרחבים ,P :K→K לינארית

אבל חד־חד־ערכי. גם ולכן על, P ההנחה, לפי F
∑

F papi = F (
∑

Fai)
p = FKp = K

בסתירה ,a = ap ∈ F ולכן ההגדרה, לפי P (a − ap) = P (a) − P (ap) = ap − ap = 0
� להנחה.

אז ספרביליות, K/F ו־ E/K ההרחבות אם שדות. F ⊆ K ⊆ E יהיו 2.2.24 מסקנה
ספרבילית. E/F גם
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E = KEp = לחשב ומספיק ,K = FKpו־ E = KEp ,2.2.23 משפט לפי הוכחה.
� .FKpEp = FEp

ספרבילית. היא ספרביליים איברים על־ידי הנוצרת K/F הרחבה 2.2.25 משפט

מעל ספרבילי a ∈ K Kכאשר = F [a] כלומר אחד, איבר על־ידי ש־Kנוצר נניח ראשית, הוכחה.
.2.2.23 משפט לפי ספרבילית K/F ו־ ,2.2.22 טענה לפי FKp = F [ap] = F [a] = K אז .F
.F מעל ספרביליים ai כאשר K = F [a1, . . . , an] כלומר סופית, נוצר Kש־ נניח שנית,
הראשון החלק ולפי ,Ki−1 מעל ספרבילי ai כל ,2.2.20 טענה לפי .Ki = F [a1, . . . , ai] נסמן

ספרבילית. K/F ש־ מראה 2.2.24 מסקנה על־פי אינדוקציה .Ki−1 מעל ספרבילי Ki

ו)ספרביליים (אלגבריים אבריה שכל S כלשהי הקבוצה על־ידי הנוצרת הרחבה K/F תהי וכעת
,a ∈ F (S0) = F [S0]ש־ כך S0 ⊆ S סופית תת־קבוצה קיימת אז ,a ∈ K יהי .F מעל
� ספרבילי. a גם לכן המשפט; של הקודם החלק לפי ספרבילי F [S0]ו־

טהורות אי־ספרביליות הרחבות 2.2.5

לא הוא F ב־ שאינו a ∈ K איבר כל אם טהורה אי־ספרבילית היא K/F הרחבה
ספרבילי.

L/F וגם K/L גם אז ,F ⊆ L ⊆ Kו־ טהורה אי־ספרבילית K/F אם 2.2.26 הערה
טהורות. אי־ספרביליות

הרחבה הוא F [ p
√
a] אז .a ̸∈ F pש־ כך a ∈ F ויהי שדה, F יהי 2.2.27 דוגמא

.F של טהורה אי־ספרבילית

.p של חזקה הוא סופי) (מממד טהורה אי־ספרבילית הרחבה של הממד 2.2.28 טענה

,F [ap] ⊂ F [a] ,2.2.22 טענה לפי .F ב־ שאינו איבר a ∈ K יהי הממד. על באינדוקציה הוכחה.
הם [K :F [a]]ו־ [F [ap] :F ] האינדוקציה הנחת לפי .[F [a] :F [ap]] = p ,2.2.21 טענה ולפי
� .[K :F ] = [K :F [a]] · [F [a] :F [ap]] · [F [ap] :F ] כי וסיימנו ,pחזקות־

שדות. של כלשהי הרחבה K/F תהי 2.2.29 מסקנה

שדה. הוא ,F מעל ספרביליים שהם K אברי של Ksep האוסף .1

.F ⊆ Ksep ⊆ K .2

מקסימלית; ספרבילית Ksep/F ההרחבה .3

טהורה. אי־ספרבילית K/Ksep ההרחבה .4

נורמלית). הרחבה K/F ש־ ההנחה תחת יותר חזקה גרסה 2.4.5 ב־תרגיל (ראה
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ספרבילי, הוא F [a, b] של איבר כל ,2.2.25 משפט לפי ;a ̸= 0 ,a, b ∈ Ksep יהיו .1 הוכחה.
ספרביליים. −a, a+ b, a−1, ab ובפרט

.(2.2.18 (תרגיל ספרבילי הוא F של איבר כל .2

.Ksepל־ שייך Kב־ ספרבילי איבר כל .3

,2.2.25 משפט לפי ספרבילית Ksep[a]/Ksep ההרחבה אז Ksep מעל ספרבילי a ∈ K אם .4
ספרבילית; בהרחבה כאיבר F מעל ספרבילי aו־ הטרנזיטיביות לפי Ksep[a]/Fספרבילית ואז

.a ∈ Ksep אז אבל
�

(הנקראת Ksep מקסימלית ספרבילית תת־הרחבה יש K/F הרחבה בכל כך, אם
הזה. תת־השדה מעל טהור אי־ספרבילי K ;(K בתוך F של היחסי הספרבילי הסגור גם

איספרבילי. צעד ואחריו ספרבילי לצעד הרחבה כל לפרק אפשר כך
הרחבה ואחר־כך אי־ספרבילית הרחבה ראשית ולבצע הסדר, את להפוך אפשר האם

אפשרי. בלתי שזה מראה הבאה הדוגמא ספרבילית?

ו־ F = k(λ, µ) וניקח ,2 ממאפיין מושלם שדה k יהי 2.2.30 דוגמא

K = F [x | x4 = λx2 + µ].

Kב־ אין מאידך, אי־ספרבילי. K/F [x2]ו־ ,F [x2] הוא K בתוך F של הספרבילי הסגור
.(F ב־ שריבועו F ל־ מחוץ איבר אף אין ישיר: חישוב (לפי F מעל אי־ספרבילי איבר אף

גלואה חבורות 2.3

אוטומורפיזמים 2.3.1

אברי כל את המקבע K→K אוטומורפיזם הוא K/F שדות הרחבת של אוטומורפיזם
אבל ,K של הראשוני תת־השדה מעל אוטומורפיזם הוא K→K אנדומורפיזם כל .F
כשדה ולא ,F מעל K של המבנה את ללמוד מאפשרים הרחבה של אוטומורפיזמים

בעלמא.

לפי נקבע K/F ההרחבה של אוטומורפיזם כל אז ;K = F (S)ש־ נניח 2.3.1 הערה
.S אברי של התמונות

.σ(a) הערך לפי נקבע σ :K→K אוטומורפיזם אז ,K = F [a] אם בפרט,

לאוטומורפיזמים: פולינומים בין בקשר מרכזי תפקיד הבאה הקלה לטענה

f ∈ פולינום של a ∈ K שורש לכל .F מעל אוטומורפיזם σ :K→K יהי 2.3.2 טענה
.(f(σ(a)) = σ(f(a)) = ש־0 (משום שורש הוא σ(a) גם ,F [λ]

אותו של אחר לשורש K/F של יוצר כל המעבירה פונקציה כל שלא להבחין יש
לאוטומורפיזם. להמשיך אפשר מינימלי פולינום
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גלואה חבורת 2.3.2

Gal(K/F ) החבורה היא ההרחבה של גלואה חבורת שדות. של הרחבה K/F תהי 2.3.3 הגדרה
.F אברי את השומרים K→K האוטומורפיזמים כל של

את תאר .Q[ρ3]/Q ,C/R ההרחבות של גלואה חבורות את חשב (**) 2.3.4 תרגיל
.Q[21/3, ρ3]/Q[ρ3] ושל Q[21/3, ρ3]/Q של האוטומורפיזמים

טריוויאלית. היא Gal(Q[21/3]/Q) גלואה חבורת 2.3.5 דוגמא

כל אז .f מעל פולינום שורשי הם αi כאשר K = F [α1, . . . , αn]ש־ נניח 2.3.6 הערה
שיכון יש כלומר, לפיה. ומוגדר השורשים, על תמורה משרה אוטומורפיזם

Gal(K/F ) ↪→Sn.

במקרה כמו ,f = f1 · · · ft אם אי־פריק. fש־ להניח צורך אין 2.3.6 בהערה
.
∏

Sdeg fi המכפלה לתוך הצגה מתקבלת ,f = (x2 − 2)(x2 − 3)

גלואה חבורת של הסדר 2.3.3

ולכן הממד, על שומר F על השומר K→K שיכון כל סופי, [K :F ] כאשר 2.3.7 הערה
(.3.5.1 דוגמא שמראה כפי נכונה, אינה הטענה אינסופי (בממד אוטומורפיזם. הוא

לפי הוא, Gal(K/F ) גלואה חבורת של הסדר סופית. הרחבה K/F תהי 2.3.8 טענה
.|Gal(K/F )| = nK

F⊆K השיכונים מספר ,2.3.7 הערה

של השורשים למספר שווה |Gal(F1/F )| אז ,F1 = F [a] אם ,2.1.11 למה לפי
.F1ב־ f המינימלי הפולינום

:2.1.12.1 משפט לפי

.|Gal(K/F )| ≤ [K :F ] ,K/F סופית הרחבה לכל 2.3.9 משפט

:E = K ניקח ,2.2.16 במשפט

.|Gal(K/F )| = [K :F ] אז .F מעל ספרבילי פולינום של פיצול שדה K יהי 2.3.10 משפט
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השבת שדה 2.3.4

.Gal(K/F ) אוטומורפיזמים חבורת מתאימה F ⊆ K תת־שדה לכל שדה. K יהי
תת־שדה מתאים G אוטומורפיזמים חבורת לכל ההפוך, בכיוון

KG = {a ∈ K : (∀σ ∈ G)σ(a) = a},

.G של השבת שדה הנקרא

אז H ⊆ G ואם .Gal(K/L) ≤ Gal(K/F ) אז F ⊆ L ⊆ K אם 2.3.11 הערה
.KG ⊆ KH

כל תחת קבועים F אברי (כי F ⊆ KGal(K/F ) מתקיים F ⊆ K לכל 2.3.12 הערה
(כי G ⊆ Gal(K/KG) ,K של G אוטומורפיזמים חבורת ולכל ,(K/F של אוטומורפיזם

.(KG אברי כל על שומר Gב־ אוטומורפיזם כל

גלואה התאמת 2.3.5

פורמלי. באופן לחבורה ושדה לשדה חבורה של בהתאמה נטפל
,Aut(K) של תת־החבורות סריג את G וב־ ,K של תת־השדות סריג את Fב־ נסמן

העתקות ונגדיר

◦ :F −→G
F ←− G : ∗

.H∗ = KH ו־ L◦ = Gal(K/L) לפי

הללו: ההעתקות של מיידיות תכונות 2.3.13 הערה

.(2.3.11 הערה (זו הכלה סדר הופכות ההעתקות שתי .1

.(2.3.12 הערה (זו H ⊆ H∗◦ו־ L ⊆ L◦∗ תמיד .2

נובע: ומזה

.H∗◦∗ = H∗ ו־ L◦∗◦ = L◦ .3

בדומה, ;L כלשהו לשדה H = L◦ אם ורק אם H∗◦ = H .4

.H כלשהי לחבורה L = H∗ אם ורק אם L◦∗ = L

הקאנוניים: הסימונים על־פי ו־4 2 את לנסח אם
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K

G
?
=

KG

.K של אוטומורפיזמים חבורת G תהי
חבורת G אם ורק אם שוויון עם ,G ⊆ Gal(K/KG) אז

כלשהו. תת־שדה מעל K של גלואה
.(Gal(K/KG) = G שתמיד נראה 2.5.4 (במסקנה

2.3.14 הערה

K

G
KG

?

F

הרחבה. K/F תהי
הוא F אם ורק אם שוויון עם ,F ⊆ KGal(K/F ) אז

כלשהי. חבורה של שבת שדה
K/F אם ורק אם שבת שדה F :2.3.17 מסקנה (ראה

גלואה'). 'הרחבת

2.3.15 הערה

וסדר ממד 2.3.6

אוטומורפיזמים לחבורות הגודל: מרכיב את נוסיף הקודם בסעיף שהוצגה גלואה להתאמת
שימושית: תכונה יש אלה לגדלים .[K :F ] ממד, יש לתת־שדות ;|H| סדר, יש סופיות
באופן .H = G נובע |H| = |G|ומ־ ,|H| ≤ |G| אז סופיות) (חבורות H ⊆ G אם
[K :L] ≤ [K :F ] אז סופי) מקו־ממד (הרחבות F ⊆ L ⊆ K אם בשדות: דואלי,

.F = L נובע [K :F ] = [K :L]ומ־
(סופי), F ⊆ K לכל :2.3.9 משפט את לקרוא אפשר כעת

(2.2) |F ◦| ≤ [K :F ].

חבורות על דואלית טענה יודעים שאיננו משום מסויים, סימטריה חוסר נוצר בכך
אוטומורפיזמים.

פולינום של פיצול שדה K/F ש־ למקרה המיוחדת תכונה על מצביע 2.3.10 משפט
פולינום אותו של פיצול שדה הוא K אז ,F ⊆ L ו־ כזה K/F שאם נבחין ספרבילי.
שתת־שדה ונבחין יציב', 'תת־שדה כזה לתת־שדה נקרא לכן .L מעל גם ספרבילי
יציב, F שלכל קובע 2.3.10 משפט בעצמו. יציב הוא יציב תת־שדה המכיל K של

.|F ◦| = [K :F ]

.F ◦∗ = F אז יציב, F אם 2.3.16 טענה

ולכן יציב, F ◦∗ גם כלומר ,F ⊆ F ◦∗ אבל ;|F ◦| = [K :F ] ההנחה לפי הוכחה.
,2.3.13.3 הערה לפי [K :F ] = |F ◦| = |F ◦∗◦| = [K :F ◦∗] כעת .|F ◦∗◦| = [K :F ◦∗]
� מש"ל.

קונוונציונלית, בלשון

.KGal(K/F ) = F אז ספרבילי, פולינום של פיצול שדה K/F אם 2.3.17 מסקנה
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גלואה הרחבות 2.4

a ∈ E כל של F מעל המינימלי הפולינום אם נורמלית היא E/F הרחבה 2.4.1 הגדרה
.Eב־ מתפצל

גלואה. הרחבת נקראת וספרבילית נורמלית הרחבה

גלואה. K/L גם אז ,F ⊆ L ⊆ K ו־ גלואה K/F אם 2.4.2 הערה

שקולים: הבאים התנאים סופית. הרחבה K/F תהי 2.4.3 משפט

גלואה. הרחבת K/F .1

יציב). F (כלומר: F מעל ספרבילי פולינום של פיצול שדה הוא K .2

.K של מתאימה אוטומורפיזמים חבורת עבור F = KG .3

fa יהי a ∈ S לכל .K/F של (סופית) יוצרים קבוצת S תהי :(2) ⇐ (1) הוכחה.
K אבל .K מעל ומתפצל ספרבילי f =

∏
fa ההנחות לפי .F מעל המינימלי הפולינום

.f של הפיצול שדה
.2.3.17 מסקנה :(3) ⇐ (2)

F מעל a של f המינימלי שהפולינום להוכיח צריך .a ∈ K יהי :(1) ⇐ (3)
ויהי ,Kב־ f של השונים השורשים a = a1, . . . , an יהיו .Kב־ ומתפצל ספרבילי הוא
השורשים קבוצת על פועלת G אבל .K מעל g | f ש־ ברור .g(λ) =

∏
(λ − ai)

f לכן .g = f אי־פריק, fש־ וכיוון ,g ∈ F [λ] לכן .σ ∈ G לכל σ(g) = g ומתקיים
� .Kב־ ומתפצל ספרבילי

שקולות: תכונות שתי עוד נוסיף

לבאות: גם שקולות (3) ,(2) ,(1) התכונות 2.4.4 טענה

.(F = F ◦∗ (היינו F = KGal(K/F ) .4

.|Gal(K/F )| = [K :F ] .5

היא (4) ⇔ (3) השקילות .2.4.3 במשפט הוכחנו (3) ⇔ (2) ⇔ (1) את הוכחה.
.2.3.10 משפט היא (5) ⇐ (2) הגרירה .2.3.15 הערה

הוכחנו וכבר שבת שדה הוא F ◦∗ ש־ מכיוון .|F ◦| = [K :F ] נניח .(4)⇐ (5) נוכיח
ולכן ,F ◦∗◦ = F ◦ מתקיים תמיד אבל .|F ◦∗◦| = [K :F ◦∗] מתקיים ,(5) ⇐ (2) ⇐ (3)
שבת. שדה הוא F = F ◦∗ = KGal(K/F ) ו־ ,[K :F ] = |F ◦| = |F ◦∗◦| = [K :F ◦∗]

�

אז: נורמלית, הרחבה K/F תהי :2.2.29 מסקנה של חזקה גרסה (*) 2.4.5 תרגיל
אי־ F ′/F ש־ כך F ⊆ F ′ ⊆ K תת־הרחבה ויש גלואה, הרחבת היא Ksep/F

.K = KsepF
ו־′ טהורה, ספרבילית
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וממד סדר 2.4.1

והממד. הסדר על כאן עד הידועות התכונות את נסכם

מתקיים F תת־שדה ולכל G אוטומורפיזמים חבורת לכל 2.4.6 טענה

|G| ≤ [K :G∗] = |G∗◦|;
|F ◦| = [K :F ◦∗] ≤ [K :F ].

F = G∗ עבור .[K :F ] = |F ◦| אם ורק אם F = F ◦∗ ,2.4.4 טענה לפי הוכחה.
מוכיח וזה ,G ⊆ G∗◦ אבל ,[K :G∗] = |G∗◦| תמיד ולכן מתקיימת, הראשונה הטענה
כי [K :F ◦∗] = |F ◦| הימני בשוויון נקבל G = F ◦ נציב אם הראשונה. השורה את
� .F ⊆ F ◦∗ כי [K :F ] ≥ [K :F ◦∗] והרי ,F ◦∗◦ = F ◦

כמסקנה. (2.2) את קיבלנו
2.3.5 בדוגמא ראינו בשוויון. להחליף אי־אפשר |F ◦| ≤ [K :F ] אי־השוויון את
בדוגמא ;F = L בלי F ◦ = L◦ שיתכן מראה גם זה .|F ◦| = 1 < 3 = [K :F ] שיתכן

.F ◦ = K◦ = 1 לעיל
.|G| = [K :G∗] מתקיים G אוטומורפיזמים חבורת שלכל נוכיח הבא בפרק

היסודי המשפט 2.5

G ⊂ H ש־= יתכן אז ,K של אוטומורפיזמים חבורת G אם כה, עד לנו הידוע לפי
השבת. שדה את משהגדירו אוטומורפיזמים יותר K/KGל־ יש כלומר ,Gal(K/KG)
ה'תקלה' לכן .G∗ = H∗ שבת שדה אותו יש החבורות לשתי והרי ,H = G∗◦ כאן
שהגדירה החבורה את היטב מגדיר אינו השבת ששדה גם משמעה G ⊂ H בהכלה

מתרחשות. אינן האלה הבעיות שכל מראה ארטין של הלמה אותו.

ארטין של הלמה 2.5.1

שיש למה באמצעות ישירות להוכיח אפשר (2.4.6 (טענה |G| ≤ [K :KG] התוצאה את
.F = KG ונסמן ,K של אוטומורפיזמים של חבורה G תהי אחרים. שימושים גם לה
מרחב זהו .n = [K :F ] כאשר EndF (K) ∼= Mn(F ) של איבר הוא אוטומורפיזם כל
.n כמובן הוא שלו הממד ככזה, .(kφ)(x) = kφ(x) הפעולה על־ידי ,K מעל וקטורי

|G| ≤ בפרט .K מעל ליניארית בלתי־תלויים G ⊂ EndF (K) של האיברים 2.5.1 למה
.[K :F ]
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צירוף נבחר אפס. המקדמים כל לא שבו
∑

kiσi = 0 ליניארי צירוף שיש נניח הוכחה.
.σ1 = 1 ש־ להניח אפשר מימין הרכבה על־ידי מונומים. של ביותר קטן מספר עם כזה
על־ידי .σ2 תחת נשמר שאינו t ∈ K קח .x ∈ K לכל

∑
kiσi(x) = 0 ההנחה לפי

אם .
∑

kiσ1(t)σi(x) = 0 גם אבל ,
∑

kiσi(t)σi(x) = 0 מקבלים x במקום tx הצבת
� בסתירה. יותר, קצר יחס נקבל נחסר

בהערה נפתח ההפוך. הכיוון את גם מוכיח מורכב, יותר מעט למדי, דומה נימוק
כללית.

∀j :
∑

i aijxi = 0 תהי אוטומורפיזמים. של חבורה G ⊆ Gal(K/F ) תהי 2.5.2 הערה
משוואה לכל :G להפעלת אינווריאנטית שהיא ,xi בנעלמים K מעל משוואות מערכת
מרחב גם אז המערכת. מן נובעת

∑
σ(aij)xi = 0 המשוואה ,j ולכל σ ∈ G

σ ∈ G לכל אז פתרון, (x1, . . . , xm) אם כלומר ,G להפעלת אינווריאנטי הפתרונות
ולכל σ ∈ G לכל אז ,j לכל

∑
aijxi = ש־0 נניח אכן, פתרון. (σ(x1), . . . , σ(xm)) גם

.
∑

aijσ(xi) = σ(
∑

σ−1(aij)xi) = 0 ,j

אז .K כלשהו שדה של אוטומורפיזמים חבורת G תהי ארטין) של (הלמה 2.5.3 למה
.[K :KG] ≤ |G|

איברים m כל אז m > n שאם להוכיח צריך .G = {σ1 = 1, . . . , σn} נכתוב הוכחה.
.F1 = KG מעל ליניארית תלויים הם a1, . . . , am ∈ K

לה יש ולכן משוואות, nו־ נעלמים m יש
∑

j σi(aj)xj = 0 המשוואות במערכת
xj ̸= ה־0 מספר שבו כזה בפתרון נתבונן .x1, . . . , xm ∈ K מאפס שונה פתרון
הפתרון את נחלק .x1 ̸= 0 להניח אפשר ,ajה־ של מחדש סידור על־ידי מינימלי.
(σ(x1), . . . , σ(xm)) הווקטור גם ,2.5.2 הערה לפי .x1 = 1 שבו פתרון ונקבל ,x1ב־
יותר קטן מספר עם פתרון יתן הפתרונות שני חיסור ולכן ,σ(x1) = x1 אבל פתרון.
לכל נכון שזה מכיוון .j לכל σ(xj) = xj אם אלא בסתירה, מאפס, שונים גורמים של
� .

∑
xjaj = 0 הליניארית התלות מתקבלת i = 1 ועבור ,x1, . . . , xm ∈ KG ,σ

אבל ;|G| = [K :G∗] = |G∗◦| כעת מקבלים 2.4.6 מטענה .[K :G∗] ≤ |G| הוכחנו
.G∗◦ = G ולכן ,G ⊆ G∗◦

,K שדה של G אוטומורפיזמים חבורת לכל 2.5.4 מסקנה

Gal(K/KG) = G

ו־
[K :KG] = |G|.
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גלואה תורת של היסודי המשפט 2.5.2

מעבירות H∗ = KH ו־ L◦ = Gal(K/L) ההעתקות שראינו, כפי כלשהו. שדה K יהי
ולהיפך. ,(F (הסריג F של ביניים להרחבות (G (הסריג Aut(K) של תת־חבורות

.G = Gal(K/F ) עם גלואה הרחבת K/F תהי 2.5.5 משפט
לזה זה הפוכים אנטי־איזומורפיזמים הן ∗ :H 7→ KH ו־ ◦ :L 7→ Gal(K/L) ההעתקות
|H| = לזה: בנוסף מאידך. K/F של הביניים הרחבות וסריג מחד, G של תת־החבורות סריג של

.[K :L] = |Gal(K/L)|ו־ [K :KH ]

.2.3.13.(1) הערה לפי הסריגים של אנטי־הומומורפיזמים אלו הוכחה.
2.4.4 מסקנה ולפי ,F ⊆ L ⊆ K ביניים הרחבת כל מעל גלואה K ,2.4.2 הערה לפי
זו, את זו הופכות ההעתקות לכן .H∗◦ = H ,2.5.4 מסקנה לפי .L◦∗ = L מכאן נובע
כל אבל ,2.5.4 ממסקנה נובע |H| = [K :H∗] השוויון אנטי־איזומורפיזמים. שהן ומכאן
� .|L◦| = [K :L] גם ולכן H∗ מהצורה הוא ביניים שדה

בפרט:

2.5.6 מסקנה

⟨H1,H2⟩∗ = H∗
1 ∩H∗

2 , (H1 ∩H2)
∗ = H∗

1H
∗
2 ;

(L1 ∩ L2)
◦ = ⟨L◦

1, L
◦
2⟩, (L1L2)

◦ = L◦
1 ∩ L◦

2.

K⟨H1,H2⟩ = KH1 ∩KH2 , K(H1∩H2) = KH1KH2 ;

Gal(K/L1 ∩ L2) = ⟨Gal(K/L1),Gal(K/L2)⟩,

Gal(K/L1L2) = Gal(K/L1) ∩Gal(K/L2).

הרחבת K (הרי F מעל גלואה הן K/F של ביניים הרחבות אלו השאלה נשאלת
.(2.4.2 הערה לפי ביניים שדה כל של גלואה

אם נורמלית הרחבה KH/F אז .Gal(K/F ) = G עם גלואה הרחבת K/F תהי 2.5.7 משפט
.Gal(KH/F ) ∼= G/H זה ובמקרה ,H�G אם ורק
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מחישוב, הוכחה.

KτHτ−1
=

{
a ∈ K : (∀σ ∈ H)τστ−1(a) = a

}
= {τ(b) : b ∈ K, (∀σ ∈ H)τσ(b) = τ(b)}
= τ({b ∈ K : (∀σ ∈ H)σ(b) = b}
= τ(KH).

τ ∈ G לכל אז ,a ∈ L יהי .F של נורמלית הרחבה Lש־ נניח .L = KH נסמן
KτHτ−1

ש־= מכאן .τ(a) ∈ L ולכן ,F מעל a של המינימלי הפולינום של שורש τ(a)
.H�G ולכן ,τ ∈ G לכל τHτ−1 = H ש־ מכאן .τ(L) = L = KH

הצמצום ולכן ,τ ∈ G לכל τ(L) = L החישוב, לפי .H�Gש־ נניח כעת
ש־ לבדוק קל .θ : Gal(K/F )→Gal(L/F ) הומומורפיזם מגדיר Lל־ G איברי של
,Ker(θ) = {τ ∈ G : τ |L = 1} = Gal(K/L) אבל על. θ ולכן ,Lθ(G) ⊆ KG = F
|Gal(L/F )| = ש־ מכאן .Gal(L/F ) ∼= G/Ker(θ) = Gal(K/F )/Gal(K/L) ולכן
L/F ש־ הוא דבר של פירושו 2.4.4 טענה ולפי ,[G :Gal(K/L)] = [K:F ]

[K:L] = [L :F ]
� גלואה.

זו עובדה נציב אם .nK
F⊆K = Gal(K/F ) = [K :F ש־[ קובע היסודי המשפט

מעניינות: תוצאות שתי נקבל ,2.1.15 במסקנה

[L :F ] יש F ⊆ L ⊆ K ביניים שדה לכל גלואה. הרחבת K/F תהי 2.5.8 מסקנה
.L ↪→K שיכונים

. [L:F ]

|Gal(L/F ל־|( שווה Lל־ האיזומורפיים K של תת־השדות מספר לכן

לו. איזומורפי אינו L של אחר תת־שדה אף אז גלואה, הרחבת L/F אם בפרט,

על־ידי מושרה ביניים שדות של איזומורפיזם כל גלואה. הרחבת K/F תהי 2.5.9 מסקנה
.K של אוטומורפיזם

2.1.15 מסקנה ולפי ,L→L′ ⊆ K שיכון הוא ϕ :L→L′ ביניים שדות של איזומורפיזם כל הוכחה.
הוא ϕ אחרות, במלים הממד. לפי אוטומוזפיזם שהוא ,σ :K→K לשיכון להמשכה ניתן כזה שיכון
� .Lל־ σ של הצמצום

.f ∈ F [λ] של הפיצול הרחבת היא K/F ש־ נניח (2.3.6 להערה (בהמשך 2.5.10 מסקנה
f אם ורק אם ,f של השורשים על טרנזיטיבית פועלת Gal(K/F ) גלואה חבורת אז

אי־פריק.

גורם של לשורש אחד גורם של שורש להעביר יכול אינו אוטומורפיזם פריק, הפולינום אם הוכחה.
אחר.

לפי F [α] ∼= F [λ]/⟨f⟩ ∼= F [α′] אז ,f של שורשים α, α′ אם אי־פריק. f ש־ נניח שני, מצד
אוטומורפיזם יש 2.5.9 מסקנה לפי .α 7→ λ+ ⟨f⟩ 7→ α′ מעבירים האיזומורפיזמים כאשר ,(1.1)
� .σ(α) = α′ש־ כך σ ∈ Gal(K/F )
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היסודי המשפט גלואה2.5. תורת .2 פרק

ההיפוך בעיית 2.5.3

G סופית חבורה כל האם ההיפוך: בעיית היא גלואה בתורת המרכזיות הבעיות אחת
במקרים ידועה שהתשובה למרות ?K/Q הרחבה איזושהי של גלואה חבורת מהווה
שכל ונראה בהרבה, קלה שאלה על כאן נענה כללי. באופן פתוחה עודנה הבעיה רבים,
לטפל עלינו ,2.3.6 הערה לאור כלשהי. הרחבה של גלואה חבורת מהווה סופית חבורה

.Sn של בתת־חבורות

ש־ כך K/F גלואה הרחבת קיימת אז כלשהי. סופית חבורה G תהי 2.5.11 טענה
.Gal(K/F ) ∼= G

בשדה ונתבונן ,k כלשהו שדה נבחר מתאים. n עבור G ⊆ Sn שיכון יש קיילי משפט לפי הוכחה.
היוצרים על תמורות כחבורת פועלת Sn החבורה .K = k(α1, . . . , αn) הרציונליות הפונקציות
G גם כתת־חבורה, .K של אוטומורפיזמים של חבורה מהווה היא זו פעולה ובעזרת ,α1, . . . , αn

לפי .G לפעולת ביחס סימטריות שהן הפונקציות את כולל F = KG השבת שדה .K על פועלת
� .G = Gal(K/F ו־( גלואה, הרחבת היא K/F ,2.4.3 משפט

.f(λ) =
∏
(λ− αi) ∈ KSn [λ] ⊆ KG[λ] בפולינום נתבונן

על G פעולת אם ורק אם ,F = KG מעל אי־פריק f הפולינום (*) 2.5.12 תרגיל
טרנזיטיבית. היא {1, . . . , n}

טהור טרנסצנדנטי הוא k(α1, . . . , αn)
G השדה האם שואלת נתר בעיית 2.5.13 הערה

אלגברית). תלויים שאינם יוצרים קבוצת לו יש האם (כלומר,
E/k גלואה הרחבת kל־ יש אז חיובית, נתר לבעיית והתשובה אינסופי, שדה k אם

.Gal(E/k) ∼= Gש־ כך

גלואה סגור 2.5.4

.L ⊆ K ש־ כך K/F גלואה הרחבת יש L/F סופית ספרבילית הרחבה לכל 2.5.14 טענה

fiו־ L = F [α1, . . . , αt] אם .L/F של גלואה' 'סגור נקראת כזו מינימלית הרחבה
של גלואה סגור הוא f1 · · · ft של הפיצול שדה אז ,F מעל αi של המינימלי הפולינום

.L/F
אז ,G = Gal(K/F ) נסמן גלואה: התאמת של המבט מנקודת גלואה בסגור נתבונן
KN/F אז ,Hב־ המוכלת תת־חבורה N�G אם .H ≤ G תת־חבורה עבור L = KH

תת־החבורה אחרות, במלים .N = 1 המינימליות ולפי ,L את המכילה גלואה הרחבת
טריוויאלית. היא ,CoreG(H) = ∩g∈GgHg−1 מכיל, Nש־ המקסימלית הנורמלית

Gal(K/F ) ↪→Sn שיכון יש אז ,L/F הרחבה של גלואה סגור K/F אם 2.5.15 מסקנה
.K/F גלואה הרחבת לכל Gal(K/F ) ↪→S[K:F ] בפרט .n = [L :F ] כאשר
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אוטומורפיזמים ואז ,L = F [α] לכתוב אפשר (2.5.19 (למה שטייניץ של הלמה לפי הוכחה.
הפולינום של השונים השורשים על שלהם התמורה פעולת על־ידי מוגדרים K של
� .K בתוך α של f המינימלי

אז: ,H ≤ G = Gal(K/F ) עבור L = KH ו־ גלואה K/F אם 2.5.16 הערה

;K⟨gHg−1:g∈G⟩ הוא F מעל גלואה שהוא L של המקסימלי תת־השדה .1

;KCoreG(H) הוא F מעל גלואה שהוא L את המכיל K של המינימלי תת־השדה .2

Gal(L/F ) = לכן ;KNG(H) הוא מעליו גלואה Lש־ L של המינימלי תת־השדה .3
.NG(H)/H

הביניים שדות מספר 2.5.5

לכן: גלואה. חבורת של לתת־החבורות מתאימים גלואה בהרחבת הביניים שדות

ביניים. שדות של סופי מספר יש סופית גלואה הרחבת בכל 2.5.17 מסקנה

(קח ביניים. שדות של סופי מספר יש L/F סופית ספרבילית הרחבה לכל 2.5.18 מסקנה
.(2.5.17 מסקנה את והפעל גלואה, K/F ש־ כך K ⊇ L

ספרבילית.) אינה L/F אם נכונה אינה זו (טענה

פשוטה. הרחבה היא L/F סופית ספרבילית הרחבה כל שטייניץ) של (הלמה 2.5.19 למה

גם נכונה שהטענה נראה (3.1.2 (הערה בהמשך אינסופי. F ש־ למקרה ההוכחה הוכחה.
אבל ,α ∈ F ,x + αy מהצורה איברים אינסוף יש .x, y ∈ L יהיו הסופי. במקרה
שונים ערכים שני יש לכן .F/L של ביניים שדות של סופי מספר רק (2.5.18 (מסקנה
,x+ αy, x + α′y ∈ L0 אז אבל .L0 = F [x+ αy] = F [x+ α′y]ש־ כך α, α′ ∈ F
כעת .F [x+ αy] = F [x, y] כלומר, .x ∈ L0ו־ y ∈ L0 ומכאן (α − α′)y ∈ L0 ולכן
� היוצרים. מספר על מאינדוקציה נובעת הטענה

שדות של הרכבה 2.5.6

לדלג אפשר
על־ידי הנוצר תת־החוג היא K1K2 ההרכבה תת־שדות. F ⊆ K1,K2 ⊆ E יהיו
שדה. והוא סופי, מממד K1K2 אז ,F מעל סופי מממד K1,K2 אם תת־השדות. שני

גלואה. K1K2/F גם אז ,F מעל גלואה K1,K2 אם 2.5.20 טענה

מספר על (באינדוקציה .[F ′K :K] ≤ [F ′ :F ] אז ,F ⊆ F ′,K ⊆ E אם 2.5.21 טענה
.(1.2.19 טענה לפי ,F ′/F של היוצרים
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גלואה. הרחבת K/F ש־ נניח שדות. F ⊆ F ′,K ⊆ E יהיו 2.5.22 טענה

גלואה. F ′K/F ′ .1

.Gal(F ′K/F ′) ↪→Gal(K/F ) שיכון יש .2

.[F ′K :F ′] = [K :K ∩ F ′] .3

.Gal(F ′K/F ′) ∼= Gal(K/F ) אז F = F ′ ∩K אם .4

שדה הוא F ′K ואז ,F מעל f ∈ F [λ] של הפיצול שדה הוא K ההנחה לפי .1 הוכחה.
.F ′ מעל פולינום אותו של הפיצול

K על פועל σ ∈ H אוטומורפיזם כל .G = Gal(K/F ו־( H = Gal(F ′K/F ′) נסמן .2
לפי H→G הומומורפיזם מגדיר זה .f הפולינום שורשי של תמורה בו לראות שאפשר משום

.σ = ו־1 טריוויאלית השורשים על הפעולה אז σ|K = 1 אם אבל צמצום.

.[K :K ∩ F ′] = [K :KH ] = |H| = [F ′K :F ′] ולכן KH = K ∩ F ′ .3

.|H| = [F ′K :F ′] = [K :F ] = |G| אז F = F ′ ∩K אם .4
�

אז ,K1 ∩K2 = F ו־ ,F מעל גלואה K1,K2 אם 2.5.23 טענה

Gal(K1K2/F ) ∼= Gal(K1/F )×Gal(K2/F ).
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3 פרק

שימושים

יחידה שורשי 3.1

שורשי אחרות במלים .ρn = ש־1 כך n > 0 יש אם יחידה שורש נקרא ρ ∈ F איבר
n מסדר הוא יחידה שורש השדה. של הכפלית בחבורה סופי מסדר האברים הם יחידה

.nל־ שווה בחבורה, כאיבר שלו, הסדר אם פרימיטיבי נקרא הוא ;ρn = 1 אם
שדה של המסויים האיבר את ρn = e

2πi
n ב־ מסמנים אפס, ממאפיין שדות מעל

מהותית, אינה זו בחירה הטריגונומטרית. הנוסחה לפי המוגדר C המרוכבים המספרים
מאותו אחרים היחידה שורשי אז ,n מסדר פרימיטיבי יחידה שורש ρn שאם משום
הוא ϕ(n) (שסדרה אוילר חבורת היא Un כאשר ,k ∈ Un עבור ρkn החזקות הם סדר

.(n בנקודה אוילר פונקציית

שדה של הכפלית החבורה 3.1.1

ציקלית. היא שדה של סופית כפלית תת־חבורה כל 3.1.1 משפט

ולפי ,xe − 1 הפולינום של שורשים הם G אברי כל אז .e = exp(G) נסמן הוכחה.
שסדרו איבר יש תמיד אבלית שבחבורה ומכיוון ,e = |G| לכן .|G| ≤ e ,1.1.10 מסקנה
� ציקלית. G לאקספוננט, שווה

תהי .2.5.19 למה שטייניץ, של הלמה של ההוכחה את להשלים אפשר כעת 3.1.2 הערה
K× אז הוכחנו). כבר האינסופי המקרה (את סופיים שדות של ספרבילית הרחבה K/F

.K = F [a] בהכרח אז החבורה, של יוצר a ∈ Kב־ נסמן ציקלית. ולכן סופית חבורה

מורכב. מבנה בעלות להיות יכולות שדה של אינסופיות כפליות חבורות זאת, לעומת
כלומר ,⟨−1⟩×⟨2⟩×⟨3⟩×⟨5⟩× · · · ישרה מכפלה היא Q× הכפלית החבורה לדוגמא,

.Z2 × ZN
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הציקלוטומיים הפולינומים 3.1.2

המינימלי, הפולינום אינו זהו אבל ,λn−1 הפולינום את מאפס n מסדר יחידה שורש כל
בעליל. פריק שהוא משום

הבא: באופן ,Φn(λ) ∈ C[λ] ,n מסדר הציקלוטומי הפולינום את נגדיר

Φn(λ) =
∏

(k,n)=1

(λ− ρkn)

הפולינום להגדרת (אבל n מסדר פרימיטיבי יחידה שורש הוא ρn = exp(2πn ) כאשר
שנבחר). השורש מהו משנה זה אין

ש־ נובע ההגדרה מן

deg(Φn(λ)) = ϕ(n).

.n מסדר הפרימיטיביים היחידה שורשי הם Φn(λ) של השורשים 3.1.3 מסקנה

ש־ ברור

∏
d |n

Φd(λ) =
∏
d |n

∏
(k,n)=d

(λ− ρnk/dn ) =

n−1∏
i=0

(λ− ρin) = λn − 1.

.Φn(λ) ∈ Z[λ] 3.1.4 משפט

מחלק לכל נכונה שהטענה נניח .Φn(λ) = λ − 1 ,n = 1 עבור .n על באינדוקציה הוכחה.
ולכן ,Φ′

n(λ) =
∏

d |n, d<nΦd(λ) מנה עם המרוכבים, מעל Φn(λ) |λn − 1 אז ,n של
ולכן מתוקן פולינום היא המנה כי Φn(λ) ∈ Z[λ] גאוס, של הלמה לפי .Φn(λ) ∈ Q[λ]
� פרימיטיבי.

שדה. כל מעל מוגדר הציקלוטומי הפולינום הזה, המשפט בזכות
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3.1.5 דוגמא

Φ2(λ) =
λ2 − 1

λ− 1
= λ+ 1;

Φ3(λ) =
λ3 − 1

λ− 1
= λ2 + λ+ 1;

Φ4(λ) =
λ4 − 1

(λ− 1)(λ+ 1)
= λ2 + 1;

Φ5(λ) =
λ5 − 1

λ− 1
= λ4 + λ3 + λ2 + λ+ 1;

Φ6(λ) =
λ6 − 1

(λ− 1)(λ+ 1)(λ2 + λ+ 1)
= λ2 − λ+ 1;

Φ105(λ) = λ48 + λ47 + λ46 − λ43 − λ42 − 2λ41 − · · ·+ λ2 + λ+ 1

(.0,±1 שאינו מקדם עם הראשון הציקלוטומי הפולינום הוא Φ105)

.Q מעל אי־פריקים Φn(λ) הפולינומים 3.1.6 משפט

Φn(λ) = טריוויאלי לא פירוק שיש להניח אפשר גאוס, של הלמה לפי אחרת, הוכחה.
זר p וראשוני g של ρ שורש קיימים אז אי־פריק. gו־ ,g, h ∈ Z[λ] כאשר g(λ)h(λ)

.Z מעל g(λ) |h(λp)ש־ מכאן .h של שורש ρp ש־ כך ,nל־
n ̸≡ ו־0 (λn−1)′ = nλn−1 כי ספרבילי λn−1 ש־ נבחין .Z/pZ מעל נעבוד מעתה
g(λ) |h(λp) = h(λ)p מתקיים p מודולו ספרבילי. gש־ בפרט נובע ומכאן ,(mod p)
� לספרביליות. סתירה ,p מודולו g2 |Φn | (λn − 1) שגם ומכאן ,g |h ולכן

Q[ρn] השדה 3.1.3

לכן .Q מעל ρn של המינימלי הפולינום הוא Φn(λ) ,3.1.6 משפט לפי

[Q[ρn] :Q] = deg(Φn(λ)) = ϕ(n).

ולכן ספרבילי, שהוא ,(λn − 1 של (וגם Φn(λ) של הפיצול שדה הוא Q[ρn] מזו, יתרה
שלה? גלואה חבורת מהי כך, אם גלואה. הרחבת היא Q[ρn]/Q

.Gal(Q[ρn]/Q) ∼= Un 3.1.7 טענה

קיים תמיד ;σ(ρn) = ρkn אם σ 7→ k לפי f : Gal(Q[ρn]/Q)→Un התאמה נגדיר הוכחה.
שורש הוא ρkn ,k ∈ Un לכל מאידך, .Φn(λ) של שורש הוא σ(ρn)ש־ משום כזה, יחיד k ∈ Un

איזומורפיזם מגדיר ρn 7→ ρkn ש־ מכאן .Φn המינימלי הפולינום של

Q[ρn] ∼= Q[λ]/⟨Φn(λ)⟩ ∼= Q[ρkn],

� .f(σσ′) = f(σ)f(σ′)ש־ לבדוק קל לבסוף, על. היא ההתאמה ולכן
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יחידה שורשי שימושים3.1. .3 פרק

Gal(Q[ρ12]/Q) ∼= U12 = היא גלואה חבורת .Q[ρ12] בשדה נתבונן 3.1.8 דוגמא
שהחבורה מכיוון .τ : ρ 7→ ρ−1 ו־ σ : ρ 7→ ρ5 יוצרים: שני בה יש .⟨−1, 5⟩
ריבועיות הרחבות שכולם תת־שדות, שלושה בדיוק יש ,Gal(Q[ρ]/Q) = ⟨σ, τ⟩ ∼= Z2×Z2

תרגיל: .Q[ρ]στ = Q[ρ + ρ7] ו־ ,Q[ρ]τ = Q[ρ + ρ−1] ,Q[ρ]σ = Q[ρ + ρ5] :Q של
,Q[ρ2] = Q[

√
−3] ו־ Q[

√
3] ,Q[ρ3] = Q[

√
−1] הסדר, לפי הם, אלו ששדות הראה

בהתאמה.

.Q[ρ24] = Q[
√
2,
√
3,
√
ש־[1− הראה (**) 3.1.9 תרגיל

המספרים בתורת המרכזיים המשפטים אחד שהוא קרונקר־וובר, משפט 3.1.10 הערה
שלה גלואה שחבורת גלואה הרחבת (כלומר Q של אבלית הרחבה שכל קובע האלגברית,

.Q[n] באיזשהו מוכלת אבלית)

.
√
±p ∈ Q[ρp] ,p ראשוני שלכל הראה (־***) 3.1.11 תרגיל

.Q[
√
d] ⊆ Q[ρn]ש־ כך n מצא ,d ∈ Z בהנתן (***) 3.1.12 תרגיל

.Φp(a) ≡ p (mod p2) אז a ≡ 1 (mod p) אם ראשוני. p יהי (*) 3.1.13 תרגיל
ולכן ,(1 + ps)i ≡ 1 + ips (mod p2) מתקיים i לכל ונחשב: a = 1 + ps נכתוב הדרכה.
.Φp(a) = Φp(1 + ps) =

∑p−1
i=0 (1 + ps)i ≡

∑p−1
i=0 (1 + ips) = p+ ps

(
p
2

)
≡ p (mod p2)

ל־1 השקול אחד ראשוני לפחות יש שאם הוכח ראשוני. p יהי (***) 3.1.14 תרגיל
האלו. הראשוניים כל מכפלת Q יהי שלא. נניח הדרכה. כאלה. אינסוף יש אז ,p מודולו

הזה. המספר של ראשוני גורם q | Q
p−1

Q−1 יהי .Φp(Q) = Qp−1
Q−1 ב־ נתבונן

Uq אוילר בחבורת Q של שהסדר נובע Qp ≡ 1 (mod q)מ־ אז ,Q ̸≡ 1 (mod q) אם
.q ≡ 1 (mod p) כלומר p | (q − 1) החבורה, סדר את מחלק האיבר שסדר ומכיוון ,p הוא
Q ≡ ש־1 מכאן להנחה. בסתירה ,Q

p−1
Q−1 ≡ 1 (mod q) ואז ,q |Q ההגדרה לפי אז אבל

.q = pש־ מכאן .q | p כלומר p ≡ Qp−1 + · · ·+ 1 ≡ 0 (mod q) אז אבל ,(mod q)

,p2 ̸ |Φp(Q) ,3.1.13 תרגיל לפי אבל .Φp(Q) של היחיד הראשוני הגורם הוא p היינו,
.Q > ש־1 לכך בסתירה ,Φp(Q) = p ולכן

טריגונומטריות פונקציות 3.1.4

של שלמה כפולה כל של והקוסינוס הסינוס את להציג אפשר כידוע, זווית. α תהי
הפונקציות בין הקשרים את נבחן זה בסעיף .t = tan(α)ב־ רציונלית כפונקציה 2α

נסמן מקרוב. הטריגונומטריות

cn = cos(2nα), sn = sin(2nα), tn = tan(2nα).

הזהויות לפי

cos(2x) =
1− tan(x)2

1 + tan(x)2
, sin(2x) =

2 tan(x)

1 + tan(x)2
, tan(2x) =

2 tan(x)

1− tan(x)2
,
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מתקיים

cn =
1− t2n−1

1 + t2n−1

, sn =
2tn−1

1 + t2n−1

, tn =
2tn−1

1− t2n−1

.

לזה בנוסף

tan(x) =
sin(2x)

1 + cos(2x)
,

מתקיים ,Q ⊆ F שדה שלכל מכאן .tn = sn+1

1+cn+1
ולכן

F (cn), F (sn), F (tn) ⊆ F (tn−1) = F (sn, cn).

לדוגמא,

cos(8α) =
(t4 + 4t3 − 6t2 − 4t+ 1)(t4 − 4t3 − 6t2 + 4t+ 1)

(t2 + 1)4

.t = tanα כאשר
הזהות מן נובע nה־ מהרמה והשדות F (cn+1) בין הקשר

cos(2x) = 2 cos(x)2 − 1,

מתקבלת כך .F (cn+1) = F (c2n) = F (s2n) ולכן cn+1 = 2c2n − ש־1 המראה
הבאה: הדיאגרמה

. . . F (tanα)

nnn
nnn PPP

PPP

F (cos 2α)
RRRR

R
F (sin 2α) F (tan 2α)

llll
l RRRR

R

F (cos 4α)
RRRR

R
F (sin 4α) F (tan 4α)

llll
l RRRR

R

F (cos 8α)

QQQ
QQQ

F (sin 8α) F (tan 8α)

mmm
mmm

F (cos 16α)
. . .

אז .tan(π/2n−1) ∈ F ש־ נניח 3.1.15 טענה

F (tanα)/F (cos 2nα)

.D2n−1 הדיהדרלית החבורה של מנה היא ⟨σ, τn−1⟩ שלה גלואה וחבורת גלואה, הרחבת
.2n מממד ההרחבה אז F מעל טרנסצנדנטי tan(α) אם
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המקיים F (tanα) של אוטומורפיזם משרה α 7→ −α הפעולה הוכחה.

σ : cm 7→ cm, sm 7→ −sm, tm 7→ −tm.

.cos(2nα) את גם ולכן tan(2n−1α) את מייצבת α 7→ α+ π
2n−1 הפעולה לזה, בדומה

לפי המוגדר F (tanα) של 2n−1 מסדר אוטומורפיזם זהו אז ,tan(π/2n−1) ∈ F אם

τn−1 : tan(α) 7→ tan(α+
π

2n−1
) =

tan(α) + tan( π
2n−1 )

1− tan( π
2n−1 ) tan(α)

.

� מיידיים. σ2 = tan2
n−1

n−1 = ו־1 στn−1σ
−1 = τ−1

n−1 היחסים

cosα + i sinα ש־= כך ,α = 2π
N ש־ נניח כעת כלשהו. שלם N > 0 יהי 3.1.16 הערה

גם לכן .ρN − ρ−1
N = 2i sinαו־ ρN + ρ−1

N = cosαש־ ברור .i ∈ F ש־ גם נניח .ρN
ש־ ומכאן ,tanα = sinα

cosα =
ρ2N−1

ρ2N+1

F (cosα) = F (ρN+ρ−1
N ), F (sinα) = F (ρN−ρ−1

N ), F (tanα) = F (ρ2N ).

.F (tanα) = F (ρN/2) אז אי־זוגי. N ′ כאשר N = 2nN ש־′ ונניח n ≥ 1 יהי
הרחבת שהיא ,Q[ρN/2]/Q[ρN ′ +ρ−1

N ′ ] ההרחבה היא Q[tanα]/Q[cos 2nα] זה במקרה
tan(π/2n−1) ∈ שההנחה משום ,3.1.15 טענה עם מתיישב זה .2n מממד אבלית גלואה
של ההרחבה אכן, .F (ρN ′ + ρ−1

N ′ ) = F (ρN ′) ואז ρ2n−1 ∈ F ש־ לכך שקולה F
.2n−1 את המחלק מממד ציקלית Q[ρ2n−1 , ρN ′ + ρ−1

N ′ ] מעל Q[ρ2n−1 , ρN/2]

ורביעית שלישית ממעלה משוואות 3.2

פתרונה הבבלים), גם (וכנראה היוונים לפתור ידעו שנייה ממעלה המשוואה שאת בעוד
באותו המתמטיקאים ה־16. המאה תחילת עד ידוע היה לא שלישית ממעלה המשוואה של
x3 + px+ q = 0 למשוואות התייחסו הם וכך שליליים, במספרים 'הכירו' לא עדיין זמן

נבדלות. בעיות כאל חיוביים) שלמים p, q (כאשר x3 + px = q או
המשוואות מן חלק לפתור איך פרו דל שפיונה האיטלקי המתמטיקאי גילה ב־1515
משוואות, בפתרון בזה זה מתחרים מתמטיקאים היו תקופה באותה שלישית. ממעלה
את מחדש טרטליה ניקולו האיטלקי גילה ב־1535 שלו. הפתרון את פרו דל הסתיר ולכן
ופרסם החסרים המקרים את שהשלים קרדאנו, לג'ירולמו עליהם וסיפר פתרונות אותם
ב־1545. אחר־כך, קצר זמן לפתור הצליחו רביעית ממעלה המשוואה את בספר. אותם
המתמטיקאים של הראשון האמיתי ההישג היה שלישית ממעלה המשוואה של פתרונה
המתמטיקאים של מצילם להשתחרר להם סייע הוא ובכך הרנסאנס, תקופת בראשית
את אילץ קרדנו של פתרונו בנוסף, חדשים. תחומים לחקור ולהתחיל ההלניסטיים,
(דהיינו, אמיתיים שפתרונות משום המרוכבים, למספרים ברצינות להתייחס המתמטיקאים

מרוכבים. מספרים של מניפולציות תוך לפעמים מתקבלים ממשיים)
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בשנת האיטלקי, פרארי לודוביקו מצא רביעית ממעלה משוואות של הפתרון את
פתרונות בעקבות שלישית. ממעלה למשוואה הפתרון שנמצא אחרי שנה כשלושים ,1545
משוואות גם לפתור יהיה שאפשר הרנסאנס תקופת סוף של המתמטיקאים האמינו אלו,
ממאתיים יותר זו. בבעיה הושקעו ניכרים ומאמצים אופן, באותו יותר גבוהה ממעלה
כזה שפתרון ה־19) המאה של השלושים (בשנות הראה אבל הנריק שנילס עד חלפו שנה
ההבדל את שמסבירה גלואה, לתורת היסודות את הניח גלואה ואווריסט אפשרי, אינו
של פעולות ידי על לפתרון ניתנות (שאינן ומעלה חמישית ממעלה משוואות בין היסודי

יותר. נמוכה ממעלה משוואות ובין שורש) והוצאת וחילוק כפל חיסור, חיבור,

שלישית ממעלה משוואה 3.2.1

n ממעלה פולינומית משוואה כל ,nל־ זר ממאפיין שדה מעל (*+) 3.2.1 תרגיל
אפס. הוא xn−1 של המקדם שבו למצב לינארית הצבה על־ידי להביא אפשר

במשוואה נתבונן שלישית. ממעלה כללית משוואה פותרים כך 3.2.2 הערה

x3 + ax− b = 0 :

אז ,x = α+ β נציב

α3 + β3 + (3αβ + a)x− b = 0;

נבחר
(3.1) αβ = −a/3,

ואילו ,α3β3 = −a3/27 אז
α3 + β3 = b,

שורש הוצאת .z2 − bz − a3/27 = 0 הריבועית למשוואה הפתרונות הם α3, β3ש־ כך
β את או α את נותנת מאלה מאחד שלישי שורש והוצאת ,α3, β3 את נותנת ריבועי
הוא שהפתרון ומכיוון הנותר, הפרמטר את מחשב (3.1) היחס אפשריים); ערכים (שלושה

האפשרויות. בשתי פתרונות אותם מתקבלים ממילא ,α+ β הסכום

f(x) = הפולינום של הפיצול שדה K ויהי ,a, b ∈ F ש־ נניח הפתרון. את ננתח
נותנת הריבועית המשוואה .x1, x2, x3 ∈ K השורשים עם ,x3 + ax− b

z =
1

2
(b±

√
b2 + 4a3/27).

הרחבה הוא L = F [α3] = F [β3] = F [
√

b2 + 4a3/27] הכללי, במקרה כלומר,
.F של ריבועית

A3 היא שלו גלואה חבורת אי־פריק. f(x) = x3+ax− b שהפולינום נניח 3.2.3 מסקנה
אחרת. S3ו־ ,F ב־ ריבוע הוא b2 + 4a3/27 אם
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סימטריות פונקציות בעזרת פתרון

מעל אי־פריק f(x) = x3 + ax − bש־ נניח היחידה. של שלישי שורש עם שדה F יהי
כך .x1, x2, x3 ∈ E השורשים עם ,F של הפיצול שדה E יהי .a, b ∈ F כאשר ,F

x1 + x2 + x3 = 0,

x1x2 + x2x3 + x3x1 = a,

x1x2x3 = b.

לעבור אפשר שתמיד ומכיוון ,S3 של תת־חבורה היא ההרחבה של גלואה חבורת
עצמה: S3 של ההרכב בסדרת לטפל נוח המושרה, ההרכב לסדרת

1�A3�S3,

ההרחבות לשרשרת המתאימה

F = ES3 ⊆ EA3 ⊆ E.

ברור .δ = (x1 − x2)(x2 − x3)(x3 − x1) נסמן .E = F (x1, x2, x3)ש־ ברור
ש־ לחשב אפשר .EA3 = F [δ] לכן אחרת. σ(δ) = −δוש־ ,σ ∈ A3 אם σ(δ) = δש־

δ2 = −4a3 − 27b2,

xi את למצוא עלינו הפתרון, את להשלים כדי .EA3 = F [
√
−4a3 − 27b2]ש־ כך

שהאיברים נבחין זו, משוואה להשיג כדי .δ במונחי

z = x1 + ρx2 + ρ2x3, z′ = x1 + ρ2x2 + ρx3

ישיר חישוב .z3, z′3 ∈ EA3 ולכן ,(123) · z′ = ρ−1z′ו־ (123) · z = ρz מקיימים
ש־ מעלה

z3 =
27

2
b− (3ρ+

3

2
)δ,

z′3 =
27

2
b+ (3ρ+

3

2
)δ;

ש־ בעוד
zz′ = −3a.

את נקבל ,z′ = −3az−1ו־ z = 3

√
27
2 b− (3ρ+ 3

2)δ ונגדיר הסדר את נהפוך אם
המשוואה שורשי

x1 =
1

3
(z + z′),
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x2 =
1

3ρ
(z + ρ2z′),

x3 =
1

3ρ2
(z + ρz′).

הדיסקרימיננטה 3.2.2

כאשר f(λ) =
∏
(λ− αi) נכתוב .F מעל f אי־פריק פולינום של הפיצול שדה K יהי

בפרט, .αi ∈ K
K = F [α0, . . . , αn−1].

כמכפלה מוגדרת (K/F ההרחבה של (וגם f של הדיסקרימיננטה

disc(K/F ) = ±
∏
i<j

(αi − αj) ∈ K×/⟨−1⟩.

.disc(f) = 0 אם ורק אם ספרבילי f (*) 3.2.4 תרגיל

סימן, כדי עד K של כאיבר מוגדרת f של הדיסקרימיננטה לראות, שאפשר כפי
פועלת G = Gal(K/F ) גלואה חבורת אכן, השורשים. בסדר תלוי שהסימן משום
על גם הפועל ,G ↪→Sn שיכון מגדיר וזה ,α0, . . . , αn−1 השורשים על טבעי באופן

הדיסקרימיננטה:

.σ(disc(f)) = sgn(σ)disc(f) ,σ ∈ G לכל (*) 3.2.5 תרגיל

.disc(f)2 ∈ F (*) 3.2.6 תרגיל

.disc(f) ∈ F אם ורק אם An לתוך G את נושא Snב־ השיכון (**) 3.2.7 תרגיל

.(0, . . . , n− 1 בטווח (האינדקסים Aij = αj
i המטריצה את A ∈ Mn(K)ב־ נסמן

כעת, .t לכל πt ∈ F ,σ ∈ G לכל σ(πt) = πtש־ מכיוון ;πt =
∑n−1

i=0 αt
i נסמן

AtA = (αj
i )ji(α

k
i )ik = (

∑
i

αj+k
i )jk = (πj+k)jk,

היא det(A)ש־ אלא ,detA2 = det(AtA) ∈ F× ולכן ,AtA ∈ Mn(F ) כלומר
שבטענה כך ,detA =

∏
i<j(αi − αj) = disc(f)ש־ וידוע ואנדרמונדה, דטרמיננטת

לבטא אפשר שאותם ,πt שמתוך הוא זה בחישוב היתרון חידוש. אין det(A)2 ∈ F
.disc(f)2ל־ מפורשת נוסחה לקבל אפשר ,f הפולינום מקדמי של כפונקציות
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.f = λ3 + aλ+ b עבור disc(f)ל־ נוסחה פתח (**) 3.2.8 תרגיל

הפיצול בשדה ששורשיו ,3 ממעלה f = λ3 + aλ+ b אי־פריק פולינום עבור נסכם
הפולינום. של הפיצול שדה K/F יהי .α0, α1, α2 הם

אם גלואה, F [α0]/F אם ורק אם ,[K :F ] = 3 אם ורק אם Gal(K/F ) = A3 .1
;disc(K/F ) ∈ F אם ורק

גלואה, אינו F [α0]/F אם ורק אם ,[K :F ] = 6 אם ורק אם Gal(K/F ) = S3 .2
.disc(K/F ) ̸∈ F אם ורק אם

(שלושה D4 ,A4 ,S4 הן: S4 של הטרנזיטיביות תת־החבורות (**) 3.2.9 תרגיל
מוכלות K4 ⊆ A4 רק מאלו, צמודים). עותקים (שלושה Z4ו־ K4 צמודים), עותקים

.A4ב־

הרזולטנט

הנוסחה לפי מוגדר f, g ספרביליים פולינומים זוג של הרזולטנט

Res(f, g) =
∏
α,β

(α− β)

מכפלה אמנם זו .f(α) = g(β) = ש־0 כך (α, β) הזוגות על־פני היא המכפלה כאשר
המקדמים נמצאים שבה לשדה שייכת שהיא להוכיח אפשר אבל המשותף, הפיצול בשדה

השורשים. שני של

β = שאם הראה ספרבילית. שדות הרחבת K = F [α] תהי (**) 3.2.10 תרגיל
הוא h כאשר NK/F (β) = Res(f, h) סימן כדי עד אז ,f ∈ F [λ] עבור f(α)

.α של המינימלי הפולינום
הדרכה.

Res(f, h) =
∏

f(t)=0,k

(t− αk)

=
∏

f(t)=0

N(t− α)

= N(
∏

f(t)=0

(t− α))

= N(±f(α))
= ±N(β).
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רביעית ממעלה משוואה 3.2.3

פרארי של הפתרון

יהי
f(x) = x4 + ax2 + bx+ c

.3.2.1 תרגיל של התיקון לאחר רביעית, ממעלה פולינום
מראה מקדמים השוואת ;f(x) = (x2 − Ax + B)(x2 + A′x + C) לפרק ננסה

וכן ,A′ = Aש־

B + C −A2 = a;

A(B − C) = b;

BC = c;

.C = 1
2(A

2 + a− b/A)ו־ B = 1
2(A

2 + a+ b/A) נובע הראשונות המשוואות ומשתי
כלומר ,c = BC = 1

4(A
4 + 2aA2 + a2 − b2/A2) לכן

A6 + 2aA4 + (a2 − 4c)A2 − b2 = 0.

נקבל ,T = A2 נציב אם

T 3 + 2aT 2 + (a2 − 4c)T − b2 = 0,

אפשר הרזולבנטה את .(f(x) של הרזולבנטה (הקרויה שלישית ממעלה משוואה וזו
מזה שלישי). שורש הוצאת ואז שני שורש הוצאת דורש (זה הקודם הסעיף לפי לפתור
משוואות שתי נותרו כעת .B,C את ומיד נוסף) שני שורש (הוצאת A את מקבלים
השורש שאת אלא ריבועי. שורש הוצאת על־ידי מהן אחת כל לפתור שאפשר ריבועיות,
נותר ולכן בהמשך, שיתברר כפי חישבנו כבר ,∆∆′ שלהן, הדיסקרימיננטות מכפלת של
המשוואה. שורשי ארבעת את למצוא כדי הדיסקרימיננטות מאחת ריבועי שורש להוציא

פרארי של הפתרון ניתוח

.x1, x2, x3, x4 השורשים שבו הפולינום, של הפיצול שדה E ויהי ,a, b, c ∈ F ש־ נניח
על הפעולה לפי השורשים על פועלת הגנרי, המקרה שהוא ,Gal(E/F ) = S4ש־ נניח

ריבועיים, לגורמים המשוואה שבפירוק נניח האינדקסים.

x2 −Ax+B = (x− x1)(x− x2)

ו־
x2 +Ax+ C = (x− x3)(x− x4).

אחרות, במלים
A = x1 + x2 = −(x3 + x4);
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ורביעית שלישית ממעלה משוואות שימושים3.2. .3 פרק

B = x1x2;

C = x3x4.

מסדר הדיהדרלית, החבורה היא ⟨σ, τ⟩ש־ כך ,τ = ו־(12) σ = (1324) נסמן
גלואה הרחבת היא L/F ולכן קליין, של הארבעה חבורת היא

⟨
σ2, στ

⟩
החבורה .8

σ(C) = ,σ(B) = C ,σ(A) = −Aש־ לחשב קל .S4/K4 = S3 שלה גלואה שחבורת
תת־השדות בסריג האברים של מיקומם מכאן .τ(C) = C ;τ(B) = B ,τ(A) = A ;B

להלן: המופיע

E
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∆2∆′2, A2 ∈ E⟨σ,τ⟩
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EA4

F

הם המשוואה שורשי אז .∆′2 = A2 − 4Cו־ ∆2 = A2 − 4B נסמן

x1 =
1

2
(A+∆), x2 =

1

2
(A−∆), x3 =

1

2
(−A+∆′), x4 =

1

2
(−A−∆′).

ש־ מכאן .∆′ = 2x3 +A = −2x4 +Aו־ ∆ = 2x1 −A = −2x2 +A לכן

σ(∆) = 2x3 +A = ∆′; σ(∆′) = 2x2 −A = −∆;

τ(∆) = 2x2 −A = −∆; τ(∆′) = ∆′

.σ(∆∆′) = ו־′∆∆− ,∆∆′ ∈ L בפרט,
σ(δ∆∆′) = ולכן ,σ(δ) = −δ אז הרזולבנטה, של הדיסקרימיננטה את δ2ב־ נסמן

.∆∆′ ∈ F [A2]δ כלומר ,δ∆∆′

ושלישי), שני שורש הוצאת שדרש (מה δו־ A2 חישוב שלאחר הוא דבר של פירושו
∆ את למשל ואחר־כך שני), שורש (הוצאת A את לחשב נותר לכן .∆∆′ ידוע כבר

מ־2∆). שורש (הוצאת
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ההרכב סדרת בעזרת פתרון

בפולינום נתבונן .ρ היחידה, של שלישי שורש עם שדה F יהי

(3.2) f(x) = x4 + σ2x
2 − σ3x+ σ4,

.x1, x2, x3, x4ב־ E הפיצול בשדה הפולינום שורשי את נסמן .σ2, σ3, σ4 ∈ F כאשר
ההנחה, לפי כך,

x1 + x2 + x3 + x4 = 0,

x1x2 + x2x3 + x3x4 + x4x1 + x1x3 + x2x4 = σ2,

x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4 = σ3,

x1x2x3x4 = σ4.

היא S4 של עקרונית) (היחידה, ההרכב סדרת .Gal(E/F ) = S4ש־ להלן נניח

1 � ⟨(12)(34)⟩ � K4 � A4 � S4,

תת־שדות של שרשרת יש ובהתאמה

F ⊂ EA4 ⊂ EK4 ⊂ E⟨(12)(34)⟩ ⊂ E.

נסמן i = 1, 2, 3 לכל

yi = xix4 + xjxk −
1

3
σ2,

משום אותו יוצרים מהם שניים וכל ,EK4 של אברים אלו .{1, 2, 3} = {i, j, k} כאשר
ש־ לחשב אפשר תת־שדה. לאף שייכים שאינם

y1 + y2 + y3 = 0,

y1y2 + y2y3 + y3y1 = −1

3
σ2
2 − 4σ4,

y1y2y3 =
2

27
σ3
2 + σ2

3 −
8

3
σ2σ4;

למשוואה הפתרונות הם y1, y2, y3 הערכים כלומר,

(3.3) y3 + (−1

3
σ2
2 − 4σ4)y − (

2

27
σ3
2 + σ2

3 −
8

3
σ2σ4) = 0.
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הזה, הפולינום של הדיסקרימיננטה

∆ = 256σ3
4 − 128σ2

2σ
2
4 + (16σ4

2 + 144σ2σ
2
3)σ4 − 4σ3

2σ
2
3 − 27σ4

3,

כך, אם .f(x) של הדיסקרימיננטה גם היא

EA4 = F [
√
∆].

יש EK4 השדה את EA4מ־ לקבל כדי תת־השדות. שרשרת במעלה לטפס נמשיך
הקודם. בתת־הסעיף שתואר כפי שלישי, שורש להוציא

ש־ לחשב קל .E = F [s1, s2, s3]ש־ ברור ;si = xi + x4 נסמן

s2i = −(xi + x4)(xj + xk) = yi −
2

3
σ2 ∈ EK4

ו־
s1s2s3 = σ3 + (x1 + x2 + x3 + x4)x4 = σ3.

ומכפלתם ,E⟨(jk)(i4)⟩ להרחבות סטנדרטיים יוצרים הם s1, s2, s3 האברים כלומר,
,s2 =

√
y2 − 2

3σ2ו־ s1 =
√

y1 − 2
3σ2 מהם: שניים לחשב שדי מכאן .F ל־ שייכת

.s3 = σ3(s1s2)
−1 ואז

.x4 = 1
2(s1 + s2 + s3)ו־ ,xi = 1

2(si − sj − sk) לבסוף,

עם (3.2) כלומר ,f(x) = x4 − 119x2 + 594x − 728 בפולינום נתבונן 3.2.11 דוגמא
הוא ב־(3.3) הפולינום .σ4 = −728 ,σ3 = −594 ,σ2 = −119

g(y) = y3 − 5425

3
y +

81250

27
.

החישוב .b = −81250
27 ו־ a = 5425

3 עם הקודם, בתת־הסעיף כמו הזו המשוואה את נפתור
את לחשב יש כעת .δ2 = ש־1530002 מראה

z =
3

√
27

2
b− (3ρ+

3

2
)δ = 3

√
−270125− 459000ρ = 5 3

√
−2161− 17 · 216ρ = 5(8−9ρ),

הם g(y) = 0 המשוואה פתרונות .z′ = −3az−1 = 5(17 + 9ρ) ואת

y1 =
1

3
(z + z′) =

125

3
,

y2 =
1

3ρ
(z + ρ2z′) = −130

3
,
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y3 =
1

3ρ2
(z + ρz′) =

5

3
.

,s2 =
√

y2 − 2
3σ2 =

√
36 = ו־6 s1 =

√
y1 − 2

3σ2 =
√
121 = 11 נחשב כעת

.s3 = σ3(s1s2)
−1 = −594

66 = ש־9 ומכאן
הם הפולינום שורשי לבסוף,

x1 =
1

2
(11− 6− 9) = −2,

x2 =
1

2
(−11 + 6− 9) = −7,

x3 =
1

2
(−11− 6 + 9) = −4,

x4 =
1

2
(11 + 6 + 9) = 13.

רדיקלים על־ידי פתירות 3.3

והעקבה הנורמה 3.3.1

פונקציה היא העקבה .G = Gal(K/F ) גלואה חבורת עם גלואה, הרחבת K/F תהי
אדיטיבית. שהפונקציה ברור .trK/F (a) =

∑
σ∈G σ(a) לפי המוגדרת tr :K→F

NK/F :K→F הנורמה מוגדרת לזה בדומה הסימטריה. בשל F ל־ שייכת אכן התמונה
בגלל F ב־ ערכים מחזירה היא וגם כפלית, פונקציה זוהי .NK/F (a) =

∏
σ∈G σ(a) לפי

הסימטריה.
ההצגה בעזרת שדות, הרחבת לכל והעקבה הנורמה של ההגדרה את להרחיב אפשר
מסגור המושרית ההגדרה עם מתלכדת זו הגדרה נורמלית, ההרחבה אם הרגולרית.

גלואה.
trE/F = trK/F ◦ trE/K הטרנזיטביות תנאי מתקיימים F ⊆ K ⊆ E שרשרת לכל

.NE/F = NK/F ◦NE/Kו־

ספרבילית. היא K/F ההרחבה אם ורק אם על היא trK/F :K→F העקבה 3.3.1 טענה

רדיקליות הרחבות 3.3.2

שורש, הוצאת ידי על המתקבלת שדה של הרחבה היא רדיקלית הרחבה אינטואיטיבית,
מחייב הזה בתהליך היחידה שורשי של המיוחד תפקידם .Q[

4
√

1 +
√
2]/Q[

√
2] כגון

יותר. עדין באופן המושג את להגדיר אותנו

.αn ∈ F המקיים איבר על־ידי F של הרחבה K = F [α] תהי (*) 3.3.2 תרגיל
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.[K :F ] ≤ n .1

ממד הדרכה. אי־פריק. λn − αn ∈ F [λ] הפולינום אם ורק אם [K :F ] = n .2
המינימלי. הפולינום למעלת שווה ההרחבה

כאשר αn ∈ F עם K = F [α] אם רדיקלית הרחבה נקראת K/F הרחבה 3.3.3 הגדרה
.n = [K :F ]

,ρn = 1 כאשר F [ρ]/F ציקלוטומית, שהרחבה אולי נדמה ראשון ממבט 3.3.4 דוגמא
שמראה כפי ,[F [ρ] :F ] ≤ φ(n) < nש־ משום נכונה אינה זו טענה רדיקלית. הרחבה היא
.3.3.33 טענה ראה – על־רדיקלית ההרחבה מתאימות, הנחות תחת זאת, עם .3.3.8 דוגמא

רדיקלית. היא (2 מממד (היינו ריבועית הרחבה כל מ־2, שונה במאפיין 3.3.5 טענה

α2−aα+b = 0 הוא α של המינימלי הפולינום הממד, בגלל .K = F [α]ש־ נניח הוכחה.
� .(α− a

2 )
2 = a2−4b

4 ∈ F ו־ K = F [α− a
2 ] ואז ,a, b ∈ F עם

ציקלית. הרחבה נקראת ציקלית גלואה חבורת עם גלואה הרחבת

רדיקלית הרחבה כל אז .n מסדר יחידה שורשי יש F הבסיס שבשדה נניח 3.3.6 משפט
ציקלית. היא n מממד

אי־ λn − a הפולינום ,3.3.2 תרגיל לפי .a = αn ∈ F כאשר K = F [α] נכתוב הוכחה.
שורשי .nל־ זר charF ש־ נובע n מסדר יחידה שורשי של שמקיומם משום ספרבילי והוא פריק,
מכייון .n מסדר היחידה שורש הוא ρ = ρn כאשר ,i = 0, . . . , n − 1 עבור ρiα הם הפולינום
על־ידי נקבע אוטומורפיזם כל ספרבילי. פולינום של הפיצול שדה זהו ,Kל־ שייכים השורשים שכל
אוטומורפיזם אכן היא α 7→ ρiα העתקה כל ומאידך ,ρiα הערכים אחד שהיא α של התמונה
מכאן אי־פריק. פולינום אותו של שורשים הם והתמונה המקור כי K[α] ∼= K[λ]/⟨λn − a⟩ של
� .n מסדר שהיא ,α 7→ ρα ההעתקה על־ידי נוצרת גלואה שחבורת

.n = [K :F ] כאשר ρn ∈ K אז נורמלית, רדיקלית הרחבה K/F אם 3.3.7 הערה

שורש לו שיש מכיוון .F מעל אי־פריק λn−αn הפולינום Kכאשר = F [α] ההנחה לפי הוכחה.
� .ρ ∈ K ולכן ,Kל־ שייכים השורשים שאר גם הנורמליות לפי ,α ∈ K

מקבלים היינו ,3.3.7 הערה לפי אחרת, רדיקלית. אינה Q[ρ7]/Q ההרחבה 3.3.8 דוגמא
.ρ6 ∈ Q[ρ7]ש־

.ρp ∈ F אז ציקלית. שהיא ,p ראשוני מסדר רדיקלית הרחבה K/F תהי 3.3.9 טענה

הפולינום שורשי .αp ∈ F ש־ כך איבר α ∈ K ויהי יוצר, σ ∈ Gal(K/F ) יהי הוכחה.
באינדוקציה .σ(ρ) = ρu נסמן .σ(α) = ραש־ כך ρ לבחור ואפשר ,ρiα הם α של המינימלי
up−1+· · ·+1 ≡ ש־0 מכאן .α = σp(α) = ρu

p−1+···+1α ובפרט ,σi(α) = ρu
i−1+···+1α

,u ≡ up ≡ 1 (mod p) לכן .up− 1 ≡ 0 (mod p) שגם מראה (u− ב־(1 כפל .(mod p)
� .ρ ∈ F ש־ ומכאן σ(ρ) = ρ כלומר
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ו־ אי־זוגי, ראשוני p יהי :ρn ̸∈ F שבה וציקלית רדיקלית הרחבה .1 3.3.10 דוגמא
.ρn ̸∈ Q[ρp]ו־ ,n מממד ציקלית הרחבה היא Q[ρpn]/Q[ρp] אז .(k > 1) n = pk

.K = Q[ρ8]ו־ F = Q נבחר :ρ4 ̸∈ F שבה 4 מממד רדיקלית גלואה הרחבת .2
.ρ4 ̸∈ Q זאת עם ;ρ48 = −1 ∈ Q שהרי רדיקלית, K/F ההרחבה

ρ = ρp ש־∋ נניח .a ∈ F ו־ ,p שאינו ממאפיין שדה F ויהי ראשוני, p יהי 3.3.11 טענה
שם. מתפצל הוא אז ,F מעל פריק λp − a הפולינום אם .F

ושדה ,i = 0, . . . , p − 1 ,ρiα הם הפולינום שורשי הפיצול. בשדה α = a1/p יהי הוכחה.
שדה שמעל מכיוון .d ממעלה ,F מעל אי־פריק גורם f |λp − a יהי .F [ρ, α] הוא שלו הפיצול
מהצורה גורמים של מכפלה הוא f(λ) הפיצול בשדה ,λp − a =

∏p−1
i=0 (λ − ρiα) הפיצול

כך n,m ∈ Z יש אז d < p אם מתאים. s עבור ρsαd הוא שלו החופשי המקדם ולכן ,λ− ρiα
,i לכל ρiα ∈ F לכן .ρsnα = ρsnαdn+pm = (ρsαd)nam ∈ F ואז ,nd +mp = ש־1
� מתפצל. והפולינום

הפולינום ,p > 2 לכל אכן, .ρ ∈ F ההנחה ללא נכונה אינה 3.3.11 טענה 3.3.12 הערה
ממשי. הזה השדה כי שם מתפצל אינו אבל ,Q[21/p] מעל פריק λp − 2

ציקליות הרחבות 3.3.3

קלה: בדוגמא נתחיל

גלואה הרחבת היא F מעל 2 מממד K/F הרחבה כל אז ,charF ̸= 2 אם 3.3.13 טענה
ציקלית). הרחבה (ולכן

אז ,a, b ∈ F עם ,α ∈ K של המינימלי הפולינום הוא λ2 − aλ + b = 0 אם הוכחה.
עם גלואה, הרחבת שזו מכאן .Kב־ מתפצל הוא ולכן α, a − α הם הפולינום שורשי
� .Z2 גלואה חבורת

a = σ(b)b−1 אם .Gal(K/F ) = ⟨σ⟩ גלואה חבורת עם ציקלית, הרחבה K/F תהי
.N(a) = N(σ(b)b−1) = σ(N(b))N(b)−1 = 1 בוודאי אז

נכון: ההיפך גם ציקלית, בהרחבה

הוא N(a) = 1 עם a איבר כל ,K/F ציקלית בהרחבה הילברט) של 90 (משפט 3.3.14 משפט
.b ∈ K לאיזשהו a = σ(b)b−1 מהצורה

לפי כזה קיים אפס; שאינו כלשהו b =
∑n−1

i=0 (a · · ·σi−1(a))−1σi(z) קח הוכחה.
� .σ(b) = ab ש־ מראה חישוב .2.5.1 טענה

.n = [K :F ] כאשר ρ = ρn ∈ F ש־ נניח ציקלית. הרחבה K/F תהי 3.3.15 מסקנה
הוא כזה איבר כל .σ(x) = ρx ש־ כך x ∈ K קיים אז .Gal(K/F ) של יוצר σ יהי

.a = xn ∈ F ומקיים ההרחבה, של יוצר
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x ∈ K קיים 3.3.14 משפט לפי ולכן ,NK/F (ρ) = ρn = 1 ,ρ ∈ F ש־ מכיוון הוכחה.
σi(x) = ואילו ,σ(xn) = σ(x)n = ρnxn = xn אז כנ"ל x אם .σ(x) = ρx ש־ כך
� .K של תת־שדה לאף שייך אינו x ש־ כך ,0 < i < n לכל ρix ̸= x

מתקבל: ,3.3.15 ומסקנה 3.3.6 משפט משילוב

היא אם ורק אם ציקלית היא F מעל n מממד הרחבה .ρn ∈ F נניח 3.3.16 מסקנה
רדיקלית.

ראה מסובך. יותר ציקליות הרחבות של התאור ,ρ ∈ F מניחים לא אם 3.3.17 הערה
.5 מממד בהרחבות לדיון Edwards של ספרו

:p ממאפיין הרחבות עבור אנלוגית גרסה הנה

a ∈ K יש אז .Gal(K/F ) = ⟨σ⟩ו־ ,p במאפיין ציקלית הרחבה K/F תהי 3.3.18 טענה
.σ(a) = a+ ש־1 כך

ארטין, של הלמה לפי .(σ − 1) :K→Kו־ tr :K→F הלינאריות בהעתקות נתבונן הוכחה.
dim Im(σ−1) = ולכן ,Ker(σ−1) = F ש־ לראות קל .dimKer(tr) = p−1 ולכן ,tr ̸= 0
הממדים ומהשוואת ,Im(σ− 1) ⊆ Ker(tr) כלומר ,tr ◦ (σ− 1) = ש־0 לחשב גם קל .p− 1
� .1 ∈ Ker(tr) = Im(σ − ש־(1 נובע

ההרחבה. את מגדיר ap−a ∈ F ו־ ,K = F [a] בהכרח אז σ(a) = a+1 אם אגב,

ציקלית, הרחבה K/F תהי הילברט) של 90 למשפט האדיטיבית (הגרסה 3.3.19 טענה
.a = σ(b)−bש־ כך b ∈ K קיים אם ורק אם trK/F (a) = 0 אז .Gal(K/F ) = ⟨σ⟩ עם

אלברט קריטריון

מדרגה ציקלית בהרחבה n מדרגה ציקלית הרחבה של לשיכון אלברט קריטריון את נציג
.nm

מסדר Gal(K/F ) = ⟨σ⟩ש־ כך שדות, שרשרת F ⊆ L ⊆ K (***) 3.3.20 תרגיל
µ ∈ L קיים - (כלומר L/F ב־ נורמה הוא ρm ש־ הוכח .[K : L] = m ,ρm ∈ F ,nm
σm(α) = ρmα המקיים α ∈ K עבור K = L[α] הדרכה. .(NL/F (µ) = ρmש־ כך

.σ(α)α−1 על חשוב (מדוע?).

.n = m = 2 במקרה לעיל התרגיל את והוכח נסח (**+) 3.3.21 תרגיל

ציקלית הרחבה בכל .(Rב־ מוכל (כלומר ממשי שדה F יהי (**) 3.3.22 תרגיל
ממשי. הוא גם הריבועי תת־השדה ,F של 4 מממד

הוכח .ρm ∈ F ש־ ונניח ,n ממימד ציקלית הרחבה K/F תהי (***) 3.3.23 תרגיל
σ(a)a−1 אם ורק אם F של ציקלית הרחבה הוא K[ m

√
a] השדה ,a ∈ K שעבור

.Kב־ m חזקת הוא
עם גלואה הרחבת הוא K[ m

√
a] השדה ,a ∈ K שעבור הוכח .n = m נניח

.a ∈ F×K×n אם ורק אם F של Z/n× Z/n החבורה
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פתירות חבורות 3.3.4

תת־חבורות של סדרה היא תת־נורמלית סדרה חבורה. G תהי

1 = Gt ⊂ Gt−1 ⊂ · · · ⊂ G0 = G

אם כלומר אותה, לעדן אי־אפשר אם הרכב סדרת נקראת הסדרה .Gi�Gi−1ש־ כך
הרכב סדרת בכל ז'ורדן־הולדר, משפט לפי פשוטות. חבורות הן Gi−1/Gi המנות כל
חבורות הן שלה ההרכב מנות כל אם פתירה היא חבורה מנות. אותן יש G חבורה של
תת־נורמלית סדרה לה יש אם ורק אם פתירה היא חבורה ראשוני. מסדר ציקליות

אבליות. שלה שהמנות
N אם ורק אם פתירה G החבורה ;N�Gש־ נניח פתירה. היא אבלית חבורה כל
n ≥ 5 עבור Sn בפרט פתירות. אינן אבליות הלא הפשוטות החבורות פתירות. G/Nו־

פתירה. אינה
על־ידי הנוצרת G′ כתת־החבורה מוגדרת G חבורה של הקומוטטורים תת־חבורת
המקסימלית האבלית המנה היא G/G′ המנה .[x, y] = xyx−1y−1 הקומוטטורים
ו־ G0 = G לפי באינדוקציה מוגדר G חבורה של היורדת המרכזית הסדרה .G של
(וכשהחבורה Gn = ש־1 כך n יש אם ורק אם פתירה היא חבורה .Gn+1 = (Gn)′

(.(Gn)′ = Gnו־ Gn ̸= ש־1 כך n יש אם ורק אם פתירה אינה היא סופית,

אם ורק אם פתירה G = Gal(E/F ) גלואה חבורת אז גלואה. הרחבת E/F תהי 3.3.24 משפט
תת־שדות של שרשרת יש

F = F0 ⊂ F1 ⊂ · · · ⊂ Ft = K

ראשוני. מסדר ציקלית גלואה הרחבת היא Fi+1/Fi ,i שלכל כך

תת־חבורות שרשרת לה יש אם ורק אם פתירה החבורה הוכחה.

1 = Gt ⊂ Gt−1 ⊂ Gt−2 ⊂ · · · ⊂ G0 = G

כזו שרשרת נושאת גלואה התאמת ראשוני. מסדר ציקליות Gi+1/Gi והמנות Gi�Gi+1ש־ כך
� ולהיפך. סדר, מאותו ציקליות הרחבות עם תת־שדות של לשרשרת

על־רדיקליות הרחבות 3.3.5

הרחבות של שרשרת יש אם על־רדיקלית היא E ⊃ F שהרחבה נאמר שדה. F יהי 3.3.25 הגדרה
רדיקליות

F0 ⊂ F1 ⊂ · · · ⊂ Ft = E;

מסדר רדיקליות הרחבות של שרשרת בקצה עומדת רדיקלית הרחבה כל 3.3.26 טענה
ראשוני.

55



רדיקלים על־ידי פתירות שימושים3.3. .3 פרק

על־רדיקלית. היא על־רדיקלית הרחבה של על־רדיקלית הרחבה (*) 3.3.27 תרגיל
על־ K/F גם אז על־רדיקליות, L/F ו־ K/L כאשר F ⊆ L ⊆ K אם (כלומר,

רדיקלית.)

את המחלק סדר מכל יחידה שורשי מכיל F ש־ ונניח גלואה, הרחבת E/F תהי 3.3.28 משפט
פתירה. Gal(E/F ) אם ורק אם על־רדיקלית היא ההרחבה אז .[E :F ]

היא אם ורק אם ציקלית היא הרחבה היחידה שורשי שבנוכחות משום ,3.3.24 משפט זהו הוכחה.
� רדיקלית.

של שרשרת יש אם ורק אם פתירה Gal(K/F ) אז גלואה, הרחבת K/F אם לכן
ציקליים. Fi+1/Fi השלבים שכל כך F = F0 ⊆ F1 ⊆ · · · ⊆ Ft = K הרחבות

רדיקליות הרחבות לשרשרת לפרק אפשר רדיקלית הרחבה כל (*) 3.3.29 תרגיל
ראשוני. מסדר

על־רדיקלית. הרחבה הוא על־רדיקלית הרחבה של גלואה סגור 3.3.30 למה

� על־רדיקלי. מהם אחד שכל איזומורפיים, שדות של הרכבה הוא גלואה סגור הוכחה.

רדיקלים לפי פתירות על גלואה משפט 3.3.6

מתפצל הוא אם רדיקלים על־ידי פתיר הוא n = deg f ממעלה f ∈ F [λ] פולינום 3.3.31 הגדרה
היותר. לכל n מסדר שלה השלבים שכל על־רדיקלית בהרחבה

סדר מכל יחידה שורשי בו שיש ,F שדה מעל n ממעלה אי־פריק פולינום f יהי 3.3.32 משפט
היא E הפיצול שדה של Gal(E/F ) גלואה חבורת אם ורק אם רדיקלים על־ידי פתיר f אז .n עד

פתירה. חבורה

הרכב סדרת לה יש אז פתירה. G = Gal(E/F ) שהחבורה נניח הוכחה.

1 = Gt ⊂ Gt−1 ⊂ Gt−2 ⊂ · · · ⊂ G0 = G

האינדקסים כל ,n! את מחלק |G|ש־ מכיוון ראשוני. מסדר ציקליות מנות עם
שרשרת המרכזי, המשפט לפי .Fi = EGi ניקח .nל־ שווים או קטנים [Gi−1 :Gi]

תת־השדות
E = Ft ⊃ Ft−1 ⊃ · · · ⊃ F0 = F

מממד ציקליות, כולן Fi/Fi−1 ההרחבות כלומר ,Gal(Fi/Fi−1) ∼= Gi−1/Gi מקיימת
3.3.15 מסקנה ולפי כזה, ממד מכל יחידה שורשי F ב־ יש ההנחה לפי .n על עולה שאינו

רדיקליות. Fi/Fi−1 ההרחבות כל
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שדות של שרשרת יש אם שני, מצד

Ft ⊃ Ft−1 ⊃ · · · ⊃ F0 = F

אז יחידה, שורשי מספיק יש F וב־ ,E ⊆ Ftש־ וכך רדיקליות שלה ההרחבות שכל
וגם H�Gal(Ft/F ש־( נקבל E = FH

t נכתוב ואם פתירה, Ft/F של גלואה חבורת
� פתירה). חבורה של מנה (כחבורת פתירה Gal(E/F ) ∼= Gal(Ft/F )/H

על־רדיקלית. היא F [ρ3, ρ4, . . . , ρn]/F ההרחבה שדה. F יהי 3.3.33 טענה

F ′′ ש־= כך ,F ′′ = F [ρ3, ρ4, . . . , ρn]ו־ F ′ = F [ρ3, ρ4, . . . , ρn−1] נסמן הוכחה.
חזקת אינו n אם על־רדיקלית. F ′′/F ש־′ באינדוקציה להוכיח די ,3.3.27 דוגמא לפי .F ′[ρn]
אז k = 1 אם ראשוני. p כאשר n = pk נכתוב .F ′′ = F ש־′ משום להוכיח, מה אין ראשוני
יחידה שורשי יש F שב־′ מכיוון אבלית. F ′′/F ′ וההרחבה ,[F ′′ :F ′] ≤ [Q[ρn] :Q] = n − 1
וההרחבה ,p מממד ציקלית F ′′/F ′ אז k > 1 אם על־רדיקלית. ההרחבה ,nמ־ קטן סדר מכל
� .ρp ∈ F ש־′ משום רדיקלית

רדיקלים. על־ידי לפתירות בקשר אפשריים וריאנטים עוד מכסה הבא המשפט

סדר מכל יחידה שורשי בו שיש ,F שדה מעל n ממעלה אי־פריק פולינום f יהי 3.3.34 משפט
.n עד ראשוני

שקולים: הבאים התנאים .1

.n עד מממד שלביה שכל על־רדיקלית בהרחבה שורש לפולינום יש (א)

.n עד מממד שלביה שכל על־רדיקלית גלואה בהרחבת שורש לפולינום יש (ב)

על־ידי (=פתיר n עד מממד שלביה שכל על־רדיקלית בהרחבה מתפצל הפולינום (ג)
רדיקלים).

.n עד מממד שלביה שכל על־רדיקלית גלואה בהרחבת מתפצל הפולינום (ד)

על־רדיקלית. הרחבה הוא הפיצול שדה (ה)

פתירה. – הפיצול הרחבת של גלואה חבורת (ו)

פתירה. בהרחבה מתפצל הפולינום (ז)

.n עד מממד שלביה שכל פתירה בהרחבה מתפצל הפולינום (ח)

שקולים: הבאים התנאים .2

על־רדיקלית. בהרחבה שורש לפולינום יש (א)

על־רדיקלית. גלואה בהרחבת שורש לפולינום יש (ב)

על־רדיקלית. בהרחבה מתפצל הפולינום (ג)

על־רדיקלית. גלואה בהרחבת מתפצל הפולינום (ד)
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.2 סעיף תנאי את גוררים 1 סעיף תנאי .3

(1ב) .3.3.30 למה לפי (1ב): ⇐= (1א) ברור. (1א): ⇐= (1ג) ⇐= (1ד) .1 הוכחה.
כל יחידה, שורשי הבסיס בשדה שיש מכיוון (1ז): ⇐= (1ד) הנורמליות. לפי (1ד): ⇐=
של גלואה חבורת של פתירות מוכיחה העל־רדיקלית השרשרת ציקלית, היא רדיקלית הרחבה
חבורת של מנה חבורת היא הפולינום של גלואה חבורת (1ו): ⇐= (1ז) הנתונה. ההרחבה
יש פתירה, החבורה של גלואה שחבורת מכיוון =⇐(1ח): (1ו) הנתונה. ההרחבה של גלואה
גלואה חבורת סדר את מחלקים הראשוניים וכל ראשוני, מסדר ציקליים שגורמיה הרכב סדרת לה
יש גלואה לחבורת =⇐(1ה): (1ו) ברור. =⇐(1ז): (1ח) .n! את המחלק הפולינום, של
ברור. =⇐(1ד): (1ה) רדיקלית. היא ציקלית הרחבה וכל ציקליות, מנות עם הרכב סדרת

=⇐(2ד): (2ב) .3.3.30 למה לפי =⇐(2ב): (2א) ברור. =⇐(2א): =⇐(2ב) (2ד) .2
הנורמליות. לפי

(1ב). את גורר ש־(1א) ברור .3
�

1 סעיף תנאי מתקיימים אז על־רדיקלית הרחבה יוצר הפולינום של שורש אם 3.3.35 הערה
.S3 היא שלו גלואה שחבורת 3 ממעלה פולינום שמראה כפי נכון, אינו ההיפך אבל במשפט;

פתירים שאינם פולינומים 3.3.7

שני בדיוק לו שיש ,p ראשונית ממעלה אי־פריק פולינום f ∈ Q[λ] יהי 3.3.36 טענה
.Sp היא שלו הפיצול שדה של גלואה חבורת אז לא־ממשיים. שורשים

החבורה 2.5.10 מסקנה לפי גלואה. חבורת G = Gal(K/F ) ותהי הפיצול, שדה K יהי הוכחה.
שהסדר מכאן .p מאינדקס תת־חבורה הוא שורש של המייצב ולכן השורשים, על טרנזיטיבית פועלת
,Spב־ איבר הוא האוטומורפיזם אבל ;p מסדר איבר בה יש קושי משפט ולפי ,pב־ מתחלק G של
שני של חילוף שהיא המרוכב, ההצמדה פעולת את כוללת G מאידך, .p באורך מחזור מהווה הוא ושם
החילופים, כל את כוללת וחילוף p באורך מחזור הכוללת Sp של תת־חבורה כל ההנחה. לפי שורשים
� .Spל־ שווה ולכן

מכאן .S5 היא λ5− 10λ− 5 של הפיצול שדה של גלואה חבורת (**) 3.3.37 תרגיל
רדיקלים. על־ידי פתיר אינו זה שפולינום

Snל־ השווה גלואה חבורת עם Q מעל פולינומים שיש שהוכיח הוא הילברט 3.3.38 הערה
לנסיון בקשר הגנריים, השורשים של ספציאליזציה על מבוססת הילברט של ההוכחה .n לכל

.2.5.3 בתת־סעיף שהצגנו ההיפוך בעיית דרך נתר בעיית את לתקוף שלו

ממעלה משוואה לפתרון וברדיקלים השדה בפעולות המשתמשת נוסחה אין 3.3.39 מסקנה
יותר. או חמישית
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p− 2 בדיוק לו שיש ,Q מעל p ממעלה אי־פריק פולינום נבנה ,p > 2 ראשוני לכל
.(2013 קליין, אוהד של הצעה (לפי ממשיים שורשים

2m − 1 היותר לכל לו יש אז מונומים; m לו שיש פולינום f ∈ R[x] יהי 3.3.40 טענה
fל־ יש אז החופשי, המקדם הוא f של המונומים אחד אם מזו יתרה ממשיים. שורשים

ממשיים. שורשים 2m− 2 היותר לכל

m עם פולינום f יהי .m = ל־1 נכונה הטענה הפולינום. מעלת ועל m על באינדוקציה הוכחה.
הנחת ולפי −mמונומים, 1 יש f ′ לנגזרת אז החופשי. המקדם הוא מהם שאחד נניח בתחילה מונומים;
2m − 2 היותר לכל יש f ל־ רול, משפט לפי שורשים; 2m − 3 היותר לכל f ל־′ יש האינדוקציה
g של החופשי המקדם כאשר f = xig לכתוב אפשר אפס, הוא f של החופשי המקדם אם שורשים.
2m− 1 היותר לכל f ל־ ולכן האינדוקציה, הנחת לפי שורשים 2m− 2 עד יש gל־ ואז אפס, אינו
� שורשים.

לפולינום אז .c = 2m(m+1)(2m+1)
3 נסמן אי־זוגי. מספר n = 2m+ 3 יהי 3.3.41 טענה

f(x) = (x2 + c)
m∏

k=−m

(x− 2k) + 2,

.Q מעל אי־פריק והוא ממשיים, שורשים n− 2 בדיוק יש ,n שמעלתו

.2 מודולו המקדמים בחינת לפי אייזנשטיין, קריטריון לפי Q מעל אי־פריק f(x) ראשית, הוכחה.
המתוקן לפולינום

h(x) = (x2 + c)

m∏
k=−m

(x− 2k) = (x2 + c)

m∏
k=1

(x2 − (2k)2)

אבל מונומים; m + 2 היותר לכל לו יש לכן זוגית; ממעלה שלו המונומים וכל ,2m+ 2 מעלה יש
מונומים. m+ 1 רק שיש כך אפס, הוא x2m של שהמקדם מבטיחה c = 4

∑m
k=1 k

2 בחירת
של פירושו 3.3.40 טענה ולפי מונומים, m+2 היותר לכל יש f(x) = xh(x) + של־2 מכאן
אבל ממשי, שאינו α מרוכב שורש שיש מכאן ממשיים. שורשים 2m+ 2 = n− 1 היותר לכל דבר

ממשיים. שורשים n− 2 היותר לכל שיש ומכאן שורש, הוא ᾱ הצמוד גם
כאשר בדיוק 2i + 1 − 2k < 0 ,k = −m, . . . ,m לכל .i = −m, . . . ,m יהי מאידך,

ל־ לכן פעמים. m− i כלומר ,i < k ≤ m

f(2i+ 1) = (2i+ 1)((2i+ 1)2 + c)
m∏

k=−m

(2i+ 1− 2k) + 2

2m+1 = n−2 כאן יש ,limx→−∞ f(x) = ש־∞− העובדה עם יחד .(−1)m−i של הסימן יש
� שורשים. n− 2 לפחות הביניים ערך משפט ולפי סימן, חילופי
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קדם ימי של והבעיות וסרגל במחוגה בניות 3.4

ובסרגל. במחוגה רק המקרים) (ברוב להשתמש מקובל היה העתיקה יוון של בגאומטריה
ה־19: המאה ראשית עד פתורות לא שנותרו בניה בעיות ארבע הציגו הקדמונים היוונים
המעגל; ריבוע הזווית; שילוש באתונה); אפולו של המזבח (הכפלת הקוביה את הכפל

צלעות. שבע בן משוכלל מצולע בניית
כבלתי הוכחה המקבילים, אקסיומת הוכחת יותר, עוד חשובה גאומטרית בעיה
אוקלידיות. לא גאומטריות בנו וגאוס בוליי לובצ'בסקי, כאשר אחרות בדרכים אפשרית
את לרבע האפשרות חוסר הבניה. בעיות את לפתור ניתן שלא נראה זה בסעיף

נוכיח). לא (שאותו אלגברי אינו πש־ ,(1882) לינדמן של במשפט תלוי המעגל

וסרגל במחוגה בניות 3.4.1

את להעביר מאפשר והסרגל נתון, שמרכזו נתון ברדיוס מעגל לסרטט מאפשרת המחוגה
לסמן אפשר מעגלים) או (ישרים נחתכים קוים שני לכל נקודות. שתי דרך העובר הישר

וסרגל. במחוגה יסודיות בניות כמה נציג החיתוך. נקודות את

וסרגל: במחוגה לבצע אפשר הבאות הבניות את 3.4.1 טענה

נתון. לקטע אמצעי אנך העברת .1

קטע. של האמצע נקודת את למצוא .2

נקודה. דרך לישר אנך הורדת .3

נתונה. בנקודה לישר אנך העלאת .4

אנך. והעלאת אנך הורדת הדרכה. נתונה. נקודה דרך נתון לקטע מקביל ישר העברת .5

מעגל עם הזווית צלעות של החיתוך נקודות שתי בין המרחק חציית הדרכה. זווית. לחצות .6
בקודקודה. שמרכזו

במשולש. חסום מעגל למצוא .7

למשולש. חוסם מעגל למצוא .8

וסרגל: במחוגה לבנות כיצד הראה (**) 3.4.2 תרגיל

שהקטע המעגל את העבר הדרכה. נתונה. נקודה דרך למעגל משיק ישר .1
שלו. קוטר הוא הנתונה הנקודה אל הנתונה המעגל ממרכז

נתון. ישר על ומונח נתון לקטע באורכו השווה קטע .2

נתונה. שלה אחת וצלע נתון שקודקודה נתונה לזווית השווה זווית .3
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של שהחזקה נזכיר הבאה. בדוגמא המתוארות אלו כמו בהרבה, קשות בניות גם יש
המעגל עם החיתוך נקודות אל הנקודה מן המרחקים מכפלת היא למעגל ביחס נקודה

בישר). תלוי אינו זה (ערך דרכה העובר ישר של

את המחבר הישר על הנקודות (שהן מעגלים שני של הדמיון נקודות .1 3.4.3 דוגמא
מרכזי את O1, O2ב־ סמן זווית). באותה המעגלים שני את רואים שמהן המרכזים,
פוגש O2 דרך O1Aל־ המקביל הראשון. המעגל על A נקודה בחר המעגלים. שני
.O1O2 ∩AB′ו־ O1O2 ∩AB הן המבוקשות הנקודות .B,B′ב־ השני המעגל את

דרך (בזוגות) עוברים המשותפים המשיקים ארבעת מעגלים. שני של משותף משיק .2
.(1) הדמיון, נקודות שתי

הדמיון נקודות שלוש דרך העובר הישר זהו מעגלים: שלושה של ד'לאמבר ישר .3
.(1) המעגלים, זוגות של החיצוניות

אינברסיה תחת הנקודה תמונת (כלומר, נתון למעגל ביחס נתונה לנקודה צמודה נקודה .4
את חבר המרכז. מן אנך העלה המעגל. למרכז הנקודה מן הישר את העבר במעגל).
המעגל מפגש דרך זה לקו מקביל העבר הנתונה. הנקודה אל המעגל עם האנך מפגש
חיתוך האנך. עם המקביל בחיתוך הנוגע מעגל המרכז, דרך העבר הראשון. הישר עם

הצמודה. הנקודה הוא הראשון הישר עם הזה המעגל

של הגאומטרי המקום (שהוא קונצנטריים שאינם מעגלים שני של הרדיקלי הישר .5
שני העבר (1) הדמיון מנקודות שווה). חזקה המעגלים לשני יש מהן הנקודות
נקודות את המחברים הקטעים אמצעי דרך עובר המבוקש הישר משותפים. משיקים

ההשקה.

הרדיקליים). הישרים שלושת של המפגש נקודת (שהוא מעגלים שלושה של החזקה מרכז .6
.(5) רדיקליים ישרים זוג כל של החיתוך זהו

.(3) המעגלים של ד'לאמבר ישר את העבר נתונים. מעגלים לשלושה משותף משיק מעגל .7
נקודת את מצא מעגל, כל עבור .(6) המעגלים שלושת של החזקה מרכז את מצא
ד'לאמבר, ישר אל המעגל של מרכזו של הישר) עם לישר האנך מפגש (שהיא ההיטל
למרכז הצמודות הנקודות את חבר .(4) למעגל ביחס להיטל הצמודה הנקודה ואת
והמעגלים ההשקה, נקודות הם המעגלים עם המתקבלים הקווים חיתוכי החזקה.

המשולשים. שני של חוסמים מעגלים לכן הם המבוקשים

נוספת: ודוגמא

מהם. אחד על נתונה נקודה דרך העובר מעגלים לשני משותף משיק מעגל 3.4.4 דוגמא
הדמיון נקודות את מצא .Aב־ O1 על הנתונה הנקודה ואת O1, O2ב־ המעגלים את נסמן
,Aל־ Xמ־ הישר את העבר .(3.4.3 של (1)) המעגלים שני של Y והפנימית X החיצונית
.B,B′ב־ O2 עם החיתוך נקודות ואת ,A′ב־ O1 עם שלו השניה החיתוך נקודת את וסמן
מתקבלות .B,B′ל־ O2 של ומהמרכז A,A′ל־ O1 של מהמרכז הקרניים את המשך
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O1, O2ל־ מבפנים הומוגנית: המשיק מעגל של מרכז היא מהן שאחת חיתוך, נקודות שתי
המשיק מעגל של מרכז היא החיתוך נקודת הפעם ;Y עבור הבניה על חזור מבחוץ. או

להיפך. או מבחוץ, O2ול־ מבפנים O1ל־ הטרוגנית:

היפרבולה. הוא O1, O2ל־ המשיקים המעגלים של המרכזים של הגאומטרי המקום 3.4.5 הערה

לבניה הניתנים המספרים שדה 3.4.2

הבא: האינדוקטיבי המשחק את ונשחק ו־1, 0 נקודות, זוג (המרוכב) במישור נקבע
והוא קיים מרכזו אם מעגל קיימות, נקודות שתי דרך עובר הוא אם ישר לבנות מותר
ומעגל. ישר או מעגלים שני ישרים, שני בחיתוך היא אם ונקודה אחרת, נקודה דרך עובר
לישר לבניה. הניתנים המספרים שדה ,A נקרא הזה באופן המתקבלות הנקודות לאוסף

.R נקרא ו־1 0 דרך

אפשר וסרגל במחוגה 3.4.6 טענה

ממשיים. מספרים שני לחבר .1

ממשיים. מספרים שני להכפיל .2

ממשי. מספר של ההפכי את לחשב .3

חיובי. ממשי ממספר שורש להוציא .4

זהו חיוביים. ממספרים שורש להוצאת הסגור ,R של תת־שדה הוא A ∩ R החיתוך 3.4.7 משפט
אלו. תכונות בעל R של ביותר הקטן תת־השדה

אפשר וסרגל במחוגה 3.4.8 טענה

מרוכבים. מספרים שני לחבר .1

מרוכבים. מספרים שני להכפיל .2

מרוכב. מספר של ההפכי את לחשב .3

מרוכב. ממספר שורש להוציא .4

זהו שורש. להוצאת הסגור ,C של תת־שדה הוא ,A לבניה, הניתנות הנקודות אוסף 3.4.9 משפט
אלו. תכונות בעל C של ביותר הקטן תת־השדה

� וההגדרה. 3.4.8 מטענה מיידי הוכחה.

ריבוע. הוא חיובי איבר כל אם אוקלידי הוא סדור שדה

שקולות: E ⊆ C תת־שדה של הבאות התכונות 3.4.10 משפט

שורש. להוצאת סגור E .1

.E = (E ∩ R)[i] ו־ אוקלידי, E ∩ R .2
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ריבועיות הרחבות של שרשראות 3.4.3

שרשרת קיימת אם F של חוזרת ריבועית הרחבה הוא Kש־ אומרים

F = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K

נכון אינו ההיפך ;2 חזקת הוא dimK/F ש־ כמובן כזה במקרה ריבועיות. הרחבות של
.(3.4.17 (הערה

הוא F ⊆ L ⊆ K ביניים שדה כל אז ,2n מממד גלואה הרחבת K/F אם 3.4.11 למה
.F של חוזרת ריבועית הרחבה

תהי נילפוטנטית. G כחבורת־2, .L = KH ו־ G = Gal(K/F ) נכתוב הוכחה.

1 ⊆ Gn−1 ⊆ Gn−2 ⊆ · · · ⊆ G1 ⊆ G0 = G

כל ,G על ההנחה לפי .[G,Gi] ⊆ Gi−1ו־ ,Gב־ נורמלית Gi כל כלומר מרכזית, סדרה
.2 מסדר הן Gi/Gi−1 המנות

,[G,Gi] ⊆ Gi−1ש־ מכיוון .Gi�G שהרי ,G של תת־חבורות הן GiH המכפלות
מנה חבורת היא HGi−1/HGi

∼= Gi−1/(Gi−1 ∩ HGi) המנה ואז ,HGi�HGi−1

.[Li :Li−1] = [HGi−1 :HGi] | [Gi−1 :Gi] = 2 אז ,Li = KHGi קח .Gi−1/Gi של
�

K ′/F ,K/F ש־ כך ביניים, שדות עם הרחבה F ⊆ K,K ′ ⊆ E יהיו 3.4.12 למה
חוזרת. ריבועית הרחבה היא KK ′/F ההרכבה אז חוזרות; ריבועיות הרחבות

גם אז ריבועיות. הרחבות של שרשרת F ⊆ K1 ⊆ · · · ⊆ Kn = K תהי הוכחה.
ואיתה ,2.5.22 טענה לפי כזו שרשרת K ′ = FK ′ ⊆ K1K

′ ⊆ · · · ⊆ KnK
′ = KK ′

� .KK ′ עד Kל־ F מ־ שרשרת להמשיך אפשר

הוא גם ,E/F שלה, סגור־גלואה אז חוזרת, ריבועית הרחבת K/F אם 3.4.13 למה
חוזרת. ריבועית הרחבה

ןלכן ,K של איזומורפיים עותקים על־ידי נוצר E גלואה סגור ההגדרה, לפי הוכחה.
� הצמודים. מספר על באינדוקציה 3.4.12 מלמה נובעת הטענה

.[K :F ] במונחי [E :F ] את חסום ,3.4.13 בלמה (**) 3.4.14 תרגיל

:a ∈ C עבור שקולות הבאות התכונות 3.4.15 משפט

לבניה. הניתנים המספרים של A לשדה שייך a .1

.Q של חוזרת ריבועית להרחבה שייך a .2
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.Q מעל גלואה שהיא חוזרת ריבועית להרחבה שייך a .3

.Q של חוזרת ריבועית הרחבה הוא Q[a] .4

חבורת־2. היא a של המינימלי הפולינום של גלואה חבורת .5

(4) ⇐ (3) .3.4.13 למה לפי (3) ⇐ (2) נבנים. Aב־ האברים כל כי (2) ⇐ (1) הוכחה.
שורשים. Aב־ להוציא אפשר כי ,3.3.5 הערה לפי (1) ⇐ (4) .3.4.11 למה לפי

חבורת של הסדר (5) ⇐ (3) גלואה. חבורת של הרכב סדרת בעזרת (2) ⇐ (5)
� .2 חזקת שהוא ההרחבה לממד שווה גלואה

גלואה הרחבות של איחוד הוא לבניה הניתנים המספרים של A השדה 3.4.16 מסקנה
סופיות.

לפי נכון. אינו ההיפך .2 של חזקה הוא [Q[a] :Q] אז לבניה, ניתן a אם 3.4.17 הערה
ניתן אינו הוא אז ,Q של חוזרת ריבועית הרחבה שאינו שדה יוצר a ∈ C אם ,3.4.15 משפט
ולשדה ,f ∈ Q[λ] ,4 ממעלה אי־פריק פולינום של שורש a אם ,3.4.13 למה לפי לבניה.
.[Q[a] :Q] = 4 ש־ למרות לבניה ניתן אינו a אז ,A4 או S4 גלואה חבורת f של הפיצול

משוכללים מצולעים בניית 3.4.4

sin(α) את לבנות אפשר אם ורק אם cos(α) את לבנות אפשר (*) 3.4.18 תרגיל
.cos(α) + i sin(α) את לבנות אפשר אם ורק אם

.2 חזקת הוא ϕ(n) אם ורק אם n מסדר היחידה שורשי את לבנות אפשר 3.4.19 מסקנה
.2m + 1 מהצורה ראשוני הוא pi כל כאשר n = 2tp1 · · · pt אם ורק אם כלומר,

מהצורה למעשה הוא אז ,2m + 1 מהצורה ראשוני הוא p אם (*) 3.4.20 תרגיל
הם היחידים הידועים פרמה ראשוניי פרמה. ראשוני קרוי כזה ראשוני .22

m
+ 1

.3, 5, 17, 65537

ש־ הראה (***) 3.4.21 תרגיל

cos

(
2π

17

)
=

√
17−1
2 +

√
17−

√
17

2 +

√
(3 +

√
17)

(√
17−

√
17−

√
17

2

)
8

.

צלעות. 17 בן משוכלל מצולע זה מידע בעזרת לבנות כיצד הסבר

בילה Hermes בשם שמתמטיקאי Coxeter מספר Introduction to Geometryב־
צלעות. 65537 בן מצולע של בבניה (1900 (בסביבות שנים כ־10

וגם 3
2
√
2
≈ 1.060660 גם עשרוניות, ספרות שש של בקירוב (*) 3.4.22 תרגיל

שונים שהמספרים מחשבון) עזרת (בלי הוכח .sin( π
51) + cos( π

74) ≈ 1.060660
מזה. זה
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שימושים .3 קדםפרק ימי של והבעיות וסרגל במחוגה בניות .3.4

קדם ימי של הגאומטריות הבעיות 3.4.5

.6 מממד הרחבה Q[ρ7]/Qש־ משום משוכלל, משובע לבנות אי־אפשר 3.4.23 מסקנה

.3 מממד Q[ 3
√
2]/Q כי אפשרית בלתי הקוביה הכפלת 3.4.24 מסקנה

8x3 − האי־פריק לפולינום שורש זה כי ,cos(20◦) את לבנות אי־אפשר 3.4.25 מסקנה
היה זווית לשלש שאי־אפשר שהוכיח (הראשון הזווית. את לשלש אפשר אי לכן .6x − 1

ב־1837.) ,Pierre Laurent Wantzel (1814–1869)

להוכיח בכדי אין שבכך אלא ב־1761; למברט הוכיח פאי של אי־הרציונליות את
לריבוע. ניתן אינו שהמעגל

(.1882 (לינדמן, טרנסצנדנטי π כי אפשרי בלתי המעגל ריבוע 3.4.26 מסקנה

הובס תומאס בין וממושך שוצף פומבי ויכוח של במרכזו היתה המעגל ריבוע בעיית
במקביל באוקספורד למתמטיקה פרופסור (שהיה ואליס ג'ון לבין ,(1588-1679 ("לוויתן",
1655-) שנה 25 נמשך הוויכוח בקיימברידג'). זו במשרה ששימש ניוטון, של מורו לבארו,
הובס, השניים. שפרסמו ומאמרים מכתבים במאות ונפרש הובס), של מותו שנת ,1679
הגאומטריה, את מטריאליסטיים יסודות על לבסס שאפשר סבר מטריאליסט, שהיה
היה הוא המעגל. ריבוע בעיית לרבות שלה, המרכזיות הבעיות את זו בדרך ולפתור
זה. בעניין הובס של הנימוקים את פעם אחר פעם שהפריך ואליס, של לטיעוניו אטום
את דחה הובס באתאיזם). נחשד (הובס ותאולוגיים פוליטיים צדדים גם היו לוויכוח
של האינפיניטסימליות השיטות על שלו והביקורת השלילה, בדרך הוכחה של הטכניקה

בחלקה. מוצדקת היתה זמנו בת המתמטיקה
[“Squaring the Circle: The War between Hobbes and Wallis”, Douglas M. Jesseph, 2000.]

אוריגמי 3.4.6

וסרגל, מחוגה שמאפשרות הפעולות את לממש אפשר אוריגמי כללי לפי נייר בקיפולי
מכך. ויותר

שיקוף .P הנקודה הוא ומוקדה L הישר הוא שמדריכה הפרבולה π(P,L) תהי
.π לפרבולה משיק ℓ אם ורק אם L אל P את מעביר ℓ בישר

"בהינתן פרבולות: לשתי משותף משיק למצוא השאר בין מאפשרים אוריגמי קיפולי
שימקם קפל מסוימים) (בתנאים ליצור ניתן ,L2ו־ L1 קווים, ושני ,P2ו־ P1 נקודות, שתי
את למצוא כלומר, ."L2 גבי על P2 נקודה ואת L1 גבי על P1 נקודה את בו־זמנית

.π(P2, L2)ו־ π(P1, L1) לפרבולות המשותף המשיק

נייר: קיפולי באמצעות a מספר של השלישי השורש את למצוא אפשר כך 3.4.27 הערה
הפעילו כעת .(a, 1) ו־ (0, 2) הנקודות את סמנו הדף; על מאונכת צירים מערכת ציירו
הנקודה ואת ,x ה־ ציר על הראשונה הנקודה את המעתיק קפל למצוא כדי האקסיומה את
שמרחקה לנקודה (0, 2) הנקודה את מעתיק כזה שיקוף .x = −a הישר על השנייה

.2a1/3 בדיוק הצירים מראשית
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סופיים שדות שימושים3.5. .3 פרק

סופיים שדות 3.5

האחרים האפשריים הסדרים מהם היא השאלה .p מסדר Fp שדה קיים p ראשוני לכל
סדר. מכל יש שדות וכמה לשדה,

ראשוני עבור Fp של הרחבה F ולכן סופי, שלו המאפיין אז סופי. שדה F יהי סדר.
.|F | = pn ולכן וקטורי, כמרחב F ∼= Fn

p סופי, n = [F :Fp] ש־ מכיוון מתאים. p
זהו .Fp מעל λq − λ של הפיצול שדה F יהי ראשוני. חזקת q = pn יהי קיום.
קבוצת את F0 = {a ∈ F : aq = a}ב־ נסמן שורשים. q לו יש ולכן ספרבילי, פולינום
סגור הרי והוא לחיבור, סגור F0 ,2.2.2 הערה לפי .|F0| = q אז הפולינום. של השורשים

.(F = F0ש־ גם נובע (מכאן .q מסדר שדה F0 לכן לכפל;
כי ,aq − a = 0 מקיימים F של האיברים כל .q = pn מסדר שדה F יהי יחידות.
ולכן שורשים, q היותר לכל יש לפולינום אבל .q− 1 בגודל היא F של הכפלית החבורה

.Fp מעל λq − λ של הפיצול שדה F ש־ מכאן .λq − λ =
∏

a∈F (λ− a)
גם לכן .pn − 1 | pm − 1 ובפרט ,tn − 1 | tm − 1 אז .n |mש־ נניח הכלה.
בשדה מוכל n מסדר השדה לכן .λpn − λ |λpm − λ ומכאן λpn−1 − 1 |λpm−1 − 1

שם. יחיד עותק לו ויש ,m מסדר
,λq − λ ספרבילי פולינום של פיצול שדה היא סופיים שדות של הרחבה כל גלואה.

ספרבילית. ההרחבה בפרט, גלואה. ולכן
הפעולה .q = |F | נסמן סופי; K עם שדות K/F יהיו פרובניוס. אוטומורפיזם
אינו וזה ,K על ϕd = 1 אז ,|K| = qd אם .K של אוטומורפיזם היא ϕ :x 7→ xq

של אוטומורפיזמים d = [K :F ] של חבורה היא ⟨ϕ⟩ לכן יותר. קטנה חזקה לאף נכון
גלואה הרחבות הן סופיים שדות של ההרחבות כל כלומר: .Gal(K/F ) = ⟨ϕ⟩ לכן .K

ציקליות.

עבור למשל, על. תמיד שאינו F→F של שיכון היא p בחזקת העלאה 3.5.1 דוגמא
.p מקו־ממד תת־שדה הוא F p = Fp(λ

p) ,F = Fp(λ)

פולינומים. ספירת

.deg(f) |n אם ורק אם f |λq − λ אז .q = pnו־ f ∈ Fp[λ] יהיו 3.5.2 טענה

מתפצל f הפולינום אם ורק אם ,Fqב־ מוכל Fp[λ]/⟨f⟩ השדה אם ורק אם deg(f) |n הוכחה.
� .λq − λ של שורשים הם שורשיו כל אם ורק אם ,Fqב־

מתוקנים פולינומים על היא המכפלה כאשר ,λq−λ =
∏

d |n
∏

deg(f)=d f 3.5.3 מסקנה
.Fp מעל אי־פריקים

.d שמעלתם Fp מעל המתוקנים האי־פריקים הפולינומים מספר את Ip(d)ב־ נסמן

.q =
∑

d |n dIp(d) 3.5.4 מסקנה

.Ip(n) =
∑

d |n µ(n/d)p
d 3.5.5 מסקנה
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שימושים .3 סופייםפרק שדות .3.5

מכפלת הוא (f, λqm − λ) אז .f(λ) ∈ Fq[λ] יהי פולינומים. של לגורמים פירוק
,(f, f ′) בעזרת חוזרים גורמים סילוק לאחר .m את מחלקת שמעלתם f של הגורמים
נקודת לפחות יש פריק f ואם שדות, של מכפלה Fq[λ]/⟨f⟩ ∼=

∏
Li לכתוב אפשר

פירוק f =
∏
(f, h−α) כעת פרובניוס. אנדומורפיזם של h אחת טריוויאלית לא שבת

טריוויאלי. לא

A של דיריכלה צפיפות טבעיים. מספרים של קבוצות A ⊆ B תהיינה 3.5.6 }תרגיל
q : − 1 ∈ F×2

q

}
הקבוצה שצפיפות הראה .lims→1+

∑
a∈A a−s∑
b∈B b−s הגבול היא B בתוך

הצפיפות דיריכלה, משפט לפי הדרכה. .12 היא ראשוניים של החזקות כל קבוצת בתוך
. 12 היא הראשוניים בקבוצת p ≡ 1 (mod 4) הראשוניים קבוצת של
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4 פרק

השדות בתורת נוספים נושאים

אלגבריות הרחבות 4.1

F מעל אלגבריים הם E של האיברים כל אם אלגברית הרחבה היא E/F הרחבה
.(1.2.4 בתת־סעיף (הגדרה

סופית נוצרת הרחבה 4.1.1

.E = F (S) ש־ כך S ⊂ E סופית קבוצה יש אם סופית נוצרת E/F ההרחבה

שקולות: K/F הרחבה של הבאות התכונות 4.1.1 משפט

סופי. מממד ההרחבה .1

סופית. ונוצרת אלגברית ההרחבה .2

אלגבריים. איברים של סופי מספר על־ידי נוצרת ההרחבה .3

� .1.2.22 מסקנה לפי 1 ⇐= 3 ו־ קל, 3 ⇐= 2 ⇐= 1 הוכחה.

אלגברית. היא אלגבריים איברים של סופי מספר על־ידי הנוצרת הרחבה 4.1.2 מסקנה

ב־ אברים שאלו משום אלגבריים, a−1ו־ a · b, a+ b אז אלגבריים, a, b אם 4.1.3 מסקנה
.F [a, b]

היא סופית נוצרת אלגברית הרחבה של סופית נוצרת אלגברית הרחבה 4.1.4 מסקנה
סופית. נוצרת אלגברית

69



אלגבריות הרחבות השדות4.1. בתורת נוספים נושאים .4 פרק

ויוצרים אלגבריות 4.1.2

סופית. נוצרות שאינן בהרחבות גם נכונות הקודם מתת־הסעיף המסקנות

ש־ כך S0 ⊆ S סופית תת־קבוצה יש b ∈ K לכל אז K = F (S) אם 4.1.5 הערה
.b ∈ F (S0)

אלגברית. היא אלגבריים איברים של כלשהי קבוצה על־ידי הנוצרת הרחבה לכן

השדה להיות K0 (קח אלגברית. היא אלגברית הרחבה של אלגברית הרחבה 4.1.6 טענה
(.K מעל b של המינימלי הפולינום מקדמי על־ידי הנוצר

יחסי אלגברי סגור 4.1.3

הסגור נקרא .4.1.3 מסקנה לפי שדה הוא E/F בהרחבה האלגבריים האיברים אוסף
.E בתוך F של האלגברי

.Eל־ שווה Eב־ F של האלגברי הסגור אם ורק אם אלגברית E/F
(שימו Eב־ אלגברית סגור F ש־ אומרים ,F ל־ שווה Eב־ F של האלגברי הסגור אם

בהמשך). יוגדר אלגברית' סגור 'שדה המושג יחסית; אלגברית סגירות שזוהי לב
.Eב־ אלגברית סגור E בתוך F של האלגברי הסגור ,4.1.6 טענה לפי

Lו־ אלגברית L/F כאשר ,F ⊆ L ⊆ E ל־ לפרק אפשר E/F הרחבה כל 4.1.7 מסקנה
.E/Lב־ אלגברית סגור

אינו (הוא C בתוך Q של האלגברי הסגור הוא האלגבריים המספרים שדה 4.1.8 דוגמא
סופית). נוצר

אלגברית סגור שדה 4.1.4

:E שדה עבור שקולים הבאים התנאים 4.1.9 משפט

שורש. בו יש E מעל פולינום לכל .1

שם. מתפצל E מעל פולינום כל .2

אמיתיות. אלגבריות הרחבות Eל־ אין .3

אמיתיות. סופיות הרחבות Eל־ אין .4

ליניאריים. הם האי־פריקים הפולינומים כל .5

� .(3) ⇐ (5) ⇐ (1) ⇐ (2) ⇐ (5) ⇐ (4) ⇐ (3) הוכחה.

אלגברית. סגור נקרא אלה תכונות המקיים שדה
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השדות בתורת נוספים נושאים .4 אלגבריותפרק הרחבות .4.1

שדה של האלגברי הסגור 4.1.5

אלגברית. סגור E ש־ כך E/F אלגברית הרחבה הוא F של אלגברי סְגור 4.1.10 הגדרה

E אז ,F מעל הפולינומים כל את מפצל Eו־ אלגברית הרחבה E/F אם 4.1.11 למה
אלגברית. סגור

מעל אלגברי E[α] 4.1.6 טענה לפי .α ∈ E1 ויהי אלגברית, הרחבה E1/E תהי הוכחה.
� .α ∈ E ולכן Eב־ מתפצל F מעל α של f ∈ F [λ] המינימלי הפולינומים .F

E האם ,F מעל פולינום לכל שורש Eב־ ויש אלגברית הרחבה F ⊆ E אם 4.1.12 שאלה
אלגברית? סגור

.F מעל פולינום לכל Eב־ שורש עם E/F אלגברית הרחבה יש F שדה לכל 4.1.13 למה

R = בחוג ונתבונן ,tf משתנה נצמיד f ∈ F [λ] מתוקן פולינום לכל (ארטין). הוכחה
האיברים כל על־ידי הנוצר האידיאל I יהי האלה. המשתנים כל על־ידי הנוצר F [tf ]

.f(tf )
איברים עבור 1 =

∑
hff(tf ) אחרת .1 ̸∈ I כלומר אמיתי, אידיאל I ש־ נראה

קיימת (2.1.4 (טענה ולכן פולינומים, של סופי מספר משתתף הזה בסכום .hf ∈ R
מאלה tf כל השולחת R→K העתקה נגדיר שורש. לכולם יש שבה F של K הרחבה
סתירה ,1 = 0 מתקבל בסכום. משתתף אינו g אם לאפס tg את ושולחת כזה, לשורש

אמיתי. אידיאל I לכן להנחה.
שדה, F̄ = R/M אז .I את המכיל M מקסימלי אידיאל קיים צורן, של הלמה לפי
tf + M שורש יש f פולינום לכל .F = F/(F ∩M) ∼= (F + M)/M ⊆ R/M ו־
� .F̄ בשדה

אלגברי. סגור יש F שדה לכל 4.1.14 משפט

,Fn+1/Fn אלגברית הרחבה קיימת n ≥ 0 לכל הלמה, לפי .F0 = F נסמן הוכחה.
סגור (1.2.5 (הערה שדה הוא E = ∪Fn האיחוד .Fn מעל פולינום לכל שורש בה שיש
� .(4.1.6 (הערה F מעל ואלגברי אלגברית,

האלגברי הסגור יחידות 4.1.6

K � � //___ F̂

F0
?�

OO

� � // F
?�

OO
לכל אלגברית. סגור שדה בתוך שיכון F ↪→ F̂ יהי 4.1.15 משפט
יש ,K/F0 אלגברית הרחבה ולכל ,F0 ↪→F המשוכן F0 שדה

.K ↪→ F̂ אל F0 ↪→ F̂ של המשכה
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הכללי למקרה (א)2.1.12.2. ממשפט נובעת התוצאה סופית נוצרת K/F0 אם הוכחה.
F0 ⊆ K0 ⊆ K כאשר (K0, ϕ) הזוגות אוסף את Λ ב־ נסמן צורן. של הלמה נחוצה
.ϕ′|K0 = ϕ ו־ K0 ⊆ K ′

0 אם (K0, ϕ) ≤ (K ′
0, ϕ

′) לפי מסודר שיכון, ϕ :K0 ↪→ F̂ ו־
מקסימלי, איבר Λב־ יש צורן של הלמה לפי שם. (F0, ↪→ ) כי ריקה אינה הקבוצה
לפי אז אבל ,K1 ⊂ K2 = K1[α] ⊆ K פשוטה הרחבה יש אז K1 ⊂ K אם .(K1, ϕ1)
משוכן K = K1 לכן למקסימליות. בסתירה ,K2 אל הרחבה ϕ1ל־ יש 2.1.11.2 מסקנה
� .F̂ ב־

.F של אלגברית הרחבה כל של עותק בתוכו משכן F̄ /F אלגברי סגור 4.1.16 מסקנה

איזומורפיזם. כדי עד יחיד אלגברי סגור יש F שדה לכל 4.1.17 משפט

,F̄ ′ ↪→ F̄ שיכון יש הקודם המשפט לפי אז ,F של אלגבריים סגורים F̄ , F̄ ′ אם הוכחה.
� אלגברית. סגורה זו תמונה והרי ,F̄ ′ תמונת מעל גם ולכן F מעל אלגברי F̄ אבל

.F̂ ↪→ K̂ שיכון גם יש אז שדות, של שיכון F ↪→K יהי 4.1.18 מסקנה

F0,K, F בתפקידי F, F̂ ,K עם 4.1.15 משפט זהו אלגברית, F̂ /F ש־ מכיוון הוכחה.
� בהתאמה.

4.1.13 למה הוכחת על־ידי ישירות, 4.1.18 מסקנה את הוכח (**) 4.1.19 תרגיל
.Kו־ F עבור במקביל

אחד במשתנה הרציונליות הפונקציות שדה 4.1.7

הרציונליות הפונקציות שדה נקרא k[x] הפולינומים חוג של השברים שדה שדה. k יהי
.f(x)g(x) המנות הם אבריו .x במשתנה

.k(x) בתוך אלגברית סגור k השדה 4.1.20 טענה

האיבר החלפת על־ידי .k מעל אלגברי שהוא ונניח הגדול, בשדה איבר f(x)
g(x) ∈ k(x) יהי הוכחה.

אלגברי, איבר שזה מכיוון .deg(f) > deg(g)ש־ להניח אפשר מתאים, סקלר וחיסור שלו בהפכי
גם ואז ,

∑
ai

f(x)i

g(x)i
= h(f(x)g(x) ) = ש־0 כך h(λ) = a0 + · · · + anλ

n ∈ k[λ] פולינום יש
אלא פולינום, לאפס יכול אינו x השדה, הגדרת על־פי .H(x) =

∑n
i=0 aif(x)

ign−i(x) = 0
כל משל גדולה מעלה יש anfn למחובר ,aif ign−i המחוברים מבין אבל האפס. פולינום זהו אם
� .H(λ) ̸= 0 והפולינום מאפס, שונה הסכום מעלת ולכן אחר, פולינום

טהורה. טרנסצנדנטית k(λ)/k ההרחבה אחרות, במלים

.[k(x) :k(f(x)g(x) )] = max {deg f, deg g} אז זרים, פולינומים f, g ∈ k[λ] אם 4.1.21 טענה
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.Gal(k(x)/k) ∼= PGL2(k)ש־ הראה 4.1.22 תרגיל

.k(λ)/k ההרחבה של הביניים שדות על חשוב משפט להוכיח נוכל כעת

(ולכן יחיד איבר על־ידי נוצר k(x)/k של ביניים שדה כל (Luroth (משפט 4.1.23 משפט
.(k(x)ל־ איזומורפי

.[k(x) :F ] <∞ ,k(x)ב־ אלגברית סגור kש־ מכיוון ביניים. שדה k ⊂ F ⊂ k(x) יהי הוכחה.
לכתוב אפשר ההנחה לפי .F מעל x של המינימלי הפולינום P (λ) ∈ F [λ] יהי

P (λ) = λn +
an−1(x)

bn−1(x)
λn−1 + · · ·+ a0(x)

b0(x)
,

כך j קיים ,k מעל אלגברי אינו xש־ מכיוון .aj(x)bj(x)
∈ F וכל ,ai(x), bj(x) ∈ k[x] כאשר

!F = k(
aj(x)
bj(x)

ש־( נוכיח ;aj(x)bj(x)
̸∈ kש־

בפולינום נתבונן

Q(λ) =
aj(x)

bj(x)
bj(λ)− aj(λ) ∈ F [λ].

המשתנים. לשני ביחס P,Q הפולינומים של זהירה אנליזה על מבוססת ההוכחה

.F [λ] בחוג P (λ) |Q(λ)ש־ מכאן .Q(x) = ש־0 מראה הצבה .1

.B(x) = lcm{b0(x), . . . , bn−1(x)} נסמן .k(x)[λ] בחוג P (λ) |Q(λ) בפרט, .2

.k(x)[λ]ב־B(x)P (λ) | bj(x)Q(λ) מתקיים ,k(x)[λ]ב־ ,B(x)הפיכים bj(x)ש־ מכיוון

נובע גאוס של הלמה ולפי ,bj(x)Q(λ) ∈ k[x, λ] וגם B(x)P (λ) ∈ k[x, λ] גם אבל .3
כך T ∈ k[x, λ] קיים כלומר, .k[x, λ]ב־ B(x)P (λ) | bj(x)Q(λ)ש־ הקודם הסעיף מן

.bj(x)Q(λ) = TB(x)P (λ)ש־

,B(x)P (λ) = B(x)λn +
∑

i<n ai(x)
B(x)
bi(x)

λiש־ מכיוון .xל־ ביחס בדרגות נתבונן .4

ובפרט ,degx(B(x)P (λ)) = max
{
degB(x), deg ai(x)

B(x)
bi(x)

}
deg(B(x)P (λ)) ≥ deg(B(x)) ≥ deg(bj(x))

וגם
deg(B(x)P (λ)) ≥ deg aj(x)

B(x)

bj(x)
≥ deg aj(x).

.deg(B(x)P (λ)) ≥ deg(aj(x)bj(λ)−bj(x)aj(λ)) = deg(bj(x)Q(λ))ש־ מכאן

.T = T (λ) ∈ k[λ] ולכן ,degx(T ) = ש־0 הוכחנו .5
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אבל ,k(x)[λ] בחוג T (λ) | bj(x)Q(λ) = aj(x)bj(λ)− bj(x)aj(λ) ,T בחירת לפי .6
ומכאן זרים, אלה שפולינומים להניח אפשר .T (λ) | aj(λ), bj(λ) ולכן קבוע, אינו aj(x)

bj(x)

.T ∈ k×ש־

ולכן בסקלר, כפל עד־כדי שווים כלומר ,bj(x)Q(λ) ∼ B(x)P (λ) כך, אם .7

[k(x) :F ] = degλ P (λ) = degλB(x)P (λ) = degλ bj(x)Q(λ)

= degλQ(λ) = max {deg aj , deg bj} = [k(x) :k

(
aj(x)

bj(x)

)
],

.F = k
(
aj(x)
bj(x)

)
ש־ הממדים משוויון נובע k

(
aj(x)
bj(x)

)
⊆ F ש־ מכיוון אבל

�

טרנסצנדנטיות הרחבות 4.2

F מעל אלגברית' תלויה 'בלתי היא S ⊆ E איברים קבוצת שדות. הרחבת E/F תהי
ש־ כך s1, . . . , sn ∈ S שונים ואיברים 0 ̸= f ∈ F [λ1, . . . , λn] פולינום קיימים לא אם
טהורה. טרנסצנדנטית נקראת F (S)/F ההרחבה כזה, במקרה .f(s1, . . . , sn) = 0

כך F ⊆ K ⊆ E ביניים הרחבת יש E/F שדות הרחבת שלכל ראינו 4.1.3 בסעיף
מסובכת להיות עלולה E/K ההרחבה .E בתוך אלגברית סגור Kו־ אלגברית K/F ש־
את להפוך יותר שימושי כלל ובדרך ,(k מעל k(λ, µ | µ2 = λ3 + 1) את למשל (קחו

הלא־אלגברית. ההרחבה את כל קודם ולבצע הסדר
בלתי אברים קבוצת על־ידי נוצרת היא אם טהורה טרנסצנדנטית נקראת ההרחבה

אלגברית. תלויים

ש־ כך F ⊆ E0 ⊆ E ביניים הרחבת יש E/F סופית נוצרת הרחבה לכל 4.2.1 טענה
אלגברית. E/E0 ו־ טהור טרנסצנדנטי E0/F

מקסימלית. אלגברית תלויה בלתי תת־קבוצה להיות S0 את ניקח אם יהיה כך הוכחה.
�

בלתי תת־קבוצה של המקסימלית העוצמה E/Fהיא הרחבה של הטרנסצנדנטיות דרגת 4.2.2 הגדרה
אלגברית. תלויה

היטב. מוגדרת הטרנסצנדנטיות דרגת 4.2.3 משפט

שטייניץ.) של ההחלפה למת לפי (ההוכחה
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סימטריות פונקציות 4.2.1

של פעולה יש .k של טהורה טרנסצנדנטית הרחבה ,K = k(t1, . . . , tn) בשדה נתבונן
.[K :KSn ] = |Sn| = n! ש־ ברור משתנים; החלפת לפי K על Sn

f(λ) = כעת, .L = k(s1, . . . , sn) וניקח ,sk =
∑

i1<···<ik
ti1 · · · tik נסמן

ti+1 של המינימלי הפולינום יותר, כללי באופן .[L[t1] :L] ≤ n ולכן ,
∏
(λ− ti) ∈ L[λ]

[L[t1, . . . , ti+1] :L[t1, . . . , ti]] ≤ ולכן ,
∏

j≤i(λ−tj)−1f(λ) את מחלק L[t1, . . . , ti] מעל
אבל .n! על עולה אינו L מעל K = L[t1, . . . , tn] של הממד באינדוקציה, .n− i+ 1

.L = KSn ולכן ,L ⊆ KSn

מכיוון למעשה, .s1, . . . , snה־ של פונקציה היא סימטרית פונקציה כל מסקנה:
ה־ ולכן trdeg(L) = n אלגברי, L/K ו־ n היא K של הטרנסצנדנטיות שדרגת
הפונקציות של כפונקציה איבר של ההצגה לכן אלגברית. תלויים בלתי s1, . . . , sn

יחידה. היא האלמנטריות הסימטריות
.G גלואה חבורת יש K/KG ולהרחבה L ⊆ KG ⊆ K אז .G ≤ Sn תהי כעת
לכן, .G גלואה חבורת עם ,KG מעל דלעיל f(λ) של הפיצול שדה הוא K ש־ ברור
הפיצול שדה של גלואה חבורת G ש־ n ממעלה פולינום יש ,Sn של G תת־חבורה לכל
כל שמחליף אוטומורפיזם יש כי אי־פריק הפולינום אז טרנזיטיבית, החבורה אם שלה.

שורשים. שני
כאשר Cn ,An ,Sn כמו דוגמאות טהור. טרנסצנדנטי KG האם נתר: בעיית

.ρn ∈ k

(התשובה Q מעל G חבורה כל לממש אפשר האם גלואה: תורת של ההיפוך בעיית
.(C(t) מעל למשל חיובית

גלואה. חבורת בתור לממש אפשר סופית חבורה כל 4.2.4 משפט

אבל ,Sn את לממש מספיק ההתאמה משפט ולפי ,G ⊆ Sn לשכן אפשר קיילי משפט לפי הוכחה.
� .k(x1, . . . , xn) על פועלת זו

נוספים נושאים 4.3

הקורס: במסגרת לכסות שיכולנו נושאים כמה להלן

האבסולוטית. גלואה וחבורות פרו־סופיות חבורות .1

מקומיים. ושדות הערכות מוחלטים, ערכים .2

אלגברית. סגור המרוכבים המספרים שדה - האלגברה של היסודי המשפט .3

גלואה. תורת של ההיפוך בעיית .4

ניוטון). (נוסחאות סימטריים לפולינומים מבוא .5
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(לפי שלמים שדות ממשית. סגור שדה אוקלידיות, פיתגוריות, סדורים: שדות .6
חתכים). ולפי סדרות
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