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The prime radical of a ring is the intersection 

of all prime ideals in a ring.

A ring is prime if the product of any two non-

zero ideals in this ring is non-zero.

An ideal I in a ring R is prime if the factor ring 

R/I is a prime ring.

Prime rings



The Prime radical of a noncommutative ring is the 

intersection of all prime ideals in a ring.

The Prime radical is also called a Baer radical. 

A ring is prime radical if it has no prime ideals (except of 

itself).

Prime radical



Let A be a ring. A differential polynomial 

ring as a vector space is the ring of 

polynomials R[x] with multiplication given 

by:

ax=xa+D(a)

where D is a derivation of A, so:

D(a+b)=D(a)+D(b) and

D(ab)=D(a)b+aD(b).



A ring is prime radical if it has no prime 

ideals (except of itself).

Theorem (Greenfeld, Ziembowski, A.S 

2017):

If R is prime radical and δ is a derivation of 

R, then the differential polynomial ring 

R[X; δ] is locally nilpotent. 



New results on

Prime radical

in rings



Louis Rowen mentioned that it would be 

interesting to investigate prime ideals in 

braces.   

We will say that a brace is prime if the product 

of any non-zero ideals in this brace is non-zero.

We say that an ideal I in a brace B is prime if

B/I is a prime brace.

Prime ideals in braces



In 2007, Rump introduced braces as a 

generalization of Jacobson radical rings

related to non-degenerate involutive

set-theoretic solutions of the Yang-Baxter 

equation.

“With regard to the property that A combines two 

different equations or groups to a new entity, 

we call A a brace’’

Wolfgang Rump



Braces



Definition. A left brace is a set G with two 

operations + and * such that: 

(G,+) is an abelian group

a * (b+c) = a * b + a * c

for all a, b, c ∈ G. 

(G, ◦) is a group where a◦b=a*b-a-b.



We will say that a brace is prime if, whenever I 

and J are non-zero ideals in A, then the product 

I*J is non-zero.

We say that a brace A is semiprime if, whenever 

I is a non-zero ideal in A, then the product I*I is 

non-zero.

We say that an ideal I in a brace B is prime 

(semiprime) if B/I is a prime (semiprime) brace.



Solvable 

braces



Solvable braces 

Solvable braces were introduced in a 

recent paper by Bachiller, Cedo, Jespers

and Okninski.

Definition:

Let A be a brace, define 

A[1]=A, A[2]=A*A, 

A[n+1]=A[n]*A[n],

then A is solvable if A[k]=0 for some k.



Solvable braces

Definition(BCJO):

Let A be a brace, define 

A[1]=A, A[2]=A*A, 

A[n+1]=A[n]*A[n],

then A is solvable if A[k]=0 for some k.



We say that an ideal I in a brace A is 

solvable if I is a solvable brace.

Theorem (Konovalov, Vendramin, A.S., 2018)

A finite brace A is semiprime if and only if 

A has no solvable ideals. 

A semiprime brace can be embedded  a 

direct product of prime braces.

Remark: The assumption that A is finite  is 

necessary. 



It is easy to show that a brace is 

semiprime if and only if the intersection 

of all its prime ideals is zero.

We define the prime radical of a brace 

to be the intersection of all its prime 

ideals.



Theorem (Konovalov, Vendramin, A.S 2018):

The prime radical of a finite brace equals 

the  largest solvable ideal of this brace. 

Moreover, every brace has the largest 

solvable ideal which equals the sum of 

all solvable ideals in this brace.
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