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Abstract. Normal bases of affine PI-algebras are studied through
the following stages: essential height, monomial algebras, repre-
sentability, and modular reduction.

1. Height

In this survey we review the algorithmic theory of PI-algebras, in
terms of normal bases, and indicate directions for further research.
In view of Kemer [17], one can study normal bases in terms of the
codimension theory of PI-algebras, of which Regev is the pioneer. Thus
we feel this paper is appropriate for a volume honoring Regev.

Let A be an associative affine algebra over an infinite field k, gener-
ated by the set Ω = {a1, . . . , a`}. Ordering the letters a1 < · · · < a`

induces the lexicographic order on the set Ω∗ of words in the genera-
tors over the alphabet: w < v if |w| < |v|, or if |w| = |v| and w is
lexicographically smaller than v. The normal base of the algebra A
with respect to the ordered set Ω, is the set of all words in Ω∗ that
cannot be written as a linear combination of smaller words [3], [10],
[27]. Obviously this is a base of A (as a vector space).

This paper investigates normal bases of PI-algebras, from an algo-
rithmic point of view. We say that an algebra A has PI-degree d if
some multilinear (noncommutative) polynomial of degree d, having at
least one coefficient 1, vanishes identically on A. In particular, if A is
any subring of a matrix algebra Mn(F ) over a field F , then A satis-
fies a PI of degree d = 2n, by the Amitsur-Levitzki Theorem. Such
a PI-algebra is called representable (or admissible in [23]). Although
there are only countably many affine representable algebras over Q up
to isomorphism, Lewin showed there are uncountably many affine PI-
algebras that are homomorphic images of subalgebras of M3(Q); thus
there are uncountably many PI-algebras that are not representable.
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One particularly direct example of a nonrepresentable PI-algebra of
L. Small is given in [23, Example 4.4.22].

The first major breakthrough for normal bases of PI-algebras was
obtained by A.I. Shirshov [25], [26], via his famous height theorem:

Definition 1. An algebra A is said to have height ≤ h over a subset Y ,
if A is spanned as a vector space by

Y [h] = {ym1
1 . . . ymt

t : m1, . . . , mt ∈ N, y1, . . . , yt ∈ Y, t ≤ h}.
Theorem 2 (Shirshov’s height theorem [5, Chapter 2], [10], [26]).
Suppose A = k{a1, . . . , a`} has PI-degree d. Let Y be the set of words
of length ≤ d over the generators. Then A has some height over Y ,
bounded as a function of d and `; furthermore, for a suitable h ∈ N,
Y [h] contains a normal base of A.

In particular, every word in {a1, . . . , a`}∗ is a product of ≤ h periodic
words, each of which has period ≤ d.

Since the reader may not be familiar with Shirshov’s theorem in
this formulation, let us review the idea of the proof, following [5,
Section 2.2]. We say a word w on ` letters is d-decomposable if it
contains a subword w1 · · ·wd such that w1 · · ·wd > wπ(1) · · ·wπ(d) for
any permutation π of {1, . . . , d}. It is easy to use a PI of degree d to
rewrite any d-decomposable word as a sum of smaller words; thus the
irreducible words are d-indecomposable. Shirshov proved Shirshov’s
Lemma, which asserts that, for any given r > 0, any long enough d-
indecomposable word must contain a nonempty word ur where |u| ≤ d.
Shirshov’s height theorem then follows from an algorithmic argument
given in [5, p. 50].

Accordingly, we say a subset Y ⊂ A is a Shirshov base if A has finite
height over Y . Shirshov’s theorem also provides an immediate solution
to Kurosch’s problem for PI-algebras (solved earlier by Kaplansky):

Corollary 3. If an affine PI algebra A is algebraic, then it is finite
dimensional.

Shirshov’s Lemma being the key to Shirshov’s theorems, we are led
to a question of considerable interest:

Question 4. How well can one bound “long enough” in Shirshov’s
Lemma as a function in d, r, and `?

The answer also provides a bound for the dimension of A, assuming
it is algebraic. The best known bound, due to Belov, is described in
detail in [10].
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Since the combinatoric results do not depend on A having a unit
element (and in fact, can even be formulated for nonassociative alge-
bras), Shirshov’s theorem also implies that every nil affine PI-algebra
is nilpotent. A well-known theorem of Wedderburn states that every
nilpotent subring A of a matrix algebra Mn(F ) satisfies An = 0. (On
the other hand, the ring of strictly upper triangular matrices satisfies
An = 0 but An−1 6= 0.)

Putting these various facts together, if A = k〈Ω〉 is an affine sub-
algebra of Mn(F ) such that the words in Ω of length ≤ d = 2n are
nilpotent, then An = 0. Amitsur and Shestakov conjectured that it
is enough to require nilpotency of the words in Ω of length ≤ n; this
was proved independently by Ufnarovsky [27] and Chekanu [8]; a short
proof of Belov [3] is given in [5, Corollary 2.82]. In fact, Belov improved
this result to algebraicity:

Theorem 5. If A is an affine PI algebra, and the matrix algebra
Mn+1(F ) does not satisfy all the identities of A, then the words of
length ≤ n comprise a Shirshov base of A.

The proof can be found in [3], [5, Exercise 9.18], [6] and (with a
different approach) [10].

The height theorem leads to other questions for further investigation:

Problem 6. Given a PI-algebra A, estimate its height over a given
generating set. Upper bounds (in terms of the number of generators,
the PI degree and the minimal degree of an identity not satisfied by
Mn(F )) were obtained in [1] and [3].

Problem 7. To describe those subsets Y over which A has some height.

Let us formulate these concepts more precisely.

Definition 8. An algebra A is said to have essential height ≤ h over
a subset Y , if there is a finite set S ⊂ A (which may depend on Y )
such that A is spanned as a vector space by

Y [h],S = {s0y
m1
1 s1 . . . st−1y

mt
t st : mi ∈ N, yi ∈ Y, si ∈ S, t ≤ h}.

In this case, Y is called an essential Shirshov base, and S the supple-
mentary set. Clearly we may always expand a supplementary set S; in
particular we assume 1 ∈ S.

Note that if Y is an essential Shirshov base and generates A as an
algebra, then Y is a Shirshov base. The minimal h in Definition 8 is
called the ‘essential height’ of A (with respect to Y ), and denoted by
Hess(A, Y ). By Shirshov’s theorem, a PI-algebra A has finite essential
height with respect to any finite set of generators.
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From a different viewpoint, if Y is an essential Shirshov base of A,
then any homomorphic image of A in which the elements of Y are
algebraic, is finite dimensional.

The naive converse does not hold.

Example 9. Let A = k[x, 1/x] and Y = {x}. Then Y is not a Shirshov
base of A, although every homomorphic image Ā of A in which x is
algebraic is finite dimensional over k.

A finite subset W = {w1, . . . , wt} of A is a Kurosch set, if for some
m,

A⊗kk[Λ]/

〈
wm

j −
m−1∑
i=0

λ
(j)
i wi

j : 1 ≤ j ≤ t

〉

is a finite module over k[Λ] where Λ = {λ(j)
i }0≤i<m, 1≤j≤t. In other

words when we make each wj integral of degree m over k[Λ], the image
of A[Λ] becomes a finite module.

Theorem 10 ([5, Exer. 9.20]). W is a Kurosch set iff W is an essential
Shirshov base.

2. Growth of affine PI-algebras vs. essential height

The usual way one nowadays studies growth of the affine algebra A
generated by Ω = {a1, . . . , a`} is by means of the (Poincaré-)Hilbert
series H(A), defined as

H(A) = 1 +
∑
n≥1

dnλn,

where dn = dimk

(∑n
j=0 kΩj

)
. Of particular interest is the Gelfand-

Kirillov dimension

(1) GKdim(A) = lim
n→∞

logn dn,

A good reference for Hilbert series and GK dimension is [20]. We say
the Hilbert series is rational if it is a rational function in λ; otherwise it
is called transcendental. Strictly speaking, the rationality of the series
depends on the choice of generating set (even though the GK dimension
is independent of the generating set). Nevertheless, the Hilbert series
of a commutative affine algebra is always rational.

It is easy to see that if Y is an essential Shirshov base of A, then
GKdim(A) ≤ Hess(A, Y ).

Corollary 11. The Gelfand-Kirillov of an affine PI algebra is finite.
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This raises the question of when is the GKdim(A) equal to Hess(A, Y ).
Clearly, the growth of A is maximal when A is relatively free, i.e., satis-
fies no relations other than those required by its polynomial identities.
See [5, Chapter 3] for a more precise definition. On the other hand,
our estimates of essential height were all made in terms of d, k, and
`, which remain the same when we pass to the relatively free affine
algebra. Thus it is reasonable to start with relatively free algebras.

Proposition 12. Relatively free PI-algebras are representable.

This result follows without difficulty from Kemer’s theorem that
any affine PI-algebra over a field k satisfies the same PI’s as a suit-
able finite dimensional k-algebra A, say with base b1, . . . , bn. Indeed,
there is a construction for the relatively free algebra of a finite dimen-
sional algebra, using “generic elements” ãi =

∑n
j=1 λijbj, where the λij

are commuting indeterminates, and this algebra is clearly contained in
A⊗ k(Λ) ⊂ Mn(F ) where F = k({λij}); thus it is representable.

Details are given in characteristic 0 in [5, Corollary 4.67]. Kemer
[16] handles the characteristic p > 0 case.

Representable PI algebras do exhibit good behavior with respect to
the Gelfand-Kirillov dimension:

Theorem 13. If A is a representable affine algebra with an essential
Shirshov base Y , then GKdim(A) = Hess(A, Y ).

Corollary 14. If A is representable, then GKdim(A) is an integer,
and Hess(A, Y ) is independent of respect to the essential Shirshov base
Y .

In particular, the Gelfand-Kirillov dimension of a relatively free affine
PI-algebra is an integer. Also, any relatively free PI-algebra has a ra-
tional Hilbert series, cf. [5, Theorem 9.44 and Corollary 9.45], although
[5, Example 9.39] presents a representable algebra with transcendental
Hilbert series (but clearly with integral Gelfand-Kirillov dimension).
We summarize the various interrelations in the following diagram.

relatively free PI +3

®¶

representable

®¶

|qqqqqqqqqq

xxqqqqqqqqqq

+3 PI

®¶
HA rational +3 integral GKdim has Shirshov base

Figure 1
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3. Monomial algebras

An algebra is monomial if it can be described in terms of relations
that are monomials in the generators. Besides being basic to com-
puter science, monomial algebras play an important role in the theory
of growth, since given a presentation of an affine algebra A, it is an
easy matter to define the associated monomial algebra having the same
Hilbert series; namely one factors the free algebra by the set of re-
ducible words in the generators of A, cf. [5, Proposition 9.8]. Note
that the associated monomial algebra of A also has the same Shirshov
basis. This procedure provides a way to study an arbitrary affine alge-
bra. However, this construction does not respect polynomial identities
(or other key properties, such as finite presentation).

If a monomial algebra is representable, then it is PI and so has finite
height over some finite set of words in the generators. The converse
does not hold (for example, an algebra with a nonintegral Gelfand-
Kirillov dimension cannot be representable, by Corollary 14). In this
section we formulate and prove a criterion for the representability of a
monomial algebra.

Let A be an affine PI monomial algebra. By the height theorem,
A has bounded essential height over a (finite) Shirshov base Y , which
we may assume to be a set of words in the generators. Let S be a
supplementary set as in the notation of Definition 8; moreover assume
Y ⊆ S. Choose a subset of Y [h],S which is a basis of A. Given

(2) w = s0y
m1
1 s1 . . . st−1y

mt
t st

(with yi ∈ Y and si ∈ S, and t bounded by the height), we rewrite it
in the same manner with s0 ∈ S of maximal possible length, then with
ym1

1 of maximal possible length, and so on. The assumption that Y ⊆ S
guarantees that no si equals 1. Then we call (s0, y1, s1, . . . , st−1, yt, st)
the type of w. We may assume that mi > 0 for all i, by adjoining sisi+1

to S if necessary. Furthermore, we may assume that the exponents mi

in words of any given type are unbounded; otherwise, by enlarging S
the type could be replaced by a shorter one.

The type of a subword of a w of type θ is called a subtype of θ. The
type of a word equal to zero is the empty type, which we disregard.
If θ = (s0, y1, s1, . . . , yt, st) does not occur as the type of a (nonzero)
word, we say that θ is empty.

The exponents (k1, . . . , ks) related to an type form a subset of Ns,
which we will denote by Λθ. Summarizing:

Proposition 15. Every word in the generators of A has a unique type,
and there are finitely many types.
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Let k denote our base field. By an exponential polynomial in the
variables m1, . . . , mt we mean a polynomial in the mi, as well as in ex-
pressions of the form αmi where α is algebraic over k — more precisely,
an expression of the form∑

fj(m1, . . . , mt)α
m1
1j · · ·αmt

tj

where fj are polynomials over a finite algebraic extension K of k, and
αij ∈ K.

We can now formulate the representability criterion.

Theorem 16 ([3, Thm. 6.26]). A monomial algebra A over k is rep-
resentable iff:

(1) A has essential height over a finite set Y (with a supplementary
set S), such that Proposition 15 holds.

(2) For each type θ = (s0, y1, s1, y2, . . . , yt, st), there is a finite sys-
tem Pθ,j of exponential polynomials over an algebraic extension
of k in the variables m1, . . . , mt, such that the following condi-
tion holds:

s0y
m1
1 s1 · · · st−1y

mt
t st 6= 0

if and only if

∃j Pθ,j(m1, . . . , mt) 6= 0,

and these are the only nonzero words of A.
(3) Any solution for the system of equations for a subtype is also a

solution for the system of equations for the type.

As the system of equations associated to an empty type, we may
take the zero polynomial. The ‘only if’ part of the proof follows easily
from Jordan decomposition:

Proposition 17. Let C be a square r × r matrix over a field k. Then
there are: a finite field extension K/k, matrices C1, . . . , Cr ∈ Mr(K[λ])
of polynomials over K (of degree ≤ r), and elements α1, . . . , αr ∈ K,
such that for every m ∈ N, the mth power of C is

Cm =
r∑

i=1

Ci(m) · αm
i ,

where Ci(m) ∈ Mr(K) is the matrix obtained by substituting m for λ
in Ci.

Proof. If C = αIr +
∑r−1

i=1 er,r+1 is a Jordan block, then the (i, j)th
entry in Cm is α−(j−i)

(
m

j−i

)
αm for j ≥ i, and 0 otherwise. The assertion

then follows from the fact that over a suitable algebraic extension of
the base field, C is similar to its Jordan decomposition. ¤
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Necessity of the conditions in the theorem follows easily, since by
the proposition, equality to zero of a word of the given type means the
vanishing of the components of the corresponding matrix.

Conversely, suppose A is a monomial algebra with a Shirshov basis
Y and supplementary set S, with finitely many types, each endowed
with a system of exponential polynomials Pθ,j as in the theorem. We
need to show that A is representable. Alternatively, since Y and S
with the system of equations specifies a presentation of A, it is enough
to construct a representable algebra with the given presentation.

Reduction 1. We may assume that A has only one (nonempty)
type. Indeed, suppose A has types θ1, . . . , θk, and let A1, . . . , Ak be
monomial algebras generated by copies of Y and S, where the only
nonempty type of Ai is θi. Then the algebra A ⊆ A1×· · ·×Ak generated
by the diagonal elements (y, y, . . . , y) (y ∈ Y ) and (s, s, . . . , s) (s ∈ S)
has precisely the given presentation, as seen by comparing components.
Moreover (as we shall see) the Ai are representable, say each acting on
a vector space Vi, and thus so is A1 × · · · × Ak, by its action on the
direct sum V1 ⊕ · · · ⊕ Vk.

Reduction 2. Recall that the elements of Y and S are words on the
original generators Ω. We claim that one may assume that the genera-
tors composing the si and yi are all distinct (and, by construction, no
si or yi of a type equals 1).

For simplicity of notation, we (temporarily) renumber the compo-
nents of the type as (s0, s1, s2, . . . , su), and agree that s2i ∈ S and
s2i+1 ∈ Y . Write each si as a product si = ωi1 . . . ωiti , where the ωij

are in Ω, not necessarily distinct. Let Ω̂ be a ‘generic’ set of genera-
tors, composed of new generators ω̂ij which are by definition distinct.
Now let ŝi = ω̂i1 . . . ω̂iti . Let A′ be the algebra having the single type
(ŝ0, . . . , ŝu). Then A embeds into A′ by sending each ωij to the sum
of all ω̂uv such that ωuv = ωij. But A′ satisfies the assertion of the
reduction, and representability of A follows from that of A′.

Reduction 3. We may assume the single nonempty type of A
has a single defining exponential polynomial. Indeed, as in Reduc-
tion 1, if A1, . . . , Ak are the algebras defined for the given type with
distinct equations P1, . . . , Pk, and each Ai acts on a vector space Vi,
then the diagonal embedding (as before) can be presented with the
system {P1, . . . , Pk}.

Thus we are left with a single type (s0, y1, . . . , yt, st) and an expo-
nential equation Q(m1, . . . ,mt). We need to find a monomial repre-
sentable algebra generated by yi and si (over an extension of k), such
that s0y

m1
1 . . . ymt

t st 6= 0 iff Q(m1, . . . ,mt) 6= 0.
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The first step is to note that any power mu
i is a linear combination

of binomial expressions of the form
(

mi

u′
)

for u′ ≤ u. Hence, Q can be
written in the form

Q(m1, . . . ,mt) =(3)

=
∑

u1,...,ut,j

c~u · αm1

~u,1

(
m1

u1 − 1

)
αm2

~u,2

(
m2

u2 − 1

)
. . . αmt

~u,t

(
mt

ut − 1

)
,

where ~u = (u1, . . . , ut, j) (j is added to allow more than one product
with the same u1, . . . , ut). Let K denote the (finite dimensional) ex-
tension of k generated by all the α~u,i, and take K̄ = K(λ1, . . . , λt).
We will construct the representable algebra directly as K̄-maps of a
suitable K̄-vector space.

For each monomial ~u = (u1, . . . , ut) in the expression for Q, let
V~u = V~u,1 ⊕ · · · ⊕ V~u,t, where V~u,i is a ui-dimensional vector space over
K (with an ordered basis). Take V = ⊕V~u. Define operators Ti : V→V
by acting on each V~u,i′ as follows: For i′ = i, Ti acts as a Jordan matrix
of size ui with the eigenvalue α~u,i; and if i′ 6= i, then Ti is the zero
operator.

For 0 < i < t, we define si on V~u,i′ as follows: for i′ = i, si maps
the last basis element of V~u,i to the first basis vector of V~u,i+1 (and
sends the others to zero). For i′ 6= i, si is the zero operator. With this
choice of the operators, the coefficient of the matrix unit e1,u1+···+ut

in Tm1
1 s1 · · · st−1T

mt
t (operating from left to right on V~u) is the mono-

mial corresponding to ~u in (3). (This follows from the calculation of
Proposition 17). Let V~0 be a designated one-dimensional component of
V . We define s0 : V→V by letting s0 : V~0→V~u be the injection into the
first entry (and zero on every other pair of components); dually we let
st : V→V be defined on V~u→V~0 by multiplying the u1+ · · ·+ut entry by
c~u. Now s0T

m1
1 s1 · · · st−1T

mt
t st equals Q(m1, . . . ,mt) times the matrix

unit e~0,~0. Finally take yi = λiTi. Then

s0y
m1
1 s1 · · · st−1y

mt
t st = λm1

1 . . . λmt
t Q(m1, . . . , mt)e~0,~0

which are linearly independent over k, so there are no additional rela-
tions, and we have constructed the desired monomial algebra.

Example 18. Let us construct a representable monomial algebra with
the type (s0, y1, s1, y2, s2) and the equation

Q(m1,m2) = 4m1m15
m2m2 − 3 · 2m15m2m2.

There are two products, corresponding to ~u = (2, 2) and ~u′ = (1, 2).

To these we add ~0 = (1, 1), and so we act on V = V~u ⊕ V~u′ ⊕ V~0, a
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8-dimensional space. We view V~u as occupying the first to fourth entry,
and so on.

The construction above suggests

T1 =

((
4 1
0 4

)
⊕

(
1 0
0 1

))
⊕

(
(2)⊕

(
1 0
0 1

))
⊕ (1),

T2 =

((
1 0
0 1

)
⊕

(
5 1
0 5

))
⊕

(
(1)⊕

(
5 1
0 5

))
⊕ (1),

s0 = e1,8 + e5,8, s1 = e3,2 + e6,5, and s2 = e8,4 − 3e8,7. One can check
that indeed s0T

m1
1 s1T

m2
2 s2 = Q(m1,m2) · e8,8, and every product not of

this form is zero.

4. Power vectors

Suppose A has height ≤ h over a set Y . Having studied the relation
between A and Y , it remains for us to consider the ‘power vectors’ of A
with respect to Y , defined as all vectors (m1, . . . , mh) ∈ Nh such that

w = ym1
1 . . . ymh

h

is irreducible for some choice of y1, . . . , yh ∈ Y .
Our goal is to describe the power vectors of A. This can be fairly

complicated even in the monomial case, cf. Theorem 16. The construc-
tion of monomial algebras is thus equivalent to the solution of arbitrary
exponential polynomials. But this is algorithmically unsolvable by the
celebrated theorem of Davis-Putnam-Robinson [9]. Thus we conclude
in characteristic zero:

Proposition 19 ([3]). The isomorphism problem for two subalgebras
of the algebra of matrices over the ring of polynomials, given by their
generators, is algorithmically unsolvable.

However, the situation is different in positive characteristic. Let
p > 0 be prime, and (m1, . . . ,m`) ∈ N`. Write

mi =
N∑

j=0

aijp
j,

for aij ∈ {0, . . . , p− 1} and some N ∈ N. The ‘p-adic presentation’ of
(m1, . . . ,m`) is defined as the series of vectors (ai0)i, (ai1)i, . . . , (aiN)i.

Let X be a finite set. Recall that a set of (finite) words in X∗ is called
a ‘language’, and that a language W is ‘regular’ if there is a finite graph
with two designated vertices e0, e1 and edges labelled by letters from X,
such that W is the set of words obtained by concatenating the labels
over a path, ranging over all paths from e0 to e1. We say that the graph
‘presents’ the language. The main result of [4] is as follows:
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Theorem 20 ([4]). Suppose Pu(m1, . . . ,m`) = 0 are finitely many
exponential Diophantine equations in the parameters m1, . . . , m`, over
a field of characteristic p > 0.

Let W be the language composed of all the p-adic presentations of
vectors (m1, . . . , m`) satisfying the equations Pu. Then W is a regular
language. Moreover there is an algorithm to construct a graph present-
ing W .

Corollary 21. Suppose we are given finitely many exponential poly-
nomials Pu(m1, . . . , mt) in characteristic p > 0. There is an algorithm
to decide whether or not there is a solution to the system of equations
∀u : Pu(m1, . . . , mt) = 0.

Proof. Since the details of Theorem 20 and Corollary 21 are only avail-
able in Russian (cf. [4]), let us give the main idea of the proof of Corol-
lary 21. We assume there is a single indeterminate m, and that the
base field k = Fp(x) is the field of rational functions in one variable
over the prime field. Furthermore we assume each Pu can be written
in the form

(4) Pu(x,m) =
t∑

j=1

r(j)
u (x)αj(x)m

where r
(j)
u (x), αj(x) ∈ Fp[x]. If we did not make the assumption that

the αj are in k, but rather permitted them to be in a finite extension
field, we would need to view the coefficients as matrices over k via the
regular representation; the proof would be along the same lines, but
much more intricate.

Let F denote the original system of equations {∃m∀u : Pu(x,m) = 0}.
Let C = maxu,j{deg(r

(j)
u ), deg(αj)}. Writing m = m0 + m1p (where

0 ≤ m0 < p), we have that αj(x)m = αj(x)m0αj(x
p)m1 and so

Pu(x,m) =
t∑

j=1

r(j)
u (x)αj(x)m0αj(x

p)m1 .

For every u and j and every m0, write r
(j)
u (x)αj(x)m0 =

∑p−1
i=0 xiR

(j)
m0,u,i(x

p)

for suitable polynomials R
(j)
m0,u,i, and note that deg(R

(j)
m0,u,i) ≤ 1

p
(deg(r

(j)
u )+

(p − 1) deg(αj)) ≤ C. Every equation of the form Pu(x,m) = 0 can
now be written as

Pu(x,m0 + pm1) =

p−1∑
i=0

xi

t∑
j=1

R
(j)
m0,u,i(x

p)αj(x
p)m1 = 0,



12 ALEXEI KANEL-BELOV, LOUIS H. ROWEN, AND UZI VISHNE

or equivalently

(5)
t∑

j=1

R
(j)
m0,u,i(y)αj(y)m1 = 0

for every i = 0, . . . , p − 1, replacing xp by y. Obviously the system of
equations (4) (ranging over u) has a solution iff the system (5) (ranging
over i and u, with m0 fixed) has one.

The degree of the polynomial coefficients R
(j)
m0,u,i remains bounded

by C, and so there are finitely many possible vectors of coefficients. It
follows that only finitely many systems of equations are obtained in this
process; let us denote this collection of systems by L. Any solution m
to a system can be reduced to a solution m1 = [m/p] of another system,
and so the original system F has a solution if and only if one of the
systems in L has a solution with m ≤ p. This reduces the solution of
F to a finite number of steps. ¤

Theorem 22. The isomorphism problem for monomial subalgebras of
the matrix algebra in polynomials over a field of char p > 0 (defined in
terms of their generators) is algorithmically solvable.

Proof. By Theorem 16, a representable monomial algebra is determined
by finitely many exponential polynomials (the proof is constructive),
and in characteristic p we have an algorithm to find their solution. ¤

It would be nice if Theorem 22 held for arbitrary representable al-
gebras (not necessarily monomial) in characteristic > 0. Towards this
end, we pose a conjecture:

Conjecture 23. If A is a representable algebra over a field of posi-
tive characteristic, then the set of power vectors determines a regular
language.

Note that this conjecture holds for monomial algebras, by Theorems
16 and 20.

Given this discrepancy between characteristic 0 and characteristic
p > 0, we would like to study affine algebras, at least in the rela-
tively free case, by passing modulo p. Unfortunately this cannot be
done naively, due to counterexamples of Schelter [24] and Asparouhov-
Drensky-Koev-Tsiganchev [2]. But the idea does work for large enough
p.

Theorem 24. Suppose A is a relatively free affine algebra over Z, with
the standard set of generators. Then a normal base of A⊗Q is mapped
onto a normal base of A⊗Z/p for all sufficiently large p. In particular
HA⊗Q = HA⊗Z/p.
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Proof. See [5, Exercise 9.32]. This exercise follows readily from the
extensive hint given in [5, Exercise 9.31]. ¤

Thus, taking p as in the theorem, one could solve the isomorphism
problem for two relatively free PI-algebras. Unfortunately, we do not
yet have a way of determining p. We can make these conditions more
precise using the following program.

Proposition 25 ([18]). Let S ⊆ N. Suppose for primes p 6= p′, that
the languages of p-adic and p′-adic presentations of S are both regu-
lar. Then S is a union of a finite set and a finite union of arithmetic
progressions.

Conjecture 26 (Generalization to the multivariate case). Suppose S ⊆
Nk has p-adic and p′-adic regular presentations. Then S is a finite
union of shifts of finitely generated semigroups of Nk.

Conjectures 23 and 26 together with Theorem 24 would imply:

Conjecture 27. Let A be a relatively free affine algebra over a field of
characteristic zero. Then the set of power vectors of a Shirshov base of
A is regular, i.e., can be described as in Conjecture 26.
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