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Abstract. We study the parity of the number of irreducible fac-
tors of trinomials over Galois fields of characteristic 2. As a conse-
quence, some sufficient conditions for a trinomial being reducible
are obtained. For example, xn + axk + b ∈ GF (2t)[x] is reducible
if both n, t are even, except possibly when n = 2k, k odd.

The case t = 1 was treated by R.G.Swan [10], who showed that
xn + xk + 1 is reducible over GF (2) if 8|n.

Appeared in Finite Fields and their applications, 3(4), (1997).

1. Introduction

Trinomials are polynomials of the form xn + axk + b (n > k). They
have applications in the theory of finite fields (e.g. [1]), in coding
theory (e.g. [2, Chap. 6]) and in cryptography (e.g. [6]). Many
tables of factorizations of trinomials and of irreducible trinomials were
published (e.g. [6], [12], and the recent [3]), apparently all of them over
GF (2).

Using an old result of Stickelberger (see 2.2 below), Swan [10] proves
that all trinomials over GF (2), with degree divisible by 8, have an even
number of factors, and are thus reducible.

In this paper we use Swan’s computation of the discriminant of a
trinomial, together with some facts about local fields, to prove

Corollary 5.1. Let K be an even-dimensional extension of GF (2).
Then any trinomial of even degree over K is reducible, except possibly
for x2d + axd + b (a, b ∈ K) when t2 + at+ b have no roots in K.

In particular, the only primitive trinomials over even-dimensional K
are of degree 2.

This result is part of a full description of the parity of the number of
irreducible factors of a trinomial over finite extension of GF (2), given
in 3.4, 4.1 and 4.2.
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The background material is given in the next section. In section 3 we
handle all but some exceptional types of trinomials, and give the exact
condition for the number of factors to be even (theorem 3.4). In section
4 we reduce the treatment of the exceptional types to questions about
the reducibility of certain quadratic polynomials. Some corollaries and
applications are given in section 5.

2. Preliminaries

In this section we present Stickelberger’s theorem about the number
of irreducible factors of a polynomial. We quote the characterization
of unramified extensions of the 2-adic field Q2 and derive one result
for future use. We also give Swan’s formula for the discriminant of a
trinomial.

Let υ : K → Z be a discrete valuation, R = Rυ the valuation ring,
and I = Iυ the valuation ideal. K̄ = R/I is the residue class field of
K. The natural projection R → K̄ is denoted by a 7→ ā.

We assume henceforth thatK is a completion of an algebraic number
filed. In particular K is local, i.e. complete in the metric induced by υ
and K̄ is finite.

The recognition of squares in R can be done mod 4I:

Lemma 2.1 (e.g. [10, lemma 1]). Let a ∈ R, a ̸∈ I. Then a is a
square in K iff it is a square mod 4I.

This result holds for any local field.

Let f(x) ∈ K[x] be a monic polynomial of degree n. If f(x) =
(x − η1)...(x − ηn) is split in an extension field L of K, we define the

discriminant of f to be D(f) = (−1)(
n
2)
∏

i̸=j (ηi − ηj) ∈ K.

Let ∆(f) =
∏

i<j(ηi − ηj) ∈ L. Obviously D(f) = ∆(f)2, so D(f) is

a square in L. This raises a natural question, when is D(f) a square
in K.

Assume f(x) has integral coefficients, and f̄ has no repeated roots.

Then D(f) ∈ R and D(f) = D(f̄) ̸= 0. Let r be the number of
irreducible factors of f̄ (over K̄).

The parity of r was related to D(f) by Stickelberger, who proved
the following:

Theorem 2.2 (Stickelberger [9], also [10] or [5]). r ≡ n (mod 2) iff
D(f) is a square in K.

Another formulation, replacing squares in K with traces over finite
extensions, is given in [2].
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Recall that an extension K of the 2-adic field Q2 is unramified if
[K : Q2] = [K̄ : Q̄2]. The following is a consequence of Hensel’s
lemma.

Theorem 2.3 (e.g. [11]). For every n, there exist a unique unramified
extension K ⊇ Q2 of dimension n. In fact, K is the splitting field of
x2n − x, and the extension is cyclic.

Corollary 2.4. Suppose K is a finite dimensional unramified extension
of Q2.

Then
√
5 ∈ K iff [K : Q2] is even.

Proof. Let K0 denote the unique unramfieid quadratic extension of Q2.
Then K0 ⊆ K iff [K : Q2] is even.

K0 is the splitting field of x4 − x = x(x− 1)(x2 + x+1), and is thus
equal to Q2[

√
−3]. By 2.1

√
−15 ∈ Q2, so K0 = Q2[

√
5]. �

The setup in this paper is that we are given a trinomial f̄ over a
finite field K̄, and we have to appropriately choose K and f in order
to apply theorem 2.2. Fix the following notation.

Notation 2.5. K̄ is a finite field of characteristic 2. g(x) = xn+ āxk+
b̄ ∈ K̄[x] is a trinomial, ā, b̄ are arbitrary nonzero elements of K̄.

r is the number of irreducible factors of g(x) over K̄.

Let K be the (unique) unramified extension of Q2 of degree [K̄ :
GF (2)]. R, I, K̄ are the valuation ring, valuation ideal and the residue
class field of K, respectively. 2 is a prime in the valuation ring Z2 of
Q2, and it remains a prime in R. Thus I = 2R.

Let f(x) = xn + axk + b ∈ K[x] be a lift of g(x): f̄(x) = g(x).

Our aim is to ascertain r (mod 2). If n, k are both even then g is a
square, since the homomorphism K̄× 7→ K̄× of exponentiation by 2 is
an isomorphism. In this case r is always even, so we may ignore it.

The trinomials g(x) = xn + āxk + b̄ and g1(x) = xn + āb̄−1xn−k + b̄−1

have the same number of factors via the substitution x 7→ x−1. Thus,
replacing k by n − k if necessary, we may assume that exactly one of
n, k is even.

Let d = (n, k), n = dn1, k = dk1. Note that d is odd.

We register the four cases concerning the constants n, k.
Case (a): n is even, k is odd, n ̸= 2k.
Case (a∗): k is odd, n = 2k.
Case (b): n is odd, k is even, k ̸ |2n.
Case (b∗): n is odd, k is even, k|2n.
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To prove his results about trinomials, Swan computes the discrimi-
nant of a trinomial in general:

Theorem 2.6 (Swan, [10, Theorem 2]). Let n > k > 0, d = (n, k),
and n = dn1, k = dk1. Let a, b ∈ K. Then D(xn + axk + b) equals

(−1)(
n
2)bk−1(nn1bn1−k1 − (−1)n1kk1(n− k)n1−k1an1)d.

Example 2.7. D(x2 + ax + b) = a2 − 4b, so x2 + āx + b̄ factors over
K̄ iff a2 − 4b is a square in K.

3. The cases (a) and (b)

In this section we treat cases (a) and (b). Cases (a∗) and (b∗) are
treated in the next section.

In the following two lemmas we study D(f) mod 4I, i.e. mod 8R.

Lemma 3.1. D(f) satisfies:

• In case (a): D(f) ≡ (−1)(
n+1
2 )+1kk(n− k)n−kbk−1an (mod 8R).

• In case (b): D(f) ≡ (−1)(
n
2)bn−1nn (mod 8R).

In particular D(f̄) ̸= 0.

Proof. D(f) is given in theorem 2.6.
Assume case (a) holds. n1 > k1 so n1 ≥ 2, but n1 ̸= 2 for n ̸= 2k.

Now n ≡ 0 (mod 2R), so we have n3 ≡ 0 (mod 8R), and nn1 ≡ 0
(mod 8R) too.

Assume case (b) holds. k1 ̸= 1 since k does not divide n, and also
k1 ̸= 2 by the assumption. Thus k1 ≥ 3 and the previous argument
shows that kk1 ≡ 0 (mod 8R). The result follows. �

Next, we show that for D(f) to be a square in K depends on n and
k only.

Lemma 3.2. D(f) is a square in K iff:

• In case (a): (−1)
n
2
+1k(n− k) is a square.

• In case (b): (−1)
n−1
2 n is a square.

Proof. By 2.1 it is enough to compute mod 8R. Using the formulas of
3.1 we have in case (a),

D(f) ≡ (−1)(
n+1
2 )+1kk(n− k)n−kbk−1an = (−1)(

n+1
2 )+1k(n− k)u2

for some u ∈ R since k − 1, n are even. In case (b), D(f) ≡
(−1)(

n
2)bn−1nn = (−1)(

n
2)nu2 for n− 1 is even. �
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Note that by a theorem of Stickelberger [11, 4-8-19], D(f) is always
a square mod 4R.

The following is a generalization of [10, corollary 5] (for the cases (a)
and (b)).

Theorem 3.3. Assume one of (a),(b) holds.
Then r ≡ n (mod 2) if and only if
1. [K̄ : GF (2)] is even, or
2. n ≡ 0, 1,−1 (mod 8), or
3. n ≡ 2, 6 (mod 8) and 2k ≡ n (mod 8).

Proof. We use 3.2 to test if D(f) is a square in K. Note that the test
value given in 3.2 is always 1 or 5 mod 8R. When it is 1 D(f) is a
square, and when it is 5 D(f) is a square iff [K̄ : GF (2)] is even, by
2.4. The result follows from 2.2. �

Note that n − r (mod 2) is independent of ā and b̄. Furthermore,
extending the field K̄, as long as the dimension was even or remains
odd, does not change the parity of r. If n ≡ ±3 (mod 8) and [K̄ :
GF (2)] is odd then r is even, so there is some irreducible factor of
even degree. Such factors are made reducible by an even-dimensional
extension of K̄, and r becomes odd.

Checking all possible values of n mod 8, we get another formulation,
with emphasis on the property r ≡ 0 (mod 2):

Theorem 3.4. Assume n ̸= 2k and (if n is odd) k ̸ |2n.
r ≡ 0 (mod 2) if and only if
1. n ≡ 0 (mod 8) or
2. n ≡ 2, 4, 6 (mod 8) and [K̄ : GF (2)] is even, or
3. n ≡ 3, 5 (mod 8) and [K̄ : GF (2)] is odd, or
4. n ≡ 2, 6 (mod 8) and 2k ≡ n (mod 8).

In all the above cases the polynomial is reducible.

4. The cases (a∗) and (b∗)

This section handles the special cases (a∗),(b∗). We reduce the de-
termination of r mod 2 in these cases to questions about quadratic
polynomials over K̄.

Lemma 4.1 (case (a∗)). Let d be odd. x2d+āxd+b̄ has an even number
of irreducible factors iff t2 + āt+ b̄ factors over K̄.

Proof. By Swan’s formula D(x2d+axd+b) = −bd−1d2d(4b−a2)d, which
is a square in K iff a2 − 4b is.

By 2.7, a2 − 4b is a square iff t2 + āt+ b̄ factors. �
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Assume n is odd, k even, k|2n. Denote h(t) = t2+t+a
2n
k b2−

2n
k ∈ K[t].

Lemma 4.2 (case (b∗)). The number r of irreducible factors of g(x) =
xn + āxk + b̄ over K̄ is odd iff

1. [K̄ : GF (2)] is even or n ≡ 1, 7 (mod 8), and h̄(t) factors over
K̄, or

2. [K̄ : GF (2)] is odd, n ≡ 3, 5 (mod 8), and h̄(t) does not factor
over K̄.

Proof. The discriminant of h(t) is D(h) = 1 − 4a
2n
k b2−

2n
k . By Swan’s

formula D(xn+axk+b) ≡ (−1)
n−1
2 nD(h)u2 (mod 8R) for some u ∈ R.

In the first case (−1)
n−1
2 n is a square in K (use 2.4), so D(f) is a

square iff D(h) is.

In the second case (−1)
n−1
2 n ≡ 5 (mod 8) is not a square. If h(t)

factors thanD(h) is a square soD(f) is not. If h(t) does not factor then

K[
√

D(h)] ∼= K[t]/ < h(t) > is an unramified extension of K (since h̄

has two different roots over K̄) so it equals K[
√
5] by uniqueness (2.4),

and we see that D(f) is a square. �

5. Summary and applications

We collect the data from the previous sections to formulate some
corollaries about trinomials over even-dimensional extensions ofGF (2).
For the sake of notational simplicity, we omit the bars from the field
letter K and the constants.

Let K be a Galois field over GF (2). Let 0 ̸= a, b ∈ K, and assume
g(x) = xn + axk + b is not a square (i.e. n and k are not both even).

From theorem 3.4 and lemma 4.1 we get

Corollary 5.1. If [K : GF (2)] and n are both even, then g(x) has an
odd number of factors in only one case, namely, when g(x) = x2d +
axd + b and t2 + at+ b has no roots in K.

Especially, g(x) is reducible except possibly in this case.

If g(x) is irreducible overK, the order of a root α in the multiplicative
group of the splitting field K[α] of g(x) is called the exponent of g. A

polynomial with maximal possible exponent, i.e. |K|deg(g)−1, is called
primitive.

Corollary 5.2. If [K : GF (2)] is even, the only primitive trinomials
of even degree over K are of the form x2 + ax+ b.

Proof. By 5.1, the only candidate is g(x) = x2d+axd+b. Assume d > 1.
Let β be a root of g(x), and α = βd. Then α is a root of t2 + at+ b, α
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belongs to the extension of degree 2 of K. Thus the order of α in K[α]×

divides |K|2−1, and the order of β divides d(|K|2−1) < |K|2d−1. �
Primitive trinomials of the form x2 + ax + b do exist: let K ′ be the

extension of degree 2 of K, and let u ∈ K ′ be a generator of K ′×. Then
g(x) = x2 + (u + u|K|)x + u1+|K| ∈ K[x] is primitive. This is the only
way to get a primitive quadratic polynomial.

From 3.4 and 4.2 we get another corollary:

Corollary 5.3. Suppose [K : GF (2)] is even. Only two types of odd-
degree trinomials have an even number of factors, namely:

1. g(x) = xn + axk + b, 2|k|2n, if t2 + t + a
2n
k b2−

2n
k has no roots in

K.
2. g(x) = xn + axk + b, (n− k)|n, if t2 + t+ a

2n
k b−2 has no roots in

K.

Since there has been some interest in the number of solutions of
trinomials of small degree, we demonstrate how our results can refine
old results on these questions.

Cazacu and Simovici [4] discuss the number of solutions of x4+ax+a
over a finite extension K of GF (2). They give exact criterion for the
number of solutions to be 1 or 2. Combined with their results, we can
formulate

Corollary 5.4. Let A be the multiset of degrees of the irreducible fac-
tors of g(x) = x4 + ax+ a over K.

1. Assume [K : GF (2)] is even. If a
|K|−1

3 = 1, g splits or A = {2, 2};
otherwise, A = {3, 1}.
2. Assume [K : GF (2)] is odd. Then g is irreducible or A = {2, 1, 1}.
(See [4, Theorem 2] for details).
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