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Abstract. Given a central simple algebra A of degree 3 over a
field of characteristic 3, we prove that there is a unique symmet-
ric composition algebra extending the commutator operation on
the trace-zero part modulo scalars. This is analogous to Okubo’s
construction of symmetric composition algebras in the case of char-
acteristic not 3. We apply the composition algebra tools to obtain
a classification of maximal 3-central spaces and maximal Galois
hyperplanes of A, and prove a new common slot lemma for such
algebras.

1. Introduction

Composition algebras are a well-known class of nonassociative alge-
bras, characterized by the existence of a multiplicative nondegenerate
quadratic norm form. The unital composition algebras are known as
Hurwitz algebras: the field itself, quadratic étale algebras, quaternion
algebras and Cayley algebras. Any finite dimensional (nonunital) com-
position algebra has dimension 1, 2, 4 or 8. See [9, Sec. 33] for a
thorough overview.

The bilinear form associated to the norm form N of the algebra
(C, ⋆) is defined by B(a, b) = N(a + b) − N(a) − N(b). If the form
is associative, namely B(a ⋆ b, c) = B(a, b ⋆ c), the algebra is called
symmetric. Equivalently, the algebra is symmetric if

(1) t ⋆ (a ⋆ t) = (t ⋆ a) ⋆ t = N(t)a,

for every t, a ∈ C.
In dimension ≥ 2, a symmetric composition algebras is never unital.

On the other hand if C has a unit e, then ā + a = B(a, e)e defines an
involution on C, and the composition algebra (C, ⋆̄), with a⋆̄b = ā ⋆ b̄,
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which is always symmetric, is called a para-Hurwitz (para-quaternion,
para-Cayley) algebra.

Another construction of symmetric composition algebras was discov-
ered by Okubo [10]: assume charF ̸= 3 and assume ρ ∈ F is a third
root of unity. Let A be a central simple algebra A of degree 3, and let
tr :A→F be the reduced trace. Then, A0 = {a ∈ A : tr(a) = 0} is a
symmetric composition algebra with respect to the operation

(2) a ⋆ b =
1− ρ

3
ab+

1− ρ2

3
ba− 1

3
tr(ab),

where the norm form is a multiple of the trace form. There is an
analogous construction for the case where F does not have roots of
unity.

Symmetric composition algebras were studied by Petersson, Okubo,
Mynug, Osborn, Faulkner, Elduque and Perez, and others, culminating
in a complete classification in [3]. A symmetric composition algebra of
dimension 8 is either para-Cayley, or an algebra of the form Cλ,µ, as
described in [3, Thm 5.1]. When char ̸= 3, the Cλ,µ are the algebras
associated by Okubo to cyclic algebras (see [9, Thm. 34.37]).

In a recent paper [8] we used the work of van der Blij and Springer
[12] on the split Cayley algebra to study isotropic spaces in a symmetric
composition algebra (isotropicity is always with respect to the norm
form). Applying this to the Okubo algebras, we were able to classify
the maximal 3-central subspaces of a central simple algebra of degree
3 in the nonmodular case, namely over a field of characteristic not 3.

In this paper we consider the modular case: algebras of degree 3
over a field of characteristic 3. The structure of such algebras, and
some problems related to their standard generators, are described in
Section 2. The crucial difference from the nonmodular case is that now
F ⊆ A0 is the radical of the quadratic trace form, so we are forced
to consider the quotient vector space A0/F , of dimension 7. In Theo-
rem 3.1 we show that there is a unique symmetric composition algebra
structure C(A) on F⊕(A0/F ) whose operation restricts to the commu-
tator on the second component. Twisting the algebra via Kaplansky’s
trick (see [9, Prop. 33.27]) we obtain the split Cayley algebra, which al-
lows one to show that the symmetric composition algebra constructed
before is the split para-Cayley algebra. This is described in Section 4.
Thus all the algebras C(A) are isomorphic to each other, in sharp con-
trast with the fact that A can be recaptured, up to opposite, from its
Lie product [6, Thm. X.10].
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Nevertheless, the maximal isotropic subspaces of C(A), which are
studied in Section 5, shed light on special subspaces of A. Indeed, the
maximal 3-central and the maximal Galois hyperplanes of A are fully
described in Section 6.

A central simple algebra of degree 3 over a field of characteristic 3
can be presented in the form

[α, β) = F [x, y | x3 − x = α, y3 = β, yxy−1 = x+ 1].

Let us say that two presentations of the algebra are neighbors if they
have a common slot, namely the same α or β. It was shown in [13]
that the distance between two presentations of the same algebra is at
most seven. In Section 7 we apply information on maximal subspaces
in C(A) to show that if [α, β) is a given presentation, then every pre-
sentation is at distance at most five from [α, β) or [−α, β−1) (in fact
this is proved, as in [13], at the level of the generators).

Finally in Section 8 we interpret the strong orthogonality relation,
which was introduced for an arbitrary symmetric composition algebra
in [8], for the algebras C(A), showing that every two isotropic elements
are at distance at most 4 with respect to this relation.

2. Central simple algebras of degree 3

Let F be a field of prime characteristic p, and A a central simple
algebra of degree p over F . Thus A is either a division algebra, or
the matrix algebra Mp(F ). For general background on p-algebras (i.e.
central simple algebras of degree a power of p over a field with charac-
teristic p), see [7].

A pair of elements x, y ∈ A, with y invertible, and such that

(3) yxy−1 = x+ 1

is called a standard pair of generators . Indeed in this case A = F [x, y],
F [x] is a Galois extension of F with xp−x ∈ F , F [y] is an nonseparable
subalgebra with yp ∈ F , and A is determined, up to isomorphism, by
the constants θ = xp−x and β = yp. A noncentral element y ∈ A such
that yp ∈ F is called p-central . Every nonseparable subfield is of the
form F [y] where y is p-central, and every Galois subfield is of the form
F [x] where xp − x ∈ F ; we call such x a standard Galois element .

These two types complement each other. For every standard Galois
element x there is an element y, and for every p-central y there is an
element x, such that (3) holds.

If such a pair exists then the algebra is cyclic. For p = 2, 3 every p-
algebra of degree p is cyclic; for p > 3, no counterexamples are known.
Since we will take p = 3, we assume from now on that the algebra is
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cyclic. The presentation of A as a so-called p-symbol [θ, β) is by no
means unique. In order to solve the isomorphism problem for cyclic p-
algebras of degree p, one has to understand the various presentation of
a given algebra, or better yet, the various standard pairs of generators.

To study p-central elements in A, we consider p-central subspaces,
which are by definition subspaces V ⊆ A such that vp ∈ F for every
v ∈ V . Since charF = p, if V is p-central then so is F + V , so we may
assume a p-central space contains the center. The tools used to study
p-central elements will be used to study standard Galois elements as
well.

When p = 2 there is not much to do. The dimension is [A :F ] = 4,
and A0 = {a ∈ A : tr(a) = 0} is a 3-dimensional space, which is clearly
the unique maximal 2-central subspace in A. Taking any standard pair
of generators x, y, A0 = F + Fy + Fxy, and every element x′ in the
translation x+ A0 is standard Galois, namely x′2 − x′ ∈ F .

From now on we assume p = 3. Let us write

XA =
{
x ∈ A : x3 − x ∈ F, x ̸∈ F

}
for the set of standard Galois elements,

YA =
{
y ∈ A× : y3 ∈ F, y ̸∈ F

}
for the set of 3-central elements, and

XYA =
{
(x, y) ∈ XA × YA : yxy−1 = x+ 1

}
for the set of standard pairs of generators of A.

We immediately observe that XA,YA ⊆ A0. Moreover for x, y ∈ A0

(x ̸∈ F ), x3 − x ∈ F iff tr(x2) = −1, and y3 ∈ F iff tr(y2) = 0. So we
are led to consider the quadratic trace form, which is degenerate, with
F ⊆ A0 as the radical. Indeed, the trace form is well defined on the
quotient vector space A0/F .

3. Composition algebras from central simple algebras

Let F be a field of characteristic 3, and let A be a central simple
algebra of degree 3 over F . Let A0 = {u ∈ A : tr(u) = 0}. As explained
above, the quadratic trace form is well defined and nondegenerate on
the quotient vector space W0 = A0/F . We study solutions to tr(x2) =
−1 by homogenization to the form α2 + tr(x2) on the 8-dimensional
space C = Fζ⊕W0, where ζ is a formal basis element spanning the first
component. The goal is to define a binary operation ⋆ so that (C, ⋆)
is a symmetric composition algebra, similarly to Okubo’s construction
in the case charF ̸= 3. As we will see in (5) below, the norm form of
this new algebra is indeed α2 + tr(x2).
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Not only Okubo’s coefficients 1−ρ
3

and 1−ρ2

3
in (2) have no meaning

in characteristic 3, the multiplication and its reverse are not defined
on A0/F . However the commutator is well defined on A0/F , since
[u + δ, u′ + δ′] = [u, u′] for every δ, δ′ ∈ F , and up to a scalar multiple
this is the only linear combination of (u, u′) 7→ uu′ and (u, u′) 7→ u′u
which is well defined there.

Theorem 3.1. Let W0 = A0/F as above. Let C be the vector space
C = Fζ ⊕W0. Then there is a unique symmetric composition algebra
structure ⋆ :C × C→C such that the diagram

C × C
⋆ // C

����
W0 ×W0

?�

OO

[ , ]
// W0

commutes, where the vertical arrows are the natural embedding and
projection.

The multiplication in this algebra, which we denote C = C−(A), is
given by

(4) (αζ + u) ⋆ (α′ζ + u′) = (αα′ − tr(uu′))ζ + (−αu′ − α′u+ [u, u′]),

and the norm form is

(5) N(αζ + u) = α2 + tr(u2).

In particular Fζ is the orthogonal complement of W0 in (C,N).

An interesting feature of this result is that the trace form, which
plays a crucial role in the applications, is completely absent from the
assumptions. This mystery is somewhat explained by the following
consequence of the Cayley-Hamilton identity

(6) u3 − tr(u)u2 +
1

2
(tr(u)2 − tr(u2))u = det(u)

for 3× 3 matrices (assuming characteristic not 2). Linearization gives
the weak trace central identity

(7) 2(uvv + vuv + vvu)− 2tr(uv)v − tr(v2)u;

namely, for every field K and every u, v ∈ M3(K) of trace zero, the
quantity in (7) is central. Extending scalars, this identity holds in any
central simple algebra of degree 3. Our key observation is that since
[v, [u, v]] = 3vuv−(uvv+vuv+vvu) and we specialize to characteristic
3, the central identity (7) gives the equality

(8) [v, [u, v]] = tr(v2)u− tr(uv)v,

in W0, for every u, v ∈ W0.
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Proof of Theorem 3.1. Let us write down the most general binary op-
eration ⋆ :C × C→C. There are eight separate parts: Fζ × Fζ→Fζ,
Fζ × Fζ→W0, Fζ ×W0→Fζ, and so on. We thus have

(a) A scalar θ0 ∈ F and a vector m0 ∈ W0;
(b) Linear functionals ϕ, ϕ′ :W0→F ;
(c) Linear operators T, T ′ :W0→W0; and
(d) A bilinear form b :W0 ×W0→F ;

so that the product in C is

(αζ + u) ⋆ (α′ζ + u′) = (θ0αα
′ + αϕ(u′) + α′ϕ′(u) + b(u, u′))ζ

+(αα′m0 + αT (u′) + α′T ′(u) + [u, u′]).

Notice that the heaviest component, the map W0 × W0→W0, is by
assumption the commutator.

Let Lv and Rv denote the operations of left and right multiplication
by v. Then (1) can be written as

(9) LtRt = RtLt = N(t)idC .

We need to solve this symmetry condition for the ingredients displayed
above. Taking t = v ∈ W0, (9) becomes

LvRv(αζ + u) = RvLv(αζ + u) = N(v)(αζ + u)

for every α ∈ F and u ∈ W0. Using the multiplication formulas

Lv(αζ + u) = v ⋆ (αζ + u) = (αϕ′(v) + b(v, u))ζ + (αT ′(v) + [v, u])

and

Rv(αζ + u) = (αζ + u) ⋆ v = (αϕ(v) + b(u, v))ζ + (αT (v) + [u, v]),

this condition spreads out to

ϕ(v)ϕ′(v) + b(v, T (v)) = N(v)(10)

ϕ(v)ϕ′(v) + b(T ′(v), v) = N(v)(11)

b(u, v)ϕ′(v) + b(v, [u, v]) = 0(12)

b(v, u)ϕ(v) + b([v, u], v) = 0(13)

ϕ(v)T ′(v) + [v, T (v)] = 0(14)

ϕ′(v)T (v) + [T ′(v), v] = 0(15)

b(u, v)T ′(v) + [v, [u, v]] = N(v)u(16)

b(v, u)T (v) + [[v, u], v] = N(v)u.(17)

Substituting (8) in (16) we get

b(u, v)T ′(v)− tr(uv)v = (N(v)− tr(v2))u,
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so fixing v we conclude that

(18) N(v) = tr(v2)

by taking u outside the linear subspace spanned by T ′(v) and v. We
then have

b(u, v)T ′(v) = tr(uv)v.

For every v ̸= 0 there is some u such that tr(uv) ̸= 0, forcing 0 ̸=
T ′(v) ∈ Fv. But a linear operator which preserves all the directions
must be multiplication by a scalar, so for some γ ∈ F×,

(19) T ′(v) = γ−1v,

and then

(20) b(u, v) = γtr(uv).

In the same manner we get from (17) that

b(v, u)T (v) = tr(uv)v

so T is also multiplication by a scalar, but taking u = v in (16) and
(17) shows that this is the same scalar, namely

(21) T (v) = γ−1v.

In particular T (v) and T ′(v) commute with v, so (14) and (15) prove
that

(22) ϕ(v) = ϕ′(v) = 0.

Collecting all this information, the multiplication formula becomes

(αζ + u) ⋆ (α′ζ + u′) = (θ0αα
′ + γtr(uu′))ζ

+(αα′m0 + αγ−1u′ + α′γ−1u+ [u, u′]).

It remains to determine θ0 and m0 (and γ), so let us apply (1) to the
vector t = ζ + u. Using (8) and the obvious fact that tr([u,w]u) = 0,
the symmetry condition

((ζ + u) ⋆ (αζ + w)) ⋆ (ζ + u) = N(ζ + u) · (αζ + w)

gives the four equations

(1 + θ0γ)tr(uw) = 0,(23)

θ20 + γtr(m0u) + tr(u2) = N(ζ + u),(24)

(θ0 + γ−1)(m0 + γ−1u) + [m0, u] = 0,(25)

γtr(uw)m0 + γ−2w + tr(u2)w = N(ζ + u)w.(26)

Choosing some u and w with tr(uw) ̸= 0, Equation (23) gives

(27) θ0 = −γ−1,
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but then by (25) we have that [m0, u] = 0 for every u ∈ W0. Lifting
this to A0, we can define a functional φ :A0→F by φ(u) = [m0, u] ∈ F ,
whose kernel has dimension at least 7, forcing m0 to commute with a
7-dimensional subspace of A, so m0 ∈ F . Back to W0, we have

(28) m0 = 0.

Replacing ζ by −γζ, the multiplication formula scales to the one
given in (4), proving the main statement.

From (24) we then obtain the norm formula (5), so the associated
bilinear form is

(29) B(αζ + u, α′ζ + u′) = −αα′ − tr(uu′).

The multiplication formula (4), or equivalently the ingredients de-
fined in (18)–(21), (27), (28) with γ = −1, satisfy the conditions (10)–
(17) and (23)–(26). This proves that (C, ⋆,N) is in fact a symmetric
composition algebra, and completes the proof of Theorem 3.1. �

Inside C−(A), W0 can be recaptured as the orthogonal complement
of the center Fζ. Of course it is not a subalgebra: u⋆u′ = −tr(uu′)ζ+
[u, u′].

Remark 3.2. The multiplicativity of the norm (namely N(t ⋆ t′) =
N(t)N(t′) for every t, t′ ∈ C) is equivalent to the identity

(30) tr(uu′)2 + tr([u, u′]2) = tr(u2)tr(u′2)

for every two trace-zero elements u, u′. To verify (30) directly, note
as above that over any field K of characteristic not 2, by the Cayley-
Hamilton theorem 2z3 − tr(z2)z is scalar for every z ∈ M3(K) with
trace zero; therefore if tr(u′) = 0 then tr((2z3−tr(z2)z)u′) = 0. Taking
z = λu+ u′, the coefficient of λ2 is

4tr(u2u′2) + 2tr((uu′)2)− tr(u2)tr(u′2)− 2tr(uu′)2 = 0,

which in characteristic 3 is nothing but (30).

4. C−(A) and its relatives

As before, let A be a central simple algebra of degree 3 over F , where
charF = 3. Let C−(A) = (Fζ ⊕ A0/F, ⋆) be the algebra constructed
in Theorem 3.1.
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4.1. Unital twist. Kaplansky showed how to twist a composition al-
gebra into a unital one [9, Prop. 33.27]. Since N(ζ) = 1, we define

(31) a ⋄ b = (ζ ⋆ a) ⋆ (b ⋆ ζ),

and then (C, ⋄) becomes a unital composition algebra, with ζ ⋆ζ = ζ its
unit. Let us denote this algebra by C+(A) = (C, ⋄). The multiplication
in this new algebra is given by

(32) (αζ + u) ⋄ (α′ζ + u′) = (αα′ − tr(uu′))ζ + (αu′ + α′u+ [u, u′]),

with the same norm and bilinear form as in C−(A).

Remark 4.1. The idempotents in C+(A), besides 0 and ζ, are the
elements −ζ + x where x ∈ W0 has tr(x2) = −1.

In particular, since C+(A) has a unit and nontrivial idempotents:

Corollary 4.2. C+(A) is the split Cayley algebra over F .

The standard involution on (C, ⋄) is defined by

t̄+ t = B(t, ζ) · ζ,

which gives

(33) αζ + u = αζ − u.

Theorem 4.3. For every A, C−(A) is the split para-Cayley algebra
over F , and in particular it is independent of A.

Proof. As we observed that C+(A) is the split Cayley algebra, let us
compute the split para-Cayley algebra (C, ⋄̄) in these terms. The op-
eration is defined by

t⋄̄t′ = t ⋄ t′,
which by (33) computes out to be

(αζ + u)⋄̄(α′ζ + u′) = (αζ − u) ⋄ (α′ζ − u′)

= (αα′ − tr(uu′))ζ + (−αu′ − α′u+ [u, u′]),

so ⋄̄ = ⋆ is the operation given in (4). �

It follows that the involution (33) of (C, ⋄) serves as an involution
for (C, ⋆ ) as well. Let us record two useful properties:

Remark 4.4. For every t ∈ C,

(1) ζ ⋆ t = t ⋆ ζ = t̄;
(2) t ⋆ t̄ = t̄ ⋆ t = N(t)ζ.



10 ELIYAHU MATZRI AND UZI VISHNE

4.2. Variations on ⋆. The two composition algebras constructed above,
one symmetric and one unital, have similar multiplication operations.
In this subsection we verify that there are no other composition alge-
bras of this form on the space Fζ ⊕ A0/F .

Let θ, π1, π2, π ∈ F be arbitrary parameters, and consider the algebra
on Fζ ⊕ (A0/F ) with multiplication
(34)
(αζ + u) ◦ (α′ζ + u′) = (θαα′ + π1tr(uu

′))ζ + (π2(αu
′ + α′u) + π[u, u′]).

Similarly we assume N(αζ+u) is a linear combination of α2 and tr(u2).
Using (30), one can verify that the only combination that serves as a
nondegenerate multiplicative norm, is

N(αζ + u) = θ2α2 + π2tr(u2)

which also requires

π2 = ±θ,

π1 = −θ−1π2

where θ, π1 ̸= 0.
Thus, for every θ, π ∈ F× and ϵ = ±1, let the algebra Cϵ

θ,π(A) be
the vector space Fζ ⊕ A0/F with the operation

(αζ + u) ◦ (α′ζ + u′) = (θαα′ − θ−1π2tr(uu′))ζ + (ϵθ(αu′ + α′u) + π[u, u′]);

this is always a composition algebra with respect to the norm

N(αζ + u) = θ2α2 + π2tr(u2).

Scaling the first and second components provides the isomorphisms
Cϵ

θ,π(A)
∼= Cϵ

θ′,π′(A) for every nonzero θ, θ′ and π, π′. Comparing the
multiplication formulas, (4) of the symmetric composition and (32) of
the unital one, with the general formula (34), taking θ = π = 1, we
conclude that there are only two algebras up to isomorphism in this
family, C+ = C+

1,1(A) and C− = C−
1,1(A).

5. Maximal isotropic subspaces in C

In this section we specialize to C = C−(A) some properties of
isotropic elements and spaces in symmetric composition algebras, which
were established in [8]. In turn, these follow from the work of van der
Blij and Springer on isotropic subspaces of the split Cayley algebra in
[12].
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5.1. maximal isotropic subspaces. By [8, Thm. 3.1], every maximal
isotropic subspace has the form C ⋆ t or t ⋆ C, where t is isotropic, and
those spaces uniquely characterize t up to scalar multiples. Moreover
every maximal isotropic space has a unique kind, either left (C ⋆ t) or
right (C ⋆ t).

Remark 5.1. There are two types of isotropic elements in C.

• An isotropic element t with t ⋆ t = 0 has the form t = y where
tr(y2) = 0 and y ∈ A0 invertible. We call these isotropic ele-
ments nonseparable.

• An isotropic element t with t⋆t ̸= 0 is a multiple of ζ+x, where
tr(x2) = −1. We call these isotropic elements separable.

For separable isotropic elements, note that t = ζ+x satisfies t⋆t = −t̄.

Remark 5.2. In particular, the nonzero elements satisfying t ⋆ t = 0
are precisely the nonseparable isotropic elements. Their existence shows
that C−(A) is not reduced, again in contrast with the Okubo algebras
constructed from a central division algebra of degree 3 in characteristic
not 3.

Fix a standard pair of generators x, y. Then A =
∑

Fxiyj, and the
only basis element with nonzero trace is x2. Therefore W0 = A0/F =
span {x, y, xy, x2y, y2, xy2, x2y2} (in fact their images in A/F ), and C
is spanned by

ζ, x, y, xy, x2y, y2, xy2, x2y2.

Lemma 5.3. Every maximal isotropic space in C has one of the forms

y ⋆C = F (ζ − x) + Fy + Fy2 + Fxy2,

C ⋆ y = F (ζ + x) + Fy + Fy2 + Fxy2,

(ζ + x) ⋆C = F (ζ − x) + Fy + Fxy + Fx2y,

C ⋆ (ζ + x) = F (ζ − x) + Fy2 + Fxy2 + Fx2y2,

for a suitable standard pair of generators x, y.

Corollary 5.4. Every maximal isotropic subspace U0 of W0 is of one
of the forms

Fy + Fy2 + Fxy2 or F [x]y,

where x, y is a standard pair of generators, and is contained in exactly
two maximal isotropic subspaces of C which have the form F (ζ±x)+U0.

Proof. The dimension is 3 because the trace form is nondegenerate
on the 7-dimensional space W0. Let U be a maximal isotropic space
in C such that U ⊇ U0; then U0 = U ∩ W0, and can be computed
from the lemma. In both cases F (ζ ± x) + U0 are seen to be maximal
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isotropic spaces in C, and they are unique by general facts on quadratic
forms. �

In any symmetric composition algebra, the intersection of maximal
isotropic spaces is even dimensional if they have the same kind, and
odd dimensional otherwise. More explicitly, we have:

Proposition 5.5 ([8, Prop. 3.7]). Let t and t′ be linearly independent
isotropic elements. The intersection of C ⋆t and C ⋆t′ has dimension 2
if B(t, t′) = 0, and dimension 0 otherwise; likewise for t ⋆ C and t′ ⋆C.

Proposition 5.6 ([8, Prop. 3.8]). Let t, t′ be isotropic elements. The
intersection of t ⋆ C and C ⋆ t′ is one dimensional and spanned by t ⋆ t′

if this is nonzero, and three dimensional otherwise.

Corollary 5.7. Let t ∈ C−(A) be an isotropic element. The spaces
C ⋆ t and t̄ ⋆ C are conjugate to each other, and since t ⋆ t̄ = t̄ ⋆ t = 0, by
Remark 4.4.(2), their intersection is 3-dimensional. We notice that the
intersection is always contained in W0: in the notation of Lemma 5.3,

• C ⋆ y ∩ y ⋆C = Fy + Fy2 + Fxy2;
• C ⋆ (ζ − x) ∩ (ζ + x) ⋆C = F [x]y.

5.2. Products of related subspaces. Given a maximal isotropic
subspace of C = C−(A), we wish to identify the type of its genera-
tor, be it separable or nonseparable. To this end we note the following
multiplication properties.

Remark 5.8. Let t be an isotropic element, and take Uℓ = t ⋆C and
Ur = C ⋆ t, the corresponding left and right maximal isotropic sub-
spaces.

(1) Assume t is nonseparable. By Lemma 5.3, Uℓ ∩W0 = Ur ∩W0;
let us denote this subspace by U0. Then we have the following
multiplication table of subspaces:

⋆ Ft U0 Uℓ Ur

Ft 0 0 Ft 0
U0 0 Ft Ft U0

Uℓ 0 U0 Ur U0

Ur Ft Ft F t Uℓ

so in particular, Ft = (Uℓ ⋆Uℓ) ⋆Uℓ = Ur ⋆ (Ur ⋆Ur), and U0 =
(Ur ⋆Ur) ⋆Ur = Uℓ ⋆ (Uℓ ⋆Uℓ).

(2) Assume that t is separable. By Lemma 5.3, Ft + (Uℓ ∩W0) +
(Ur ∩ W0) is a 7-dimensional space; but clearly this space is
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orthogonal to t with respect to the form B(·, ·), so equal to t⊥.
The products are

⋆ Uℓ Ur

Uℓ t⊥ C
Ur Ft t⊥

and moreover, (Uℓ ⋆Uℓ) ⋆Uℓ = Ur ⋆ (Ur ⋆Ur) = t⊥. At the same
time, (Ur ⋆Ur) ⋆Ur = Uℓ and Uℓ ⋆ (Uℓ ⋆Uℓ) = Ur.

This gives a neat algorithm to identify the generator and the kind of
a given subspace:

Remark 5.9. Let U be a maximal isotropic subspace. Then dim(U ⋆U)
is 4, respectively 7, if U is generated by a nonseparable, respectively
separable, element.

In the nonseparable case, exactly one of (U ⋆U) ⋆U and U ⋆ (U ⋆U)
is one-dimensional: the first if U is of the left kind, and the second if U
is of the right kind. In both cases, the generator of U spans this space.

In the separable case, exactly one of (U ⋆U) ⋆U and U ⋆ (U ⋆U) is
seven-dimensional: the first if U is of the left kind, and the second if
U is of the right kind. In both cases, the generator of U spans the
orthogonal of this space.

5.3. Intersection of maximal isotropic subspaces. When Propo-
sition 5.5 is applied to C−(A), t and t′ can each take either form of the
elements described in Remark 5.1.

Corollary 5.10. Fix two standard pairs x, y and x′, y′ of generators.
In the following table, dim(U1 ∩U2) = 2 if the condition holds, and the
intersection is trivial otherwise.

U1 U2 the condition

span {ζ − x, y, y2, xy2} span {ζ − x′, y′, y′2, x′y′2} tr(yy′) = 0
span {ζ + x, y, y2, xy2} span {ζ + x′, y′, y′2, x′y′2} tr(yy′) = 0
span {ζ − x, y, y2, xy2} F (ζ − x′) + F [x′]y′ tr(yx′) = 0
span {ζ + x, y, y2, xy2} F (ζ − x′) + F [x′]y′2 tr(yx′) = 0

F (ζ − x) + F [x]y F (ζ − x′) + F [x′]y′ tr(xx′) = −1
F (ζ − x) + F [x]y2 F (ζ − x′) + F [x′]y′2 tr(xx′) = −1

Proof. In Proposition 5.5, take t = y and t′ = y′ for the first two lines,
t = y and t′ = ζ + x′ for the intermediate two, and t = ζ + x and
t′ = ζ + x′ for the last two, plugging in the spaces from Lemma 5.3 in
each case. �

Similarly, following Proposition 5.6 for the intersection of maximal
spaces of opposing kinds, we have:
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Corollary 5.11. Fix two standard pairs x, y and x′, y′ of generators.
In the following table, U1 ∩ U2 is spanned by the given vector if it is
nonzero, and is three-dimensional otherwise.

U1 U2 the vector

span {ζ − x, y, y2, xy2} span {ζ + x′, y′, y′2, x′y′2} −tr(yy′)ζ + [y, y′]
span {ζ − x, y, y2, xy2} F (ζ − x′) + F [x′]y′2 −tr(yx′)ζ + [y, x′]− y

F (ζ − x) + F [x]y F (ζ + x′) + F [x′]y′ (1 + tr(xx′))ζ + x′ − x− [x, x′]

Proof. In Proposition 5.6, take t = y and t′ = y′ for the first line, t = y
and t′ = ζ + x′ for the second, and t = ζ + x and t′ = ζ − x′ for the
third.

We remark that in all cases, if the second component of the vector
is zero (in A0/F ) then, being isotropic, the whole vector is zero. This
happens in the respective cases if y′ ∈ F [y]+Fxy2, x′ ∈ x+F [y]+Fxy2

or x′ ∈ x+ F + F [x]y2 (inclusions in A rather than A/F ). �

6. Maximal 3-central spaces and Galois hyperplanes in A

Let A be a central simple algebra of degree 3 over a field F of char-
acteristic 3. After analyzing the maximal isotropic subspaces of the
symmetric composition algebra C = C−(A) = Fζ⊕W0 in the previous
section, where W0 = A0/F and A0 = {x ∈ A : tr(x) = 0}, in this sec-
tion we classify the maximal 3-central subspaces and maximal Galois
hyperplanes of A (see Definition 6.3). We denote by π :A0 → A0/F
the standard projection.

For every maximal isotropic space U ⊆ C, the projective space PU
can be decomposed into the disjoint union of two subsets, PU = PUY ∪
F×UX/F

×, according to the coefficient of ζ. Namely, UY = U ∩ W0

are the elements π(u) ∈ U where u ∈ A is 3-central element, and
UX = U ∩ (ζ +W0) are the elements ζ + π(x) ∈ U such that x ∈ A is a
standard Galois element. This can be exploited to classify the maximal
linear ensembles of both types in A.

Theorem 6.1. Every maximal 3-central space of A is of one of the
forms

F [y] + Fxy

or
F + F [x]y

for a suitable standard pair of generators x, y.

Proof. Let V be a maximal 3-central space in A. Then F ⊆ V , and
π(V ) ⊆ W0 is an isotropic space in C. Therefore, π(V ) is given by
Corollary 5.4. �
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Remark 6.2. One can assign a type to maximal 3-central subspaces
by appealing to the type of the generator of the associated isotropic
space in C. Alternatively, note that for V = F [y] + Fxy we have
[V, V ] = F + Fy2, while for V = F + F [x]y, [V, V ] = F [x]y2.

Recall that a noncentral element x ∈ A is standard Galois if x3−x ∈
F ; equivalently, if tr(x) = 0 and tr(x2) = −1. Notice that if x is
standard Galois, then so is every element in F + x.

Definition 6.3. A Galois hyperplane of A is a translation of a linear
subspace, all of whose elements are standard Galois.

Proposition 6.4. Let V be a linear subspace of A, and x ∈ A. Then
x + V is a Galois hyperplane iff V is 3-central, x is standard Galois,
and tr(xV ) = 0.

Proof. The condition for the elements of x + V to be standard Galois
is that tr(x+ y) = 0 and tr((x+ y)2) = −1 for every y ∈ V . Replacing
y by λy for λ ∈ F , this is equivalent to x being standard Galois,
tr(y) = tr(xy) = 0 and tr(y2) = 0 for every y ∈ V . �

Clearly, every Galois hyperplane is contained in A0.

Proposition 6.5. For every maximal Galois hyperplane G there is a
unique maximal isotropic subspace U ⊆ C such that UX = U ∩(ζ+W0)
is equal to ζ + π(G).

Proof. By Proposition 6.4, G has the form x + V for a maximal 3-
central space V . Take U = F (ζ + π(x)) + π(V ) which is isotropic by
computing the norm, and then UX = ζ+π(G). Uniqueness follows from
Corollary 5.4 applied to π(V ), which is contained only in the maximal
isotropic spaces F (ζ + π(x)) + π(V ) and F (ζ − π(x)) + π(V ). �

Corollary 6.6. For every maximal 3-central space V of A there are
exactly two translations which are Galois hyperplanes; they have the
form x+ V and −x+ V for a suitable x ∈ A.

Proof. By Corollary 5.4, π(V ) is contained in exactly two maximal
isotropic subspaces of C, which have the form F (ζ + π(x)) + π(V ) and
F (ζ − π(x)) + π(V ) for a suitable x ∈ A. Letting U denote one of the
spaces F (ζ ± π(x)) + π(V ), the required translations are π−1(UX − ζ)
for UX = U ∩ (ζ +W0), namely x+ V and −x+ V . �
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Theorem 6.7. Every maximal Galois hyperplane in A is of one of the
forms

x+ F + F [x]y,

x+ F + F [x]y2,

x+ Fxy + F [y],

x+ Fxy2 + F [y],

for a suitable standard pair of generators x, y.

Proof. Apply Proposition 6.5 to Lemma 5.3, replacing x, y by −x, y2

when necessary. �

7. A common slot lemma

Another approach to standard pairs of generators is via common slot
lemmas, where the best known example is the common slot lemma for
quaternion algebras: for every two 2-central elements x, x′, there is an
element y such that x, y and x′, y are standard pairs of generators.

Let A be a central simple algebra of degree 3 over a field of charac-
teristic 3. Let us define a graph structure on XA, connecting x and x′

by an edge iff there is an element y such that (x, y), (x′, y) ∈ XYA.
The main result of [13] is that the diameter of XA is at most 3: for

every x, x′ ∈ XA, there are x1, x2 ∈ XA and y1, y2, y3 ∈ YA such that
every edge in the following diagram connects a standard pair:

x

>>
>>

> x1

AA
AA

A
x2

AA
AA

A
x′

y1

}}}}}
y2

}}}}}
y3

~~~~~

Noting that for x ∈ XA we also have that −x ∈ XA, we prove here a
similar statement:

Theorem 7.1. Let A be as above. For every x ∈ XA, every element of
XA is at distance at most 2 from x or from −x.

This follows immediately from Proposition 7.4 below.

Corollary 7.2. Let [α, β) and [α′, β′) be two p-symbol presentations of
the same algebra of degree 3. Then there are α1 ∈ F and β1, β2 ∈ F×

such that

[α′, β′) ∼= [α′, β1) ∼= [α1, β1) ∼= [α1, β2) ∼= [α, β2) ∼= [α, β)

or

[α′, β′) ∼= [α′, β1) ∼= [α1, β1) ∼= [α1, β2) ∼= [−α, β2) ∼= [−α, β−1).
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Remark 7.3. Let x, x′ be standard Galois elements in A. The following
are equivalent:

(1) x, x′ are neighbors in XA;
(2) for some y for which x, y is a standard pair of generators, x′ −

x ∈ F [y].
(3) for some y for which x, y is a standard pair of generators, and

for some w ∈ F [x]×, x′ − x ∈ F [wy].

Indeed if x, y form a standard pair of generators then x′, y is a standard
pair of generators iff x′ − x ∈ F [y], and x, y′ is a standard pair of
generators iff y′ ∈ F [x]×y.

Proposition 7.4. Let x, x′ ∈ XA, so that t = ζ+π(x) and t′ = ζ+π(x′)
are isotropic elements of separable type in C−(A) = F ⊕A0/F . We let
dist(·, ·) denote the distance in XA.

(1) If t ⋆ t′ is separable, then dist(x, x′) ≤ 2.
(2) If t ⋆ t′ is zero or nonseparable, then dist(−x, x′) ≤ 2.

Proof. (1) By Lemma 5.3 and Proposition 5.6, t⋆C = F (ζ−π(x))+
π(F [x]y) and C ⋆t′ = F (ζ−π(x′))+π(F [x′]y′2) intersect in the
one-dimensional space spanned by the nonzero element t ⋆ t′,
which by assumption is separable. Therefore the coefficient
of ζ in nonzero elements of the intersection is nonzero, and
comparing coefficients there are some w ∈ F [x] and w′ ∈ F [x′]
such that

x+ wy ≡ x′ + w′y′2 (mod F ).

If w = 0 or w′ = 0 then x, x′ are neighbors by Remark 7.3:
if w = w′ = 0 this is clear; if w′ = 0 and w ̸= 0 then
x,wy and x′, wy are standard pairs; and if w = 0 and w′ ̸= 0
then x, (w′y′2)2 and x′, (w′y′2)2 are. So we assume w,w′ ̸= 0.
Then x, x+ wy are neighbors in XA, so x, x′ + w′y′2 are neigh-
bors as well, and likewise x′, x′ + w′y′2 are neighbors, so finally
dist(x, x′) ≤ dist(x, x′ + w′y′2)+dist(x′ + w′y′2, x′) ≤ 1+1 = 2.

(2) The coefficient of ζ in t⋆t′ is 1−tr(xx′), and since by assumption
this is zero, the coefficient in (ζ−π(x))⋆ t′, which is 1+tr(xx′),
is nonzero. Replacing x with −x, we are thus back in case (1).

�

8. Strong orthogonality

In [8] we called isotropic elements t, t′ in an arbitrary symmetric
composition algebra C strongly orthogonal , denoted t t′ or t′  t,
if t ⋆ t′ = 0 and B(t, t′) = 0 (this relation is not symmetric). The
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motivation for this definition is that for C the algebra constructed by
Okubo from a central simple algebra of degree 3, in characteristic not
3 and when the base field has third roots of unity ρ, x, x′ are strongly
orthogonal in C if and only if they form a standard pair of generators
for A (namely x′x = ρxx′).

Let A be a central simple algebra of degree 3 over a field of charac-
teristic 3. Recall that C−(A) = Fζ ⊕ A0/F and π :A0 → A0/F is the
standard projection, where A0 = {u ∈ A : tr(u) = 0}.

Proposition 8.1. Let t, t′ be elements in C−(A). Then t t′ if and
only if there is a standard pair of generators x, y of A, such that one of
the following cases holds (where ∼ denotes equality up to multiplication
by a nonzero scalar from F ):

(1) t ∼ ζ + π(x) and t′ = π(y−1).
(2) t = π(y) and t′ ∼ ζ + π(x).
(3) t = π(y) and t′ = π(y′) where π([y, y′]) = 0.

Proof. We need to solve t ⋆ t′ = 0 with B(t, t′) = 0. Since N(t)N(t′) =
0, at least one of the vectors is isotropic; assume t is isotropic, then
t′ ∈ Ker(Lt) = Im(Rt) so t′ is isotropic as well, and likewise if t′ is
isotropic, then t is isotropic as well. Thus both t and t′ are isotropic.

By Remark 5.1 there are four options: each of t and t′ is either
separable or nonseparable. The two elements cannot both be separable,
because if t = ζ+π(x) and t′ = ζ+π(x′) then t⋆t′ = 0 forces tr(xx′) = 1,
while B(t, t′) = 0 forces tr(xx′) = −1. Assume t is separable, and write
t ∼ ζ + π(x) where x ∈ XA. Then t′ ∈ C ⋆ t = F (ζ − π(x))+ π(F [x]y2)
where x, y is a standard pair by Lemma 5.3, but since t′ is nonseparable
it belongs to π(F [x]y2) = π(F [x]y−1), so multiplying y by a suitable
element of F [x]× we get a new standard pair of generators x, y with
t′ = π(y−1). Similarly assume t′ is separable and write t′ = ζ + π(x).
Then t ∈ t′ ⋆C = F (ζ−x)+π(F [x]y), and the same argument applies.

Finally if t, t′ are both nonseparable then we can write t = π(y)
and t′ = π(y′) for some 3-central elements y and y′ in A, and t ⋆
t′ = tr(yy′)ζ + [y, y′], but [π(y), π(y′)] = 0 if and only if y′ ∈ F [y] +
Fxy2 (where x, y are a standard pair of generators), and then always
tr(yy′) = 0. �

The cases in Proposition 8.1 can be distinguished on the outset:
t′ ⋆ t ∼ t′ in the first case, t′ ⋆ t ∼ t in the second case, and t′ ⋆ t = 0
in the third. In particular if t, t′ are nonseparable isotropic elements,
then t t′ iff t′ t. This observation motivates the following notion,
which we do not pursue here.
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Definition 8.2. For isotropic elements t, s in a symmetric composition
algebra C, we denote t⇀s if t = s ⋆ t.

Remark 8.3. (1) If t⇀s then t s since t⋆s = (s⋆t)⋆s = N(s)t =
0 and B(t, s) = B(s ⋆ t, s) = N(s)t = 0.

(2) In C = C−(A), t⇀s iff t = π(y) and s = ζ + π(x) for some
standard pair of generators x, y in A. (By Proposition 8.1 and
the observation on t ⋆ t′ following it).

Remark 8.4. Lifting strong orthogonality in C to relations in A is
somewhat tricky. In spite of Proposition 8.1, the fact that y ζ+π(x)
for x ∈ XA and y ∈ YA does not imply that (x, y) ∈ XYA, because the
computation is done in π(A0). What we can conclude is that an element
y′ ∈ A exists such that (x, y′) ∈ XYA, and π(y′) = π(y). (On the other
hand (x, y′) ∈ XYA iff (x′, y′) ∈ XYA for every x′ with π(x′) = π(x)).

Proposition 8.5. Let y, y′ ∈ YA. Then

π(y)  ∗  π(y′)

can be completed with a nonzero isotropic vector y′′ ∈ YA, iff tr(yy′) =
0.

(Note that the relation between elements of YA is symmetric, so the
directions of the arrows is immaterial).

Proof. The condition for π(y) π(y′′) is that [π(y), π(y′′)] = 0, or
equivalently y′′ ∈ F [y]+Fxy2 where x ∈ XA completes y to a standard
pair of generators. To solve π(y′′) π(y′) as well, we need (F [y] +
Fxy2) ∩ (F [y′] + Fx′y′2) ̸= 0, where x′, y′ is a standard pair of genera-
tors. But this implies

span
{
ζ − x, y, y2, xy2

}
∩ span

{
ζ − x′, y′, y′2, x′y′2

}
̸= 0,

and is implied by the intersection having dimension 2, so we are done
by the first line of Proposition 5.10. �

Corollary 8.6. For any y ∈ YA and any isotropic element t′ ∈ C one
can complete a chain of length 3 from y to t′, in any direction of the
arrows, with nonseparable isotropic vectors.

Proof. First assume t′ ∼ ζ + π(x′) for x′ ∈ XA. Complete x′ to a stan-
dard pair of generators x′, y′. The space F [x′]y′y ⊆ A has dimension
3, so there is a nonzero element f ∈ F [x′] such that tr(fy′y) = 0.
Replacing y′ by fy′, we can complete

π(y)  ∗  π(y′) ζ + π(x′)
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by Proposition 8.5. For the reverse direction of the final arrow consider
F [x′]y′−1y and replace y′ by an element such that tr(y′−1y) = 0, to
complete

π(y)  ∗  π(y′−1)  ζ + π(x′).

If t′ = π(y′′) for y′′ ∈ YA, then choose 0 ̸= y′ ∈ F [y′′] subject to the
single linear condition tr(yy′) = 0; thus π(y′) π(y′′) and we finish
by Proposition 8.5. As before, the direction of the arrows connecting
elements of YA is immaterial. �
Corollary 8.7. Any two isotropic elements t, t′ ∈ C can be connected
by a chain of length 4 of the form t ∗  ∗  ∗  t′, and likewise
for any direction of the arrows.

Proof. Connect t′ to a suitable nonseparable element and finish by
Corollary 8.6. �
Remark 8.8. In Theorem 8.8 of [8] we proved a similar result, for
an arbitrary symmetric composition algebra, for six of the ten possible
directions of the arrows (up to symmetry). Corollary 8.7 is a stronger
statement for C = C−(A).
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