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alternating matrix is congruent to an upper triangular matrix, and
prove a version of Witt’s Chain Lemma for upper-triangular bases.
(The classical lemma holds for orthogonal bases.)
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1. Introduction

Throughout, F is a field of characteristic not 2. Let K∗(F ) denote the graded Milnor’s K -ring of F ,
and put k∗(F ) = K∗(F )/2K∗(F ). The homogeneous components are denoted by Kn(F ) and kn(F ),
respectively. As usual, {α1, . . . ,αn} denotes the class of α1 ⊗ · · · ⊗ αn in Kn(F ) or in kn(F ). The
Stiefel–Whitney class of a non-degenerate symmetric bilinear space V , with diagonal presentation
V = 〈α1, . . . ,αn〉, is given by:

w(V ) �→
n∏

i=1

(
1 + {αi}t

) ∈ k∗(F )�t �;

see [2, Section I.5] for details. The value of w(V ) depends only on the isomorphism class of V , which
we denote by [V ]. Let Ŵ (F ) denote the Witt–Grothendieck ring consisting of formal differences of
isometry classes of such forms over F . The map w naturally extends to a group homomorphism
w : Ŵ (F ) → 1 + tk∗(F )�t � by setting w(−[V ]) = w([V ])−1.
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For V ∈ Ŵ (F ), we decompose w(V ) = ∑∞
n=0 wn(V )tn where wn : Ŵ → kn(F ) is called the n-th

Stiefel–Whitney map. Then

wn〈α1, . . . ,αt〉 =
∑

1�i1<···<in�t

{αi1 , . . . ,αin }. (1)

Noting that k1(F ) ∼= F ×/(F ×)2, we see that w1 is equivalent to the determinant of a bilinear space
given by

det V = det(B) · (F ×)2 ∈ F ×/
(

F ×)2
, (2)

where B is any (symmetric) matrix representing the bilinear form on V . The map w2 is equivalent to
the Hasse–Witt invariant, see [2, Rem. 5.12].

Given the significant role of the Stiefel–Whitney invariants in the theory of quadratic forms, it is
natural to consider a generalization to bilinear forms in general. The purpose of this paper is to ex-
amine several potential extensions of the Stiefel–Whitney maps {wn}∞n=0, from symmetric to arbitrary
regular bilinear forms. To describe our proposed extensions, let us write symbols in kn in matrix form.
If a symmetric bilinear space V is represented by a diagonal matrix diag(a1, . . . ,at), we have that

wn

⎛
⎜⎝

a1
. . .

at

⎞
⎟⎠ =

∑
i1<···<in

⎧⎪⎨
⎪⎩

ai1

. . .

ain

⎫⎪⎬
⎪⎭ .

To generalize this, let Λn denote the free abelian group generated by formal symbols of the
form {A} for A ∈ Mn(F ). Let ŵn be the map M(F ) → Λn , where M(F ) = ⋃∞

t=0 Mt(F ), defined by

ŵn

⎛
⎜⎝

a11 . . . a1t
...

. . .
...

at1 . . . att

⎞
⎟⎠ =

∑
1�i1<i2<···<in�t

⎧⎪⎨
⎪⎩

ai1i1 . . . ai1in

...
. . .

...

aini1 . . . ainin

⎫⎪⎬
⎪⎭ . (3)

Now let A be some set of regular matrices over F , possibly of varying dimensions. We say that
A, B ∈ A are congruent, and denote A ∼ B , if they represent isomorphic bilinear forms, namely if
B = P A P t for some P ∈ GL(F ).

Let ΛA
n denote the subgroup of Λn generated by the image ŵn(A).

Definition 1.1. A symbolic invariant of dimension n for A is a map f from A to a quotient of ΛA
n ,

which factors through ŵn and is well defined up to congruence.

Thus a symbolic invariant is any map f for which there is a commutative diagram

A ŵn

f

ΛA
n

A/∼ ∗
If f is a symbolic invariant, f (V ) can be computed by choosing for V a representation from A,

and applying (3). For example, by (1), the Stiefel–Whitney invariant wn is a symbolic invariant for the
class D of diagonal matrices.

Definition 1.2. Given a set A of regular matrices over F , kAn denotes the quotient of ΛA
n with respect

to the relations ŵn(a) = ŵn(b) for every a ∼ b in A.
The generic symbolic invariant of A is the map ŵA

n :A→ kAn induced by ŵn .

Thus ŵA
n satisfies (3); the defining relations in kAn are equivalent to ŵA

n (a) = ŵA
n (b) whenever

a ∼ b. Therefore, any symbolic invariant factors through the generic one.
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Attempting to define symbolic invariants for all matrices, the first step would be to compute the
group kGL

n and construct the generic symbolic invariant for GL(F ). It turns out that for n = 1,2 this
group is trivial:

Theorem 1.3. For n = 1 and n = 2, kGL
n = Z, and all symbols are equal. In fact, ŵGL

n (a) = (t
n

)
for every a ∈

GLt(F ).

Even for the class S of symmetric regular matrices, we still have:

Theorem 1.4. For n = 1 and n = 2, kSn = Z.

In addition, while the structure of the groups kGL
n is not clear when n > 2, because of singular

blocks, we can still show that as a symbolic invariant ŵGL
n is weaker than the dimension:

Proposition 1.5. Let A, B ∈ GLt(F ). Then, ŵGL
n (A) = ŵGL

n (B) in kGL
n . Moreover, all symbols in kGL

n correspond-
ing to invertible matrices are equal.

In light of these results, and noting that the Stiefel–Whitney invariants which are defined on S
are only symbolic with respect to D, it makes sense to consider symbolic invariants for interme-
diate classes. At the same time, we want our invariant to be defined on a set having at least one
representative from each congruence class.

Another issue is that we would like kAn to be generated by regular symbols, and for this it is
necessary that principal minors of regular matrices in A be regular, which is not the case for the
classes GL and S .

We therefore consider the set B of regular upper triangular matrices. It turns out that it contains a
representative of every (regular) congruence class, except at most one in every dimension, and clearly
all principal minors of elements in B are regular. We obtain the following:

Theorem 1.6. For every n � 1, kBn = Z ⊕ (F ×/F ×2
), via the map {A} �→ (1,det A). In fact ŵB

n : a �→((t
n

)
,det(a)

(t−1
n−1

))
for every a ∈ GLt(F ).

We prove this theorem, as well as Theorems 1.3 and 1.4, in Section 2. In Section 3 we show that
every non-alternating matrix is congruent to an upper triangular matrix. This is used in Section 4 to
prove Proposition 1.5. Finally in Section 5 we prove a chain lemma for upper triangular spaces, which
is of independent interest is spite of kBn being defined by low-dimensional invariants.

Notice that our definition of symbolic invariants does not require the additivity property
ŵn(a ⊕ b) = ŵn(a) + ŵn(b), although these are desirable at least for some large set of pairs a,b.
In light of the previous results, ŵGL

1 and ŵB
1 are additive. Likewise if ŵGL

2 is restricted to matrices of
dimension divisible by d, then it is additive modulo d2.

Non-symbolic extensions of the Stiefel–Whitney invariant may also be considered. Let Ŵ (F ) de-
note the Witt–Grothendieck group consisting of formal differences (with respect to direct sum) of
symmetric regular bilinear forms and let Â(F ) denote the group obtained by taking formal differences
of arbitrary regular bilinear forms. It was verified in [3] that the natural map Ŵ (F ) → Â(F ) is an
inclusion. A group for which the following diagram

Â(F ) ∗

Ŵ (F )
wn kn(F )

commutes would supply an invariant generalizing the n-th Stiefel–Whitney map. The most general
such invariant is the pushout of the diagram. This leads to the classification of binary forms which
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was considered by C. Riehm [6], R. Scharlau [7] and others. It is proved in [3] that the pushout is
a direct sum of kn(F ) with copies of some Witt–Grothendieck groups consisting of differences of
hermitian forms over extensions of F . Details of this will appear elsewhere.

Finally we remark that while we work over a field, the definitions are valid over any commutative
ring, and the proofs may go through for rings with sufficiently many units, as is often the case in
K -theory (see for example [4]). This may serve as a tool in studying bilinear forms over rings.

2. Symbolic invariants for GL, S and B

In this section we prove Theorems 1.3, 1.4 and 1.6 regarding the structure of kX
n and ŵ X

n for X = GL,
S and B. We write P ∗ A for the congruence action of GLt(F ) on Mt(F ), namely P ∗ A = P A P t.

Proof of Theorem 1.3. Before starting, note that the relations of kGL
n preserve the number of symbols.

Therefore, it is enough to show all symbols in kGL
n are equal. Recall that by definition, ŵn(P ∗ A) =

ŵn(A) for every A and every invertible P .
Step 0. We start by showing kGL

1 = Z. To see this observe that[
1 1
0 1

]
∗
[

a b
c d

]
=

[
a + b + c + d b + d

c + d d

]
(4)

for all a,b, c,d ∈ F . By applying ŵ1 to the middle and right matrices we get {a + b + c + d} + {d} =
{a} + {d} which implies {a + b + c + d} = {a} for all a,b, c,d with ad − bc �= 0. Take b = c = 0 and
a,d �= 0 to get {a + d} = {a}. This clearly implies {x} = {y} for all x, y ∈ F .

Step 1. We now prove kGL
2

∼= Z. Apply ŵ2 to the middle and right matrices in (4) to get{
a b
c d

}
=

{
a + b + c + d b + d

c + d d

}
(5)

in kGL
2 , whenever ad − bc �= 0. Let

A =
⎡
⎣ a b c

a′ b′ c′
a′′ b′′ c′′

⎤
⎦ , B =

⎡
⎣ 1 1

1
1

⎤
⎦ ∗ A =

⎡
⎣ a + b + a′ + b′ b + b′ c + c′

a′ + b′ b′ c′
a′′ + b′′ b′′ c′′

⎤
⎦ .

Then ŵ2(A) = ŵ2(B). By eliminating symbols using (5) we get:{
a c

a′′ c′′
}

=
{

a + b + b′ + a′ c + c′
a′′ + b′′ c′′

}
whenever det A �= 0.

Step 2. Taking a = c = a′′ = 0 in A, we see that as long as −a′bc′′ = det A �= 0,{
0 0
0 c′′

}
=

{
b + b′ + a′ c′

b′′ c′′
}

.

As b′, c′,b′′ are arbitrary, we can rewrite this as:{
0 0
0 c′′

}
=

{ ∗ ∗
∗ c′′

}
, c′′ �= 0. (6)

In the same manner, by letting a = c = c′′ = 0 we get:{
0 0

a′′ 0

}
=

{ ∗ c′
∗ 0

}
, c′,a′′ �= 0. (7)

Mimicking the proof of the relation (5) after reflecting A and B from step 1 across the minor
diagonal, we get:{

c′′ 0
0 0

}
=

{
c′′ ∗
∗ ∗

}
, i �= 0. (8)
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Step 3. We now claim that for any two non-zero X, Y ∈ M2(F ), we have {X} = {Y }. Indeed, let
a,b, c, x ∈ F and assume x �= 0, then by (5), (6) and (8):{

x a
b c

}
=

{
x 0
0 0

}
=

{
x 0
0 1

}
=

{
0 0
0 1

}
=

{
1 0
0 1

}
, (9){

0 a
b x

}
=

{
0 0
0 x

}
=

{
1 0
0 x

}
(9)=

{
1 0
0 1

}
, (10){

0 x
b 0

}
=

{
0 0
1 0

}
=

{
1 1
1 0

}
(9)=

{
1 0
0 1

}
, (11){

0 0
x 0

}
=

{
0 1
1 0

}
(11)=

{
1 0
0 1

}
. (12)

Step 4. Observe that
[ 1 −1

0 1

] ∗ [ 0 1
1 1

] = [−1 0
0 1

]
. By tensoring all matrices with the 2 × 2 unit matrix

we obtain the congruence⎡
⎢⎢⎣

0 0 1 0
0 0 0 1
1 0 1 0
0 1 0 1

⎤
⎥⎥⎦ ∼

⎡
⎢⎢⎣

−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ ;

we now apply ŵ2 and cancel out non-zero symbols on both sides using step 3. After doing so we

are left with a zero symbol on the right and a non-zero symbol on the left, so
{ 0 0

0 0

}
is equal to the

non-zero symbols. �
Proof of Theorem 1.4. The argument of step 0 of the last proof still applies to kS1 (assuming b = c)
and therefore kS1

∼= Z.
Since kS2 is generated by symmetric symbols, we only need to prove all symmetric symbols are

equal. Repeating the steps 1 and 2 of the proof of Theorem 1.3 with symmetric matrices, we can still
obtain relations (5) and (8) (for symmetric symbols), implying that:{

a b
b c

}
=

{
1 0
0 1

}
(13)

whenever a or c are non-zero. Applying step 4 of that proof shows that this also holds when a = b =
c = 0. It remains to show that{

0 b
b 0

}
=

{
1 0
0 1

}
(14)

for b �= 0. However, it is well known that:[
0 b
b 0

]
∼

[
1 0
0 −1

]

when charF �= 2, so{
0 b
b 0

}
=

{
1 0
0 −1

}
=

{
1 0
0 1

}
. �

Proof of Theorem 1.6. Every principal minor of a regular upper triangular matrix is regular and upper
triangular, so the generators of kBn are upper triangular regular symbols.

Step 1. Let us first show that every symbol is equal to a diagonal one. This is clear for n = 1, so
assume n � 2.
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For any m � 2, let Pm = [ 0 1
−1 1

] ⊕ Im−2 ∈ GLm(F ). Fix an arbitrary scalar α ∈ F × , row vector u ∈
M1×(n−1)(F ) and invertible matrix A ∈ GLn−1(F ), and consider the (n +1)× (n +1) invertible matrices

A′ =
⎡
⎣ α 1 u

1 u
A

⎤
⎦ , A′′ =

⎡
⎣ 1 1 u

α 0
A

⎤
⎦ .

A computation shows that Pn+1 ∗ A′ = A′′ , so A′ ∼ A′′ , implying that ŵn(A′) = ŵn(A′′). Evaluating the
equality in kBn , there are n + 1 symbols (of dimension n) in each side, obtained by erasing the i-th
row and column for each i = 1, . . . ,n +1. When i > 2 the respective minors have the same form as A′
and A′′ , and are congruent to each other by Pn , so their symbols are equal. The symbol for i = 2 in
the left hand side cancels out with the symbol for i = 1 in the right hand side, leaving the equality{

α u
A

}
=

{
α 0

A

}
.

Repeating the same argument with P (i)
n = Ii ⊕ [ 0 1

−1 1

] ⊕ In−i−2 in place of Pn , for i = 1, . . . ,n − 2,
we get:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a11 a12 a13 . . . an1
a22 a23 . . . an2

a33 . . . a3n

. . .
...

ann

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a11 0 0 . . . 0
a22 a23 . . . an2

a33 . . . a3n

. . .
...

ann

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

a11 0 0 . . . 0
a22 0 . . . 0

a33 . . . a3n

. . .
...

ann

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

= · · · =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11 0 . . . 0

a22
. . .

...

. . . 0
ann

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (15)

as asserted.
Step 2. Now let a,b, x, y ∈ F × . The matrices

C =
[

a x − a − b
b

]
, D =

[
xy2 y(x − a − b)

abx−1

]
are congruent since P ∗ C = D where

P =
[

y y
−ax−1 1 − bx−1

]
.

Assume n � 2. For a diagonal n × n matrix E , X ∈ M2(F ) and 1 � i < j � n, let Xij,E denote the
m ×m matrix obtained from E by spreading X in the (i, i), (i, j), ( j, i) and ( j, j) entries; use the same
notation for symbols. The identity P ∗ C = D now gives rise to Pij,I ∗ Cij,E = Dij,E . Fixing x = ab and
y = 1 and applying ŵn to Cij,E ∼ Dij,E , we get by (15) that{

a 0
b

}
i j,E

=
{

a ab − a − b
b

}
i j,E

=
{

ab ab − a − b
1

}
i j,E

=
{

ab 0
1

}
i j,E

,

so fixing i = 1 and ranging over j = 2, . . . ,n we see that

{A} = {det A} (16)

where for every c ∈ F × , {c} is the symbol associated to the diagonal matrix diag(c,1, . . . ,1).
Repeating the argument once more with x = a and b = 1 where a, y are arbitrary, we get{

a 0
1

}
=

{
a −1

1

}
=

{
ay2 −y

1

}
=

{
ay2 0

1

}

12,I 12,I 12,I 12,I
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so

{a} = {
ay2}. (17)

Note that the relations (16) and (17) clearly hold for n = 1.
Step 3. To finish, fix x = y = 1, and notice that C ⊕ In−1 ∼ D ⊕ In−1 by (P ⊕ In−1) ∗ (C ⊕ In−1) =

D ⊕ In−1, so ŵn(C ⊕ In−1) = ŵn(D ⊕ In−1). Again this is an equality of two sums of n + 1 symbols,
with the minors obtained by erasing the i-th row and column congruent in pairs for i > 2. After
cancellation we get

{a} + {b} = {ab} + {1}. (18)

It follows that for any non-zero α1, . . . ,αk , {∏k
i=1 αi} + (k − 1){1} = ∑k

i=1{αi}. Let A ∈ B be a t × t
regular upper triangular matrix, where t � n. We claim that

ŵn(A) =
(

t − 1

n − 1

)
{det A} +

(
t − 1

n

)
{1}. (19)

Indeed, by definition ŵn(A) = ∑
N⊆{1,...,t}{AN} where AN is the minor obtained from A by tak-

ing the rows and columns in N , and N ranges over subsets of size n. The relation (16) gives
{AN} = {∏i∈N aii}, so by (18) we have that ŵn(A) = ∑

N{∏i∈N aii} = {∏N

∏
i∈N aii} + ((t

n

) − 1
){1} ={

(det A)
(t−1

n−1

)} + ((t
n

) − 1
){1} = (t−1

n−1

){det A} + ((t
n

) − (t−1
n−1

)){1} = (t−1
n−1

){det A} + (t−1
n

){1}, as asserted.

To finish the proof, let us define a map kBn → Z ⊕ (F ×/F ×2
) by sending a generator {M}, for

M ∈ B of dimension n × n, to (1,det M). To show that this is a well defined group homomorphism,
note that for every A, B ∈ GLt(F ), if A ∼ B then det(A) ≡ det(B) up to squares, so by (17) and (19),
both of ŵn(A) and ŵn(B) are mapped to the same element.

The map (n,α) �→ {α} + (n − 1){1}, which is well defined by (17), inverts the above by (16)
and (18). �
3. Congruence to an upper triangular matrix

In this section we show that, except when the base field has 2 elements, every non-alternating
matrix is congruent to an upper triangular matrix. We do not assume charF �= 2 in this section. Recall
that a matrix A is alternating if At = −A and A has zero diagonal (the latter condition is superflu-
ous if the characteristic of F is not 2). Some of the arguments below are trivial from a geometric
perspective, however we pay special attention to forms over finite fields.

Remark 3.1. A non-zero alternating matrix cannot be congruent to an upper triangular matrix. Indeed,
congruence preserves alternativeness, and an upper triangular alternating matrix is necessarily zero.

It is more convenient to phrase the proofs in terms of bilinear forms and their underlying vector
spaces.

Let V be a bilinear space. A vector u ∈ V is isotropic if (u, u) = 0; the form is called alternating if
all vectors are isotropic and totally isotropic if (u, v) = 0 for every u, v . A form is upper triangular if
there is a base b1, . . . ,bn such that (b j,bi) = 0 for every i < j. The (ordered) base {b1, . . . ,bn} is then
called upper triangular.

For a subset X ⊆ V , let X L = {y: (y, X) = 0}, and similarly define X R = {y: (X, y) = 0}; in particu-
lar V L is the left radical of the form. For every v ∈ V , the dimension of v L = {v}L is at least dim V −1,
and equal to dim V − 1 if v /∈ V R .

We say that a quadratic form Q : V → F is reducible if Q (x) = ϕ(x)ϕ′(x) for some ϕ,ϕ′ ∈ V ∗ .

Proposition 3.2. Let Q : V → F be a quadratic form and assume there is a subspace U ⊆ V of codimension 1
such that Q |U = 0. Then Q is reducible.
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Proof. Let v1, . . . , vn−1 be a base of U , and let vn /∈ U . Then Q (
∑

αi vi) = 0 whenever αn = 0, so as
a quadratic polynomial in α1, . . . ,αn , the polynomial Q (

∑
αi vi) is divisible by αn , and the quotient

is necessarily linear. �
Corollary 3.3. Let V be a non-alternating bilinear space, then there are at most two alternating subspaces of V
of codimension 1.

Proof. We may assume V has at least one alternating subspace of codimension 1. Let Q be the
quadratic form corresponding to the bilinear form on V . Then, by the previous proposition, Q (v) =
ϕ1 v · ϕ2 v for some ϕ1,ϕ2 ∈ V ∗ . Thus, an alternating subspace of V of codimension 1 is contained in
kerϕ1 ∪ kerϕ2, and must therefore be either kerϕ1 or kerϕ2. �
Lemma 3.4. Let V be a non-alternating bilinear space, where F �= F2 and dim V � 3. Then V contains at least
3 linearly independent anisotropic vectors.

Proof. Let x ∈ V be an anisotropic vector. Take y, z ∈ V such that x, y, z are linearly independent. The
polynomial f (α) = (αx + y,αx + y) is non-zero, so it has at most two roots. Since |F | > 2 there is an
anisotropic vector y′ ∈ y + F x. By the same argument there is an anisotropic z′ ∈ z + F x, so x, y′, z′
are the desired vectors. �

An optimal bound on the number of anisotropic vectors is given in Section 5.

Proposition 3.5. Suppose F �= F2 and let V be a bilinear space which is not totally isotropic. Then V is upper
triangular if and only if V is not alternating.

Proof. First assume V is regular. If dim V = 0 or dim V = 1 there is nothing to prove. In the case
dim V = 2 there is a vector v ∈ V such that (v, v) �= 0. Take 0 �= u ∈ v L , then {v, u} is an upper
triangular base.

When dim V > 2, there are by Lemma 3.4 linearly independent anisotropic vectors v1, v2, v3 ∈ V .
Since V is regular, the orthogonal spaces v L

i are distinct, and by Proposition 3.2, at least one of them
is not alternating, say v L

1. Now, by induction on the dimension, v L
1 has an upper triangular base

{u2, . . . , un}, hence the ordered set {v1, u2, . . . , un} is an upper triangular base of V .
In the general case, let V L = {x: (x, V ) = 0} be the left radical of V . Let u ∈ V be an anisotropic

vector, then u /∈ V L , so there is a subspace x ∈ U � V such that V = V L ⊕ U . Then U is regular, and
an upper triangular base of U followed by a base of V L , consists of an upper triangular base of V . �

By symmetry, Proposition 3.5 is also a criterion for lower triangularity. The matrix analogue is:

Corollary 3.6. Let M �= 0 be a square matrix over a field with more than 2 elements, then the following condi-
tions are equivalent:

(i) M is congruent to an upper triangular matrix.
(ii) M is congruent to a lower-triangular matrix.

(iii) M is not alternating.

Example 3.7. Lemma 3.4, Proposition 3.5 and Corollary 3.6 are not true when F = F2 even for regular
bilinear spaces. For instance, take the bilinear space obtained from the matrix:⎡

⎣ 1 1
1

1

⎤
⎦ .
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It is clearly regular and not alternating. However, its regularity implies that if it is upper triangular,
it must have at least 3 anisotropic vectors, but only (0,1,0) and (0,1,1) are anisotropic. (This is the
only such example in dimension 3, up to congruence.)

Remark 3.8. For symmetric bilinear spaces, Proposition 3.5 holds for an arbitrary field. This was al-
ready noted by Albert [1]. Indeed, if F = F2 and in the proof of Proposition 3.5 v L

1 is alternating, then
v L

1 has a representation matrix of the form

A =
[

0 1
1 0

]
⊕ · · · ⊕

[
0 1
1 0

]
.

As V is symmetric, this implies V has representation matrix [1 ] ⊕ A. It is therefore enough to verify
that

[1 ] ⊕
[

0 1
1 0

]
∼ [1 ] ⊕

[
1 0
0 1

]

over F2, via the matrix

[
1 1 1
1 1 0
1 0 1

]
.

4. Proof of Proposition 1.5

After proving Theorem 1.6 and its variants in Section 2, we come to prove Proposition 1.5, which
is more delicate and requires Theorem 1.6, Proposition 3.5, and the following two lemmas.

Lemma 4.1. Define the m × m matrices:

Am =

⎡
⎢⎢⎢⎢⎣

0 1 . . . 1

−1
. . .

. . .
...

...
. . . 0 1

−1 . . . −1 0

⎤
⎥⎥⎥⎥⎦ , Bm =

⎡
⎢⎢⎢⎢⎣

0 1 . . . 1

−1
. . .

. . .
...

...
. . . 0 1

−1 . . . −1 1

⎤
⎥⎥⎥⎥⎦ .

Then det(Bm) = 1 for all m and det(Am) is 0 for even m and 1 for odd m.

Lemma 4.2. Let X be a regular alternating m × m matrix, then m is even and X ∼ Am when Am is defined as
in the previous lemma.

We can now prove Proposition 1.5.

Proof of Proposition 1.5. By Theorem 1.3 we may assume n > 2. For α ∈ F , let {α} denote the symbol
{diag(α,1, . . . ,1)}. The matrices Am and Bm of Lemma 4.1 will be used throughout the proof.

Step 1. We claim that all non-alternating regular symbols are equal. To see this, first note that
any relation in kBn also holds in kGL

n . In particular, {A} = {det A} = {α2 · det A} for any regular upper
triangular n × n matrix A and α ∈ F × , as noted in (16) and (17). By Proposition 3.5, every regular
non-alternating matrix A is congruent to an upper triangular matrix A′ and therefore

{A} = {
A′} = {

det A′} = {det A} (20)

for all non-alternating A ∈ GLn(F ).
Now, let a,b ∈ F × with b �= a. It is easy to see that

X =
[

a 0
0 b − a

]
and Y =

[
b b − a

b − a b − a

]
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are congruent. Therefore X ⊕ In−1 ∼ Y ⊕ In−1, implying ŵn(X ⊕ In−1) = ŵn(Y ⊕ In−1). Evaluating,
we have n + 1 symbols on each side, n of them cancel immediately, leaving us with {b} = {a}. Thus,
by (20), for all non-alternating A, B ∈ GLn(F ) we get:

{A} = {det A} = {det B} = {B}. (21)

Step 2. We claim {An} = {1}. To this end, note that Bn+1 has n + 1 principal minors of size n × n,
n of which are equal to Bn , and one equal to An . By Lemma 4.1 Bn is regular so:

ŵn(Bn+1) = {An} + n{Bn} (21)= {An} + n{1}.
On the other hand, by Proposition 3.5 there is an upper triangular matrix U congruent to Bn+1. Any
n × n principal minor U ′ of U is regular and non-alternating, hence {U ′} = {1}. Therefore:

(n + 1){1} = ŵn(U ) = ŵn(Bn+1) = {An} + n{1}
implying {An} = {1}.

Step 3. To finish, it is enough to prove that for all A ∈ GLt(F ), ŵn(A) = (t
n

){1}. If A is not al-
ternating, then by Proposition 3.5 there is upper triangular A′ ∼ A. The principal minors of A′ are
regular and non-alternating. Therefore, by step 1, ŵn(A) = ŵn(A′) = (t

n

){1}. Finally if A is alternat-
ing, then by Lemma 4.2, A ∼ At . All n × n principal minors of At are equal to An . Thus, by step 2,
ŵn(A) = ŵn(At) = (t

n

){An} = (t
n

){1}. �
5. Chain lemma for upper triangular bases

In this last section we prove an upper triangular analogue of Witt’s Chain Lemma about orthogonal
bases:

Theorem 5.1 (Witt). Let V be a symmetric regular bilinear space with orthogonal bases E and F , then there is
a series of orthogonal bases:

E = E0, . . . , Et = F

such that Ei+1 differs from Ei by at most two adjacent vectors.

(For a proof see, for instance, [5, Lemma 58:1].)
We will use the notation of Section 3; in particular the characteristic of F is arbitrary. Recall the

definition of an upper triangular base of a bilinear space V from Section 3. We call a vector v ∈ V
upper triangular if it is a member of some upper triangular base. Our first observation is that in spite
of the inherent asymmetry of upper triangular bases, an anisotropic upper triangular vector can be
positioned everywhere in a suitable upper triangular base.

Lemma 5.2. Let v be an anisotropic upper triangular vector. Then for every j there is an upper triangular base
F = { f1, . . . , fn} such that f j = v.

Proof. We may assume {e1, . . . , en} is an upper triangular base with ei = v . It is enough to prove that
there are upper triangular bases F = { f1, . . . , fn} and G = {g1, . . . , gn} such that f i−1 = ei (if i > 1)
and gi+1 = ei (if i < n). We will only check the existence of F , as the existence of G is similar. Indeed,
U = span{ei−1, ei} (i > 1) and let 0 �= x ∈ eL

i ∩U . Then we can take F = {e1, . . . , ei−2, ei, x, ei+1, . . . , en}.
(Notice x /∈ F ei since ei = v is anisotropic.) �
Proposition 5.3. Let V be a bilinear space with dim V > 1 and v ∈ V an anisotropic vector. Then, v is upper
triangular if and only if v L is totally isotropic or non-alternating.

Proof. Let v ∈ V be anisotropic. By Lemma 5.2, v is upper triangular if and only if there exists upper
triangular base {v, v2, . . . , vn}. Since v is anisotropic, v L is of codimension 1, so in this case v L =
span{v2, . . . , vn}, hence v L is upper triangular. By Proposition 3.5 this happens if and only if v L is
totally isotropic or non-alternating. �
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Remark 5.4. Upper-triangularity of a vector is equivalent to lower triangularity since reversing the
order turns an upper triangular base into a lower triangular one.

Clearly, if V is regular, any upper triangular vector must be anisotropic. An anisotropic vector
which is not upper triangular will be called singular.

Corollary 5.5. Let V be a regular upper triangular bilinear space. If dim V is even then there are no singular
vectors. If dim V is odd, then there are at most two singular directions in V .

Proof. Assume V has a singular vector v . By Proposition 5.3, v L is alternating and since v is
anisotropic, V = F v ⊕ v L . This implies v L is regular, but regular alternating bilinear spaces are
even dimensional, hence dim V must be odd. By Corollary 3.3 there can be at most two alternat-
ing codimension-1-subspaces, say U1, U2. Therefore, all singular vectors v are contained in U R

1 ∪ U R
2

(since v L = Ui for some i). But V is regular hence dim U R
1 = dim U R

2 = 1, so there are at most two
singular vectors up to multiplication by a scalar. �

To prove our chain lemma for upper triangular bases, we will need the following lemma about the
number of points on a quadric hypersurface. Results of this type are already known. A non-geometric
proof is brought here for the sake of completeness.

Lemma 5.6. Let Q be a non-zero quadratic form on a space V over the finite field Fq. Then, V contains at least
(q − 1)2qdim V −2 anisotropic vectors.

The bound is easily seen to be tight by choosing Q to be a reducible form.

Proof. Let Tn stand for the minimal possible number of anisotropic vectors in V when n = dim V .
Assume V contains an alternating subspace of codimension 1. Then by Proposition 3.2 (v, v) =

ϕ1 v · ϕ2 v for some ϕ1,ϕ2 ∈ V ∗ . It follows that the isotropic vectors of V are kerϕ1 ∪ kerϕ2, so V
contains at least qn − 2qn−1 + qn−2 = (q − 1)2qn−2 anisotropic vectors.

Otherwise, by the isomorphism V ∼= V ∗ , V has |PV | = (qn − 1)/(q − 1) (non-alternating) subspaces
of codimension 1. Each such subspace contains at least Tn−1 anisotropic vectors and every anisotropic
vector is contained in (qn−1 − 1)/(q − 1) subspaces of codimension 1. Therefore, V contains at least⌈(

qn − 1

q − 1

)(
q − 1

qn−1 − 1

)
Tn−1

⌉
� qTn−1

anisotropic vectors. Thus, Tn � min{(q − 1)2qn−2,qTn−1}. The claim follows by induction starting from
T1 = q − 1. �
Theorem 5.7. Let V be a regular bilinear space over a field F with |F | � 7 and let E and �E be two upper
triangular bases of V , then there is a series of upper triangular bases:

E = E0, . . . , Et =�E
such that Ei+1 differs from Ei by at most two adjacent vectors. In addition, when dim V � 2, one may assume
t � 2 · 3dim V −2 − 1.

Proof. Let n = dim V . Write E = {e1, . . . , en} and �E = { f1, . . . , fn}. We write E ∼ �E when there is a
chain of upper triangular bases connecting E and �E , where in every two consecutive bases all but two
adjacent vectors remain unchanged.

Step 0. If n < 3, there is nothing to prove. Assume n � 3. It is enough to find upper triangular
bases E ′ = {e′

1, . . . , e′
n} and �E ′ = { f ′

1, . . . , f ′
n} such that E ∼ E ′ , �E ∼�E ′ and e′

1 = f ′
1. Then, the induction

hypothesis implies that E ′ ∼�E ′ .
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Step 1. Let P1 be the projection from V to U1 = span{e2, . . . , en} whose kernel is F e1, and let P2
be the projection from V to U2 = span{ f2, . . . , fn} whose kernel is F f1. We claim that if there is an
anisotropic vector v ∈ V such that P1 v , P2 v are upper triangular in U1, U2 respectively, then there
are E ′ , �E ′ as in step 0 having v as their first vector.

Indeed, if such v exists, then by Proposition 5.2, U1 has an upper triangular base {P1 v, v1, . . . ,

vn−2}, which is connected to {e2, . . . , en} by induction on n. In particular E ′′ = {e1, P1 v, v1, . . . , vn−2}
is an upper triangular base of V connected to E . Now, notice that v ∈ span{e1, P1 v} an is anisotropic.
Let 0 �= v ′ ∈ span{e1, P1 v} ∩ v L . Then E ′ = {v, v ′, v1, . . . , vn−2} is upper triangular and clearly con-
nected to E ′′ , hence to E . A similar argument constructs �E ′ with the analogous properties.

We are thus reduced to show the existence of v as above.
Step 2. If n = 3, U1 and U2 are of dimension 2 and hence (by Corollary 5.5) contain no singular

vectors. This means that we only need to find an anisotropic v such that P1 v and P2 v are anisotropic
as well. To this end, notice that each of the maps x �→ (x, x), x �→ (P1x, P1x) and x �→ (P2x, P2x) is
a non-zero quadratic form (take x to be e1, e2, f2 respectively). When F is infinite, there is clearly a
vector v such that the three are non-zero.

So assume F is a finite field of cardinality q. By Proposition 5.6 each of PU1, PU2 contains at most
2 = (q + 1) − (q − 1) isotropic vectors while PV contains at least q(q − 1) anisotropic vectors. Hence,
that number of vectors v in PV for which v , P1 v and P2 v are anisotropic is at least q(q −1)−2 ·2q =
q2 − 5q which is larger than 0 when q � 7. Therefore, the existence of v is guaranteed.

Step 2′. Assume n > 3. We need to find an anisotropic v ∈ V such that P1 v , P2 v are upper triangu-
lar in U1 and U2, respectively; namely anisotropic and not singular. Recall that by Corollary 5.5, PU1
and PU2 each contains at most 2 singular vectors. In particular, v must be outside a finite number of
algebraic sets in V of codimension at least 1. If F is infinite, we are done.

For F finite of cardinality q, a similar argument to step 2, will show that there are at least:

qn−2(q − 1) − 2q

[
qn−1 − 1

q − 1
− qn−3(q − 1)

]
= qn−2

q − 1

[
(q − 1)2 − 2q2 + 2q3−n + 2(q − 1)2]

= qn−2

q − 1

[
q2 − 6q + 3 + 2q3−n]

vectors in v ∈ PV for which v , P1 v and P2 v are anisotropic. The number of v ∈ PV such that P1 v or
P2 v are singular cannot exceed 2 · 2q = 4q and therefore, there are at least:

qn−2

q − 1

[
q2 − 6q + 3 + 2q3−n − 4q3−n(q − 1)

] = qn−2

q − 1

[
q2 − 6q + 3 − 4q4−n + 6q3−n]

vectors v satisfying our conditions. When n � 4 this number is positive for every q � 7.
We finish by proving the bound on t . Let us denote by Tn the maximal distance when dim V = n.

Clearly T2 = 1. The proof uses the chains from E to E ′′ , then to E ′ , then to �E ′ , then to �E ′′ (similarly
to E ′′) and from there to �E . The distances from E to E ′′ , from E ′ to �E ′ and from �E ′′ to �E are at most
Tn−1, and the other pairs are of distance 1. Thus, Tn � 3Tn−1 + 2 and the bound Tn � 2 · 3n−2 − 1
follows by induction. �
Remark 5.8. The counting argument in the proof of Theorem 5.7 works only when |F | � 7. In dimen-
sion 3, the claim was verified directly and it does hold over the smaller fields as well.

We conclude with a matrix-form interpretation of Theorem 5.7. Let Pn denote the set of n-by-n
matrices obtained by positioning a 2-by-2 regular block matrix along the diagonal of the identity
matrix. Form a graph Bn(F ) whose vertices are the upper triangular matrices of size n, with A, B
connected by an edge if B = P A P t for some P ∈Pn .

Theorem 5.9. Assume |F | � 7. Every two congruent upper triangular matrices belong to the same connected
component of Bn(F ), and the diameter of each connected component is at most 2 · 3n−2 − 1.



JID:LAA AID:12219 /FLA [m1G; v 1.101; Prn:10/06/2013; 11:29] P.13 (1-13)

U.A. First, U. Vishne / Linear Algebra and its Applications ••• (••••) •••–••• 13
References

[1] A.A. Albert, Symmetric and alternate matrices in an arbitrary field I, Trans. Amer. Math. Soc. 43 (1938) 386–436.
[2] N. Elman Karpenko, A.S. Merkurjev, The Algebraic and Geometric Theory of Quadratic Forms, Amer. Math. Soc. Colloq. Publ.,

vol. 56, 2008.
[3] U.A. First, Extensions of the Witt Ring, M.Sc. thesis, Bar-Ilan University, 2009.
[4] D. Guin, Homologie du groupe linéaire e K-théorie de Milnor des anneaux, J. Algebra 123 (1989) 27–59.
[5] O.T. O’meara, Introduction to Quadratic Forms, Springer, 1963.
[6] C. Riehm, The equivalence of bilinear forms, J. Algebra 31 (1974) 45–66.
[7] R. Scharlau, Zur Klassifikation von Bilinearformen und von Isometrien über Körpern (On the classification of bilinear forms

and of isometries over fields), Math. Z. 178 (3) (1981) 359–373.

http://refhub.elsevier.com/S0024-3795(13)00366-2/bib416C62657274s1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib454B4Ds1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib454B4Ds1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib4D5363746865736973s1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib4775696Es1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib4F6D65617261s1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib52s1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib5363s1
http://refhub.elsevier.com/S0024-3795(13)00366-2/bib5363s1

	Stiefel-Whitney invariants for bilinear forms
	1 Introduction
	2 Symbolic invariants for GL, S and B
	3 Congruence to an upper triangular matrix
	4 Proof of Proposition 1.5
	5 Chain lemma for upper triangular bases
	References


