Medial solutions to QYBE Part I

Přemysl Jedlička¹, Agata Pilitowska² Anna Zamojska-Dzienio²

¹ Faculty of Engineering, Czech University of Life Sciences
²Faculty of Mathematics and Information Science, Warsaw University of Technology ³

Noncommutative and non-associative structures, braces and applications Malta, March 12-15, 2018

Algebra

$$(X, F)$$

$$X \neq \emptyset$$

$$F \text{ - a set of operations } f \colon X^n \to X$$

$$(X, \circ) \text{ - a groupoid: an algebra with one binary operation } \circ \colon X^2 \to X$$
For each $s \in X$

$$L_s \colon X \to X; \ x \mapsto s \circ x$$

the left translation with respect to the operation \circ

$$R_s: X \to X; x \mapsto x \circ s$$

the right translation with respect to the operation \circ

(X, r) - Quadratic set

$r: X^2 \to X^2$ a bijection

(X, r) - Quadratic set

$$r: X^2 \to X^2$$
 a bijection

$$r(x,y) = (x \circ y, x \bullet y) = (L_x(y), R_y(x))$$

 L_x - the left translation with respect to the operation \circ R_y - the right translation with respect to the operation \bullet (X, r) - Set-theoretical solution of Yang-Baxter equation

Braid relation:

 $(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$

(X, r) - Set-theoretical solution of Yang-Baxter equation

Braid relation:

$$(r \times id)(id \times r)(r \times id) = (id \times r)(r \times id)(id \times r)$$

Braid identities in (X, \circ, \bullet)

$$x \circ (y \circ z) = (x \circ y) \circ ((x \bullet y) \circ z)$$
$$(x \circ y) \bullet ((x \bullet y) \circ z) = (x \bullet (y \circ z)) \circ (y \bullet z)$$
$$x \bullet (y \bullet z) = (x \bullet (y \circ x)) \bullet (y \bullet z)$$

For every $s \in X$, the mappings L_s and R_s are invertible

For every $s \in X$, the mappings L_s and R_s are invertible

• For every $x, y \in X$ the equations

 $x \circ u = y$ and $v \bullet x = y$

have unique solutions in X.

For every $s \in X$, the mappings L_s and R_s are invertible

• For every $x, y \in X$ the equations

$$x \circ u = y$$
 and $v \bullet x = y$

have unique solutions in X.

• (X, \circ) is a **left quasi-group** and (X, \bullet) is a **right quasi-group**.

For every $s \in X$, the mappings L_s and R_s are invertible

• For every $x, y \in X$ the equations

$$x \circ u = y$$
 and $v \bullet x = y$

have unique solutions in X.

(X, ∘) is a left quasi-group and (X, •) is a right quasi-group.

$$x \setminus y := L_x^{-1}(y)$$
 left division
 $y/x := R_x^{-1}(y)$ right division

For every $s \in X$, the mappings L_s and R_s are invertible

• For every $x, y \in X$ the equations

$$x \circ u = y$$
 and $v \bullet x = y$

have unique solutions in X.

(X, ∘) is a left quasi-group and (X, •) is a right quasi-group.

$$x \setminus y := L_x^{-1}(y)$$
 left division
 $y/x := R_x^{-1}(y)$ right division

$$x \circ (x \setminus y) = y,$$
 $x \setminus (x \circ y) = y$
 $(y/x) \bullet x = y,$ $(y \bullet x)/x = y$

For every $s \in X$, the mappings L_s and R_s are invertible

• For every $x, y \in X$ the equations

$$x \circ u = y$$
 and $v \bullet x = y$

have unique solutions in X.

(X, ∘) is a left quasi-group and (X, •) is a right quasi-group.

$$x \setminus y := L_x^{-1}(y)$$
 left division
 $y/x := R_x^{-1}(y)$ right division

$$x \circ (x \setminus y) = y, \qquad x \setminus (x \circ y) = y$$

(y/x) • x = y, (y • x)/x = y

• Left quasi-group $(X, \circ) \rightleftharpoons (X, \circ, \setminus)$ Right quasi-group $(X, \bullet) \rightleftharpoons (X, \bullet, /)$

(X, r) - Involutive solution

$$r^2(x,y) = (x,y)$$

(X, r) - Involutive solution

$$r^2(x,y) = (x,y)$$

Involutive identities in (X, \circ, \bullet)

$$(x \circ y) \circ (x \bullet y) = x$$
$$(x \circ y) \bullet (x \bullet y) = y.$$

(X, r) - Square free solution

$$r(x,x) = (x,x)$$

(X, r) - Square free solution

$$r(x,x) = (x,x)$$

 (X, \circ, \bullet) is *idempotent*, i.e. for every $x \in X$:

 $x \circ x = x$ $x \bullet x = x$

Biracks

Each non-degenerate set-theoretical solution of Yang-Baxter equation (X, r) yields an algebra (X, \circ, \bullet) such that

- (X, \circ, \setminus) is a left quasi-group
- (X, \bullet, \backslash) is a right quasi-group
- (X, \circ, \bullet) satisfies braid identities

(X, \circ, \bullet) - birack

Biracks

Each non-degenerate (involutive) set-theoretical solution of Yang-Baxter equation (X, r) yields an algebra (X, \circ, \bullet) such that

- (X, \circ, \backslash) is a left quasi-group
- (X, \bullet, \setminus) is a right quasi-group
- (X, \circ, \bullet) satisfies braid identities
- (X, \circ, \bullet) satisfies involutive identities
- (X,\circ, \bullet) (involutive) birack

Biracks

Each non-degenerate (involutive) set-theoretical solution of Yang-Baxter equation (X, r) yields an algebra (X, \circ, \bullet) such that

- (X, \circ, \backslash) is a left quasi-group
- (X, \bullet, \setminus) is a right quasi-group
- (X, \circ, \bullet) satisfies braid identities
- (X, \circ, \bullet) satisfies involutive identities
- (X, \circ, \bullet) (involutive) **birack**

Theorem (Rump; Gateva-Ivanova; Dehornoy)

If (X, \circ, \bullet) is an (involutive) birack then (X, r) is a non-degenerate (involutive) solution of Yang-Baxter equation with $r(x, y) = (x \circ y, x \bullet y)$ For an involutive birack (X, \circ, \bullet) :

The right quasi-group $(X, \bullet, /)$ is completely determined by the left quasi-group (X, \circ, \backslash)

$$x \bullet y = L_{x \circ y}^{-1}(x) = (x \circ y) \backslash x$$

Right cyclic law in left quasi-group $(X, *, \setminus_*)$

$$(x * y) * (x * z) = (y * x) * (y * z)$$

Right cyclic law in left quasi-group $(X, *, \backslash_*)$

$$(x * y) * (x * z) = (y * x) * (y * z)$$

Theorem (Rump; Gateva-Ivanova; Dehornoy) If (X, \circ, \bullet) is a non-degenerate involutive birack then (X, \setminus, \circ) is a right cyclic left quasi-group

Right cyclic law in left quasi-group $(X, *, \backslash_*)$

$$(x * y) * (x * z) = (y * x) * (y * z)$$

Theorem (Rump; Gateva-Ivanova; Dehornoy) If (X, \circ, \bullet) is a non-degenerate involutive birack then (X, \setminus, \circ) is a right cyclic left quasi-group If $(X, *, \setminus_*)$ is a right cyclic left-quasigroup then (X, \circ, \bullet) is an involutive birack with $x \circ y = x \setminus_* y$ and $x \bullet y = x \setminus_* y * x$

Right cyclic law in left quasi-group $(X, *, \backslash_*)$

$$(x * y) * (x * z) = (y * x) * (y * z)$$

Theorem (Rump; Gateva-Ivanova; Dehornoy) If (X, \circ, \bullet) is a non-degenerate involutive birack then (X, \setminus, \circ) is a right cyclic left quasi-group If $(X, *, \setminus_*)$ is a right cyclic left-quasigroup then (X, \circ, \bullet) is an involutive birack with $x \circ y = x \setminus_* y$ and $x \bullet y = x \setminus_* y * x$

Remark

To find all involutive non-degenerate solutions of Yang-Baxter equation is equivalent to construct all right cyclic left-quasigroups.

Examples

Example

 $(B, \cdot, +)$ - a left brace $(B, *, \setminus_*)$ with $x * y = x^{-1}(x + y)$ and $x \setminus_* y = xy - x$ is a right cyclic left-quasigroup

Example

(A, +) - an abelian group f - automorphism of (A, +) such that $(id - f)^2$ is nilpotent of degree 2 $c \in ker(id - f)$ $(A, *, \setminus_*)$ with

$$x * y = f^{-1}(y - (id - f)(x) - c)$$
 and $x \setminus y = (id - f)(x) + f(y) + c$

is a right cyclic left-quasigroup

Left-distributivity

Definition

(X, *) is **left-distributive** if for every $x, y, z \in X$,

$$x * (y * z) = (x * y) * (x * z)$$

All left translations $\ell_x \colon X \to X$; $a \mapsto x * a$, for every $x \in X$, are endomorphisms of (X, *), i.e. for $y, z \in X$,

$$\ell_x(y * z) = \ell_x(y) * \ell_x(z).$$

Left-distributivity

Definition

(X, *) is **left-distributive** if for every $x, y, z \in X$,

$$x * (y * z) = (x * y) * (x * z)$$

All left translations $\ell_x \colon X \to X$; $a \mapsto x * a$, for every $x \in X$, are endomorphisms of (X, *), i.e. for $y, z \in X$,

$$\ell_x(y * z) = \ell_x(y) * \ell_x(z).$$

Definition

A left quasi-group $(X, *, \setminus_*)$ is left distributive if (X, *) is left-distributive. A left-distributive left quasi-group is called a **rack**.

Mutually orthogonal quasi-groups

 (X, \circ, \bullet) - an involutive left distributive birack

•
$$R_y(x) = x \bullet y = y \setminus x = L_y^{-1}(x)$$
 and
 $R_y^{-1}(x) = x/y = y \circ x = L_y(x)$

the left quasi-group (X, ∘, \) and the right quasi-group (X, •, /) are mutually orthogonal, i.e. for every a, b ∈ X, the pair of equations

$$a = x \circ y$$
 and $b = x \bullet y$

has a unique solution

2-reductivity

Definition

A groupoid (X, *) is 2-*reductive* if for every $x, y, z \in X$,

$$(x * y) * z = y * z.$$

Example

p - a prime number The groupoid $(Z_{p^2}, *)$ with

$$x * y = px + (1 - p)y$$

is 2-reductive

Multipermutation solution

Theorem (Gateva-Ivanova)

If (X, \circ, \bullet) is an involutive birack satisfying the condition:

(*) for every $x \in X$ there exists some $a \in X$ with $a \circ x = x$,

then (X, \circ, \bullet) is a multipermutation solution level less or equal to 2 if and only if (X, \circ) is 2-reductive.

In particular, this is true for idempotent biracks (square free solutions).

2-reductivity

Lemma

 (X, \circ, \backslash) - a rack (X, \circ) is 2-reductive if and only if the group

$$\mathrm{LMlt}(X,\circ) = \langle L_x \mid x \in X \rangle$$

is abelian

Corollary

 (X, \circ, \bullet) - an involutive birack (X, \circ) is left distributive if and only if it is 2-reductive

Involutive left distributive biracks

Theorem

 (X, \circ, \bullet) - an involutive left distributive birack The following are equivalent:

- (X, \circ, \bullet) is a multipermutation solution level 2
- (X, \circ) is 2-reductive

• the group $\text{LMlt}(X, \circ)$ is abelian

Sum of trivial affine mesh

Trivial affine mesh over $I \neq \emptyset$

 $\mathcal{A} = ((A_i)_{i \in I}; (c_{i,j})_{i,j \in I})$

 A_i - abelian group for each $i \in I$

 $c_{i,j} \in A_j$ - constants such that for every $j \in I$

$$A_j = \langle \{c_{i,j} \mid i \in I\} \rangle$$

Definition

The sum of a trivial affine mesh A over a set $I: (\bigcup_{i \in I} A_i, \circ, \backslash)$

$$a \circ b = b + c_{i,j}$$
$$a \backslash b = b - c_{i,j}$$

for every $a \in A_i$ and $b \in A_j$

Medial racks

Theorem

An algebra is a 2-reductive rack if and only if it is the sum of trivial affine mesh.

The orbits of the rack coincide with the groups of the mesh.

Medial racks

Theorem

An algebra is a 2-reductive rack if and only if it is the sum of trivial affine mesh.

The orbits of the rack coincide with the groups of the mesh.

(X, *) - 2-reductive

(X, *) is left distributive if and only if (X, *) is medial, i.e. for every $x, y, z, t \in X$,

$$(x * y) * (z * t) = (x * z) * (y * t).$$