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Abstract. The union of an ascending chain of prime ideals is not always

prime. The union of an ascending chain of semi-prime ideals is not always
semi-prime. We show that these two properties are independent. We also
show that the number of non-prime unions of subchains in a chain of primes in
a PI-algebra does not exceed the PI-class minus one, and this bound is tight.

1. Introduction

In a commutative ring, the union of a chain of prime ideals is prime, and the
union of a chain of semiprime ideals is semiprime. This paper demonstrates and
measures the failure of these chain conditions in general.

Definition 1.1. A ring has the (semi)prime chain property (denoted P↑ and
SP ↑, respectively) if the union of any countable chain of (semi)prime ideals is always
(semi)prime.1

The property SP ↑ was recognized by Fisher and Snider [4] as the missing hy-
pothesis for Kaplansky’s conjecture on regular rings, and they gave an example of
a ring without SP ↑.

Our focus is on P↑. The class of rings satisfying P↑ is quite large. An easy
exercise shows that every commutative ring satisfies P↑, and the same argument
yields that the union of strongly prime ideals is strongly prime (P▹R is strongly
prime if R/P is a domain). In fact, we have the following result:

Proposition 1.2. Every ring R which is a finite module over a central subring,
satisfies P↑.

Proof. Write R =
∑t
i=1 Cri where C ⊆ Cent(R). Suppose P1 ⊂ P2 ⊂ · · · is a chain

of prime ideals, with P = ∪Pi. If a, b ∈ R with∑
Carib =

∑
aCrib = aRb ⊆ P,

then there is n such that arib ∈ Pn for 1 ≤ i ≤ t, implying aRb =
∑
Carib ⊆ Pn,

and thus a ∈ Pn or b ∈ Pn. �
(For a recent treatment of the correspondence of infinite chains of primes between

a ring R and a central subring, see [12]).
The class of rings satisfying P↑ also contains every ring that satisfies ACC (as-

cending chain condition) on primes, and is closed under homomorphic images and

Date: September 2015.
This research was partially supported by a BSF grant no. 206940.
We thank L. Small for many helpful suggestions, including pointing out [9, Exmpl. 4.2].
1For simplicity we deal only with countable chains throughout the paper, but the arguments

are general.
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central localizations. This led some mathematicians to believe that it holds in
general. On the other hand, Bergman produced an example lacking P↑ (see Exam-
ple 2.1 below), implying that the free algebra on two generators does not have P↑.

Obviously, the property P↑ follows from the maximum property on families of
primes. On the other hand, P↑ implies (by Zorn’s lemma) the following maximum
property: for every prime Q contained in any ideal I, there is a prime P maximal
with respect to Q ⊆ P ⊆ I.

In Section 4 we show that P↑ and SP ↑ are independent, by presenting an example
(due to Kaplansky and Lanski) of a ring satisfying P↑ and not SP ↑, and an example
of a ring satisfying SP ↑ but not P↑.

We say that an ideal is union-prime if it is a union of a chain of primes, but
is not itself prime. (If {Pλ} is an ascending chain of primes, then R/

∪
Pλ =

lim→R/Pλ is a direct limit of prime rings). The P↑-index of the ring R is the
maximal number of non-prime unions of subchains of a chain of prime ideals in R
(or infinity if the number is unbounded, see Proposition 5.3). Section 2 extends
Bergman’s example by showing that the P↑-index of the free (countable) algebra
is infinity. A variation of this construction, based on free products, is presented
in Section 3. After defining the P↑-index in Section 5, in Section 6 we discuss
PI-rings, showing that the P↑-index does not exceed the PI-class minus one, and
this bound is tight. We thank the anonymous referee for careful comments on a
previous version of this paper.

2. Monomial algebras

Fix a field F . We show that P↑ and SP ↑ fail in the free algebra (over F ) by
constructing an (ascending) chain of primitive ideals whose union is not semiprime.
Let us start with a simpler theme, whose variations have extra properties.

Example 2.1 (A chain of prime ideals with non-semiprime union). Let R be the
free algebra in the (noncommuting) variables x, y. For each n, let

Pn =
⟨
xx, xyx, xy2x, . . . , xyn−1x

⟩
.

As a monomial ideal, it is enough to check primality on monomials. If uRu′ ⊆ Pn
for some words u, u′, then in particular uynu′ ∈ Pn, which forces a subword of the
form xyix (with i < n) in u or in u′; hence either u ∈ Pn or u′ ∈ Pn.

On the other hand
∪
Pn = (RxR)2 which is not semiprime.

This example, due to G. Bergman, appears in [9, Exmpl. 4.2]. Interestingly,
primeness is always maintained in the following sense ([9, Lem. 4.1], also due to
Bergman): for every countable chain of primes P1 ⊂ P2 ⊂ · · · in a ring R, the
union

∪
(Pn[[ζ]]) is a prime ideal of the power series ring R[[ζ]].

Since in Example 2.1
∪
Pn = (RxR)2, if Q▹R is a prime containing the union

then x ∈ Q so R/Q is commutative. In particular, a chain of prime ideals start-
ing from the chain P1 ⊂ P2 ⊂ · · · has only one union-prime. Let us exhibit a
(countable) chain providing infinitely many union-primes.

Example 2.2 (A prime chain with infinitely many union-primes). Let R be the
free algebra generated by x, y, z. For a monomial w we denote by degy w the degree
of w with respect to y. For i, n ≥ 1, consider the monomial ideals

Ii,n = RxxR+RxzxR+ · · ·+Rxzi−1xR+
∑

degy w<n

RxzixwxzixR,
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which form an ascending chain with respect to the lexicographic order on the indices
(i, n), since xzix ∈ Ii′,n for every i′ > i. To show that Ii,n are prime, suppose that
u, u′ are monomials such that u, u′ ̸∈ Ii,n but uRu′ ⊆ Ii,n. Then uziynziu′ ∈ Ii,n.

Since none of the monomials xzi
′
x (i′ < i) is a subword of u or u′, they are not

subwords of uziynziu′, forcing uziynziu′ to have a subword of the form xzixwxzix
where degy w < n. It follows that ziynzi is a subword of zixwxzi, contrary to the
degree assumption. Now, for every i,∪

n

Ii,n = RxxR+RxzxR+ · · ·+Rxzi−1xR+ (RxzixR)2,

which contains (RxzixR)2 but not RxzixR, so it is not semiprime.

In particular the P↑-index of R (see Proposition 5.3) is infinity. In Section 6
we show that this phenomenon is impossible in PI algebras: there, the number of
union-primes in a prime chain is bounded by the PI-class.

Remark 2.3. The ideals Pn in Example 2.1 are in fact primitive. Indeed, Bell and
Colak [1] proved that any finitely presented prime monomial algebra is either primi-
tive or PI (also see [8]), and R/Pn contains a free subalgebra, e.g. k

⟨
xyn, xyn+1, . . .

⟩
.

The same effect can be achieved by using idempotents.

Example 2.4 (A chain of primitive ideals with non-semiprime union). Let R be the
free algebra in the variables e, y, modulo the relation e2 = e. Every monomial has
a unique shortest presentation as a word (replacing e2 by e throughout). Ordering
monomials first by length and then lexicographically, every element f has an upper
monomial f̄ . Notice that fyng = f̄ynḡ.

For each n, let
Pn =

⟨
eye, ey2e, . . . , eyn−1e

⟩
.

To show that Pn is a prime ideal, assume that fyng ∈ Pn. Then f̄y
nḡ = fyng ∈ Pn,

forcing f̄ ∈ Pn or ḡ ∈ Pn as in Example 2.1. The claim follows by induction on the
number of monomials.

To show that the ideal Pn is primitive, it is enough by [7] to prove that e(R/Pn)e
is a primitive ring. We construct an isomorphism between e(R/Pn)e and the
countably generated free algebra F ⟨z0, z1, . . . ⟩ by sending eyme for m ≥ n (which
clearly generate a free algebra) to zm−n. But the free algebra is primitive (see [6,
Prop. 11.23]).

On the other hand
∪
Pn = ReyReR = ReRyeR, which contains (ReyR)2 but

not ey, so is not semiprime.

Remark 2.5. We say that a ring is uniquely-P↑ if it has a unique minimal prime
over every chain of prime ideals. Since the intersection of a descending chain of
primes is prime, Zorn’s lemma shows that there are minimal primes over every
ideal, in particular over every union-prime.

In the topology of the spectrum, a net {Pλ}λ∈Λ of primes converges to a prime Q
if and only if

∩
λ∈Λ

∪
λ′≥λ Pλ′ ⊆ Q; in particular when {Pλ} is an ascending chain,

limPλ = Q if and only if
∪
Pλ ⊆ Q. Therefore, the spectrum can identify minimal

primes over union-primes. It seems that the spectrum cannot distinguish P↑ from
uniquely-P↑.

In the examples of this section, there is a unique minimal prime over every
union-prime. In Example 4.5 below the situation is different: the union-prime ideal
constructed there is the intersection of two primes containing it.
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3. Prime ideals in free products

In Example 2.1 there are infinitely many (incomparable) prime ideals lying over
the chain. We modify this example, in order to obtain a chain over which there is
unique prime. In Example 2.1 we considered ideals of the free algebra, which can
be written as a free product F [x]∗F F [y]. The quotient over the radical of the union
over the chain is the “second” component F [y], which we would like to replace by
the field F (y). The proof that the ideals are prime is somewhat delicate; we thank
the referee for pointing this out.

Let F be a field and let A,B be F -algebras, with given vector space decompo-
sitions A = F ⊕ A0 and B = F ⊕ B0. The free product A ∗F B can be viewed
as the tensor algebra T (A0 ⊕ B0) = F ⊕

⊕
n≥1(A0 ⊕ B0)

⊗n, modulo the relations

a⊗a′ = aa′ and b⊗b′ = bb′ for every a, a′ ∈ A and b, b′ ∈ B. We will omit the
tensor symbol.

Fixing the decomposition F [x] = F ⊕ xF [x] and an arbitrary decomposition
B = F ⊕ B0, we consider ideals of the free product R = F [x] ∗F B. The tensor
algebra is graded by x, once we declare that deg(b) = 0 for every b ∈ B0, and this
grading induces a grading on R.

Let W ⊆ B be a vector space containing F . We say that W is restricted if
for every finite dimensional subspace V ⊆ B there is an element b ∈ B such that
V b ⊆ B0 and V b ̸⊆W ; and an element b′ ∈ B such that b′V ⊆ B0 and b′V ̸⊆W .

Theorem 3.1. The ideal P = RxWxR of R is prime whenever W ⊆ B is a
restricted subspace.

Proof. Write W = F ⊕W0 where W0 =W ∩B0. Let L
′ be the ideal of R generated

by x2. For n ≥ 0 let us denote the vector spaces

Ln = BxB0xB0 · · ·xB0xB,

where the degree with respect to x is n; so that L0 = B and L1 = BxB. Setting
L =

∑
n≥0 Ln, we have that R = L′ ⊕ L.

Let Pn = Ln ∩ P ; so P0 = P1 = 0, and for n ≥ 2,

Pn =
∑

BxB0x · · ·xB0xW0xB0x · · ·xB0xB

where in each summand one of the intermediate entries is W0 and all the others are
equal to B0. For example P2 = BxW0xB and P3 = BxW0xB0xB +BxB0xW0xB.
Now, since F ⊆ W , we have that L′ = RxxR = RxFxR ⊆ RxWxR = P , and we
can compute:

P = L′ + P

= L′ + (L′ + L)xWx(L′ + L)

= L′ + LxWxL

= L′ + LxW0xL

= L′ +
∑
d,d′≥0

LdxW0xLd′

= L′ +
∑
n≥0

( ∑
d+d′=n

LdxW0xLd′

)
= L′ +

∑
n≥2

Pn,
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since modulo L′, xBx ≡ xB0x and xWx ≡ xW0x.
Letm ≥ 1. As a vector space, Lm∼=B⊗B0⊗ · · ·⊗B0⊗B withm+1 factors. This

isomorphism carries Pm to
∑
B⊗B0⊗ · · ·⊗B0⊗W0⊗B0⊗ · · ·⊗B0⊗B as above,

and there is an isomorphism

ψm :Lm/Pm −→ B⊗B0⊗ · · ·⊗B0⊗B
with m−1 factors of the form B0 = B0/W0. The image of g ∈ Lm in Lm = Lm/Pm
will be denoted by g, hoping that no confusion is incurred by the double usage of
the over-line.

We need to show that P is prime. Since L′ ⊆ P , it suffices to show that if
f, f ′ ∈ L and f, f ′ ̸∈ P , then fBf ′ ̸⊆ P . Furthermore since R is graded with
respect to x, and P is a homogeneous ideal with respect to this grading, we may
assume that f, f ′ are homogeneous with respect to x, so we can write

f =
∑
i

a0,ixa1,ix · · ·xan,i ∈ Ln

and

f ′ =
∑
j

a′0,jxa
′
1,jx · · ·xa′n′,j ∈ Ln′

where a0,i, an,i, a
′
0,j , a

′
n′,j ∈ B and at,i, a

′
t′,j ∈ B0 for 0 < t < n and 0 < t′ < n′. Let

V be the vector space spanned by all the an,i and V
′ the vector space spanned by

all the a′0,j . We say that f “ends in V ” and f ′ “begins in V ′”. By assumption, there
are elements b, b′ ∈ B such that V b, b′V ′ ⊆ B0, while V b ̸⊆W0 and b′V ′ ̸⊆W0.

Since V b, b′V ′ ⊆ B0, we have that fbxb
′f ′ ∈ Ln+n′+1. Consider the commutative

diagram

Ln⊗Ln′

m

��

θ // Ln⊗Ln′
ψn⊗ψn′ //

m̄

��

(B⊗B0⊗ · · ·⊗B0⊗B)⊗(B⊗B0⊗ · · ·⊗B0⊗B)

��
Ln+n′+1

// Ln+n′+1

ψn+n′+1 // B⊗B0⊗ · · ·⊗B0⊗B

where the domain of definition of the top-to-bottom maps is the elements in Ln⊗Ln′

such that the left factor ends in B0 and the right factor begins in B0 (and not
merely in B), and their image. Here, m(g⊗g′) = gxg′ and m̄(g⊗g′) = gxg′ which
is easily checked to be well-defined. The right-most arrow is reduction of the two
intermediate factors along B0→B0/W0.

Now consider the element fb⊗b′f ′ ∈ Ln⊗Ln′ , for the given f ∈ Ln and f ′ ∈ Ln′ .
By assumption θ(fb⊗b′f ′) = fb⊗b′f ′ is non-zero, because fb, bf ′ ̸= 0. Furthermore
ψn(fb) ends in B0 and ψn′(b′f ′) begins in B0, so ψn(fb)⊗ψn′(b′f ′) is in the domain
of definition of the right-most arrow, which takes this element to ψn+n′+1(fbxbf ′).
It remains to show that this element is nonzero. But ψn(fb) does not end in W0,
and ψn′(b′f ′) does not begin in W0; hence their images in B⊗B0⊗ · · ·⊗B0⊗B are
nonzero, and their tensor product, equal to ψn+n′+1(fbxbf ′), is nonzero as well. �

Proposition 3.2. Let (K, ν) be a valued field containing F as a field of scalars.
For any m ≥ 0, W = {k ∈ K : ν(k) ≥ −m} is a restricted subspace of K (where
the decomposition K = F ⊕K0 is arbitrary).

Proof. We first claim that if U ⊆ K is an F -vector subspace of finite codimension,
then {ν(u) : u ∈ U} is unbounded from below. Indeed, choose any finite dimensional
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complement U ′, and notice that {ν(u′) : u′ ∈ U ′} is bounded from below; so if ν(u)
were bounded for u ∈ U , then ν(k) would be bounded over the set of k ∈ K.

Let V ̸= 0 be a finite dimensional space. The space of elements y such that
V y ⊆ K0 has finite codimension, so by the previous argument contains elements of
arbitrarily small value, for which V y ̸⊆W . �
Corollary 3.3. Let (K, ν) be a valued field containing F as a field of scalars. For
fixed m ≥ 0, let Wm = {k ∈ K : ν(k) ≥ −m}. Then the ideal generated by xWmx
in R = F [x] ∗F K is prime.

With the notation of Corollary 3.3, we now formulate the promised counterex-
ample:

Example 3.4 (radical of a chain union which is a maximal ideal). Let F , K, R
and the Wm be as above. By definition

∪
m≥0Wm = K. Let Pm be the (prime)

ideal generated by xWmx. Then P1 ⊆ P2 ⊆ · · · is a chain of prime ideals in R,
and

∪
m≥0RxWmxR = RxKxR = (RxR)2. The radical RxR is thus maximal, as

R/RxR ∼= K.

4. Matrix constructions

This section shows that P↑ and SP ↑ are independent: the algebra in Example 4.1
satisfies P↑ but not SP ↑, and the algebra in Example 4.5 satisfies SP ↑ but not P↑.

4.1. P↑ does not imply SP ↑. As mentioned in the introduction, Kaplansky con-
jectured that a semiprime ring all of whose prime quotients are von Neumann
regular, is regular. Fisher and Snider [4] proved that this is the case if the ring
satisfies SP ↑ (also see [5, Thm. 1.17]), and gave a counterexample which lacks this
property, due to Kaplansky and Lanski [5, Example 1.19]. We repeat the example
and exhibit, in this ring, an explicit ascending chain of semiprime ideals whose
union is not semiprime.

Example 4.1 (Kaplansky-Lanski). (A ring whose prime ideals are maximal, but
without SP ↑). Let R be the ring of sequences of 2-by-2 matrices which eventually

have the form

(
α βn
0 α

)
in the nth place, clearly a semiprime ring.

Let In be the set of sequences in R, which are zero from the nth place on-
ward. Clearly R/In∼=R, so the ideals are semiprime. However

∪
In is composed

of sequences of matrices which are eventually zero, and aRa is eventually zero for

a =

((
0 1
0 0

)
,

(
0 1
0 0

)
, . . .

)
; hence R/

∪
In is not semiprime. On the other hand

by the argument in [4], every prime ideal of R is maximal, so there are no infinite
chains of primes and P↑ holds trivially.

4.2. SP ↑ does not imply P↑. In the rest of this section we investigate P↑ and SP ↑

for rings of the form Â =

(
A M
M A

)
where A is an integral domain and M▹A is

a nonzero ideal. We show that they always satisfy SP ↑, and give an example which
does not have P↑. Clearly Â is a prime ring. Let us describe the ideals of this ring.

Proposition 4.2. (1) The ideals of Â have the form Î =

(
I11 I12
I21 I22

)
, where

for 1 ≤ i, j ≤ 2, IijEA (not necessarily proper), Iii′ ⊆ M , and MIij ⊆
Ii′j ∩ Iij′ (where 1′ = 2 and 2′ = 1).
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(2) The semiprime ideals of Â are of the form(
I M ∩ I

M ∩ I ′ I ′

)
,

where I, I ′ are semiprime ideals of A, and M ∩ I ′ =M ∩ I.

Proof. (1) This is well known and easy.

(2) Write Aij = A if i = j and Aij =M otherwise. We are given an ideal Î▹Â

which thus can be written as Î =

(
I11 I12
I21 I22

)
, satisfying the conditions

of (1). Clearly Î is semiprime if and only if for every aij ∈ Aij ,

(
∑
j,k Ajkaijakℓ ⊆ Iiℓ for every i, ℓ) implies ( aiℓ ∈ Iiℓ for every i, ℓ).

Assuming that this condition holds, fix i, j and choose akℓ = 0 for every
(k, ℓ) ̸= (i, j); then

(♢) for aij ∈ Aij , Ajia
2
ij ⊆ Iij implies aij ∈ Iij .

On the other hand if Condition (♢) holds and
∑
j,k Ajkaijakℓ ⊆ Iiℓ for

every i, ℓ, then in particular Ajia
2
ij ⊆ Iij , so each aiℓ ∈ Iiℓ. We conclude

that Î is semiprime if and only if (♢) holds for every i, j.
We claim that (♢) is equivalent to Iii being semiprime in A with

M ∩ I11 ⊆ Iij , ∀i ̸= j.

Indeed, for i = j, condition (♢) requires that the Iii are semiprime in A.
Assuming this, the condition is “for aij ∈ Aij , Ma2ij ⊆ Iij implies aij ∈ Iij
for i ̸= j.” In light of the standing assumption that aij ∈ Aij =M , we claim
that this is equivalent toM ∩I11 ⊆ Iij . Indeed, for every b ∈M , Mb2 ⊆ Iij
iff b ∈ I11 (Proof: If b2M ⊆ Iij then b4 ∈ (bM)2 = b2M ·M ⊆ IijM ⊆ I11,
so b ∈ I11. On the other hand if b ∈ M ∩ I11 then b2M ⊆ MI11 ⊆ Iij), so
the condition becomes “for b ∈ M , b ∈ I11 implies b ∈ Iij for i ̸= j”, as
claimed.

We have shown that Î is semiprime if and only if I11, I22 are semiprime
in A and M ∩ I11 ⊆ I12 ∩ I21.

Now assume that Iii are semiprime, and thatM∩I11 ⊆ I12∩I21. Denote
the idealizer of an ideal I by (I :M) = {x ∈ A : xM ⊆ I}, and notice that
M ∩ (I :M) =M ∩ I when I is semiprime. But I12M ⊆ I11, implying

I12 ⊆M ∩ (I11 :M) =M ∩ I11 ⊆ I12,

so I12 =M ∩ I11 and likewise I21 =M ∩ I11. By symmetry I12 =M ∩ I22
as well, so M ∩ I11 =M ∩ I22.

�

Proposition 4.3. The ring Â satisfies SP ↑.

Proof. By Proposition 4.2 every chain of semiprime ideals T1 ⊆ T2 ⊆ · · · in Â has

the form Tn =

(
In Jn
Jn I ′n

)
, In and I ′n are ascending chains of semiprime ideals

of A, and Jn = M ∩ In = M ∩ I ′n. The union of this chain is

( ∪
In L
L

∪
I ′n

)
where L =M ∩

∪
In =M ∩

∪
I ′n, which is semiprime. �
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Using the description of the semiprime ideals, it is not difficult to obtain the
following.

Proposition 4.4. (1) The prime ideals of Â are

(
J M
M A

)
and

(
A M
M J

)
for prime ideals J▹A containing M , and I0 =

(
I M ∩ I

M ∩ I I

)
for

prime ideals I▹A not containing M .

(2) The union-prime ideals of Â are of the form

(
M ′ M
M M ′

)
where M ′▹A is

a prime ideal containingM , which can be written as a union of an ascending
chain of primes not containing M .

Proof. Notation as in Proposition 4.2(1), we are done by Proposition 4.2(2) unless
some I11 = A, in which case we must have (1). If the chain of primes includes
an ideal with A in one of the corners, then every higher term has the same form,
and the union is determined by the union of the ideals in the other corner, which
is prime since A is commutative. We thus assume that the chain has the form
I01 ⊆ I02 ⊆ · · · where I1 ⊆ I2 ⊆ · · · are primes in A, not containing M . The union

is clearly Î0 where Î =
∪
In is prime, and Î0 is not a prime iff M ⊆ Î. �

Suppose A is a prime PI-ring, integral over its center C. In [3] it is shown
that A satisfies the properties Lying Over and Going Up over C, which gives a
correspondence of chains of primes between the two rings. The next example shows
that the union of chains in not preserved.

Example 4.5 (A prime PI-ring, integral over its center, satisfying SP ↑ but not

(uniquely-)P↑). Let F be a field. Let Â =

(
A M
M A

)
, where A = F [λ1, . . . ] is

the ring of polynomials in countably many variables λ1, λ2, . . . , and M = ⟨λ1, . . . ⟩.
Clearly Â ⊂ M2(A) is integral over A. Choose In = ⟨λ1, . . . , λn⟩. Then Tn =(
In In
In In

)
▹Â form an ascending chain of primes by Proposition 4.4.(1), but

their union
∪
Tn =

(
M M
M M

)
is obviously not prime. Therefore Â satisfies SP ↑

(Proposition 4.3) but not P↑. Furthermore Â/
∪
Tn ∼= A/M ×A/M which has two

minimal ideals, so uniquely-P↑ also fails.

5. The P↑-index

Let P̃ = {Pα} be a chain of prime ideals in a ring R. The number of non-prime

unions of subchains of P̃ is called the index of P̃ (either finite or infinite). The
P↑-index of R, denoted by P↑(R), is the supremum of the indices of all chains of
primes in R.

Proposition 5.1. For any ring R, P↑(R) = supP↑(R/P ) where P▹R ranges over
the prime ideals.

Proof. By definition P↑(R/P ) is the supremum of indices of chains of primes con-
taining P . Therefore, the supremum on the right-hand side is the supremum of
indices of chains of primes containing some prime P , but any chain contains its
own intersection, so this supremum is by definition P↑(R). �
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Remark 5.2. If n = P↑(R) then R has a chain of n union-primes. It is not clear
if the converse holds. For example if {Pλ} and {P ′

λ} are ascending chains of primes
such that

∪
Pλ ⊂

∪
P ′
λ are not primes, does it follow that there is a chain of primes

with at least two non-prime unions?

We claim that:

Proposition 5.3. For any ring R,

P↑(R) =

{
0 if R has the property P↑

supI P↑(R/I) + 1 otherwise

where the supremum is taken over the union-prime ideals of R (when they exist).

Proof. Indeed, P↑(R) = 0 if and only if there are no union-primes (which are
non-prime by definition), if and only if R satisfies P↑. Now assume R does not
satisfy P↑. Consider the set {P↑(R/I)} ranging over the union-primes I. If this
set is unbounded, then clearly P↑(R) = ∞. Otherwise, take a union-prime I such
that n = P↑(R/I) is maximal among the P↑-indices of the quotients. If J1/I ⊂
· · · ⊂ Jn/I are union-primes in a chain of primes in R/I, then I ⊂ J1 ⊂ · · · ⊂ Jn
are union-primes in a chain in R. On the other hand if J0 ⊂ J1 ⊂ · · · ⊂ Jn are
union-primes in a chain in R, then P↑(R/J0) ≥ n. �

For example, P↑(R) = 1 if and only if the union of an ascending chain of primes
starting from a union-prime ideal is necessarily prime.

6. The property P↑ in PI-rings

In this section we show that for PI-rings, the P↑-index is bounded by the PI-class.

Proposition 6.1. Any Azumaya algebra satisfies P↑(and SP ↑).

Proof. Let A be an Azumaya algebra over a commutative ring C. There is a 1:1 cor-
respondence between ideals of A and the ideals of C, preserving inclusion, primality
and semiprimality. The claim follows since the center satisfies P↑ (and SP ↑). �

Recall that by Posner’s theorem ([10]), a prime PI-ring R is representable, namely
embeddable in a matrix algebra Mn(C) over a commutative ring C. The minimal
such n is the PI-class of R, denoted PI(R).

Although PI-rings do not necessarily satisfy the property P↑, we show that the
PI-class bounds the extent in which P↑ may fail.

We are now ready for our main positive result about PI-rings.

Theorem 6.2. Let R be a (prime) PI-ring. Then P↑(R) < PI(R).

Proof. Let R be a prime PI-ring of PI-class n. If the PI-class is 1 then R is
commutative, and has P↑(R) = 0. We continue by induction on n. Let

0 = P0 ⊂ P1 ⊂ · · ·
be an ascending chain of primes, and assume that

∪
Pn is not a prime ideal. Let

Q ⊃
∪
Pn be a prime ideal. We want to prove that the PI-class of R/Q is smaller

than that of R.
Assume otherwise. Let gn be a central polynomial for n × n matrices (see [10,

p. 26]). Since PI(R/Q) = n, there is a value γ ̸= 0 of gn in the center of R, which
is not in Q. Since the center is a domain we can consider the localization A[γ−1]
(see [11, Section 2.12]), which is Azumaya by Rowen’s version of the Artin-Procesi
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Theorem [10, Theorem 1.8.48], since 1 is a value of gn on this algebra. But then
the union of

0 ⊂ P1[γ
−1] ⊂ P2[γ

−1] ⊂ · · ·
is prime by Proposition 6.1, so

∪
Pn is prime as well, contrary to assumption. �

We now show the bound is tight. Notice that the ring constructed in Example 4.5
has PI-class 2 and is not P↑(and thus has P↑(R) = 1). Let us generalize this.

Example 6.3 (An algebra of PI-class n which has P↑-index n − 1). Let A(n) =

F
[
λ
(j)
i : 1 ≤ j < n, i = 1, 2, . . .

]
. Let Mn = 0 and, for j = n− 1, n− 2, . . . , 1, take

Mj =Mj+1 +
⟨
λ
(j)
1 , λ

(j)
2 , · · ·

⟩
, so that 0 =Mn ⊂Mn−1 ⊂ · · · ⊂M1▹A(n). Let eij

denote the matrix units of the matrix algebra over A(n). Let J(n) =
∑
i,j eijMmax(i,j)−1,

S(n) =
∑
eiiA(n). Let

R(n) = J(n) + S(n) =


A(n) M1 M2 · · · Mn−1

M1 A(n) M2 · · · Mn−1

M2 M2 A(n) · · · Mn−1

...
...

...
. . .

...
Mn−1 Mn−1 Mn−1 · · · A(n)

 .

Clearly S(n)J(n), J(n)S(n) ⊆ J(n), and S(n)S(n) = S(n). Moreover MkMℓ ⊆
Mmax {k,ℓ} for every k, ℓ, so that J(n)J(n) ⊆ J(n). It follows that R(n) = J(n) + S(n)

is a ring. The ring of central fractions of R(n) is the simple ring Mn(q(A(n))), so
R(n) is prime, of PI-class n.

When n = 2 we obtain the ring of Example 4.5, so P↑(R(2)) = 1. For arbitrary n,

consider the chain I1 ⊂ I2 ⊂ · · · of ideals of A defined by Ii =
⟨
λ
(n−1)
1 , . . . , λ

(n−1)
i

⟩
;

thus
∪
Ii = Mn−1. Let Ĩi = Mn(Ii). Each ideal Ĩi is prime (again by central

fractions), and their union is the set of matrices over Mn−1. The quotient ring is

therefore R(n)/
∪
i Ĩi

∼= R(n−1)×A(n−1), which is not prime, and P↑(R(n−1)) = n−2

by induction. We conclude that P↑(R(n)) = n− 1.

Remark 6.4. (1) Although PI-rings do not necessarily satisfy P↑(see Exam-
ple 4.5), affine PI-rings over commutative Noetherian rings do satisfy ACC
on semiprime ideals, and in particular are SP ↑ and P↑(by Schelter’s theo-
rem, [10, Thm 4.4.16]).

(2) PI-rings of finite Gel’fand-Kirillov dimension satisfy ACC on primes, since
a prime PI-ring is Goldie, and then every prime ideal contains a regular
element which reduces the dimension.

(3) On the other hand, we have examples of a (non-affine) locally nilpotent
monomial algebra, which does not satisfy P↑, and of affine algebras of
GKdim = 2 which do not satisfy P↑(details will appear elsewhere.) In
both cases the P↑-index is uncountable.

(4) Graded affine algebras of quadratic growth and graded affine domains of
cubic growth have finite Krull dimension and so satisfy P↑, [2, 13].
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