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YANG-BAXTER AND ALGEBRAIC STRUCTURES
Definition
A set-theoretic solution to the Yang-Baxter equation is a tuple
(X, r), where X is a set and r : X × X −→ X × X a function such
that (on X3)

(idX × r) (r × idX) (idX × r) = (r × idX) (idX × r) (r × idX) .

For further reference, denote r(x, y) = (λx(y), ρy(x)).

Definition
A set-theoretic solution (X, r) is called

I left (resp. right) non-degenerate, if λx (resp. ρy) is bijective,
I non-degenerate, if it is both left and right non-degenerate,
I involutive, if r2 = idX×X.



2

YANG-BAXTER AND ALGEBRAIC STRUCTURES
Definition
A set-theoretic solution to the Yang-Baxter equation is a tuple
(X, r), where X is a set and r : X × X −→ X × X a function such
that (on X3)

(idX × r) (r × idX) (idX × r) = (r × idX) (idX × r) (r × idX) .

For further reference, denote r(x, y) = (λx(y), ρy(x)).

Definition
A set-theoretic solution (X, r) is called

I left (resp. right) non-degenerate, if λx (resp. ρy) is bijective,
I non-degenerate, if it is both left and right non-degenerate,
I involutive, if r2 = idX×X.



3

BRACES AND GENERALIZATIONS

Definition (Rump(1), CJO, GV (2))
A triple (A, ·, ◦) is called a skew left brace, if (A, ·) is a group and
(A, ◦) is a group such that for any a, b, c ∈ A,

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c),

where a−1 denotes the inverse of a in (A, ·). In particular, if (A, ·)
is an abelian group, then (A, ·, ◦) is called a left brace.
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BRACES AND GENERALIZATIONS
Definition
A group (A, ·) with additional group structure (A, ◦) such that

a ◦ (b · c) = (a ◦ b) · a−1 · (a ◦ c).

Definition (Catino, Colazzo, Stefanelli (3))
A triple (B, ·, ◦) is called a left cancellative left semi-brace, if
(B, ·) is a left cancellative semi-group and (B, ◦) is a group such
that for any a, b, c ∈ B,

a ◦ (b · c) = (a ◦ b) · (a ◦ (a · c)),

where a denotes the inverse of a in (B, ◦).
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STRUCTURE MONOID AND GROUP

Definition
Let (X, r) be a set-theoretic solution of the Yang-Baxter
equation. Then the monoid

M(X, r) =
〈
x ∈ X | xy = λx(y)ρy(x)

〉
,

is called the structure monoid of (X, r).

The group G(X, r)
generated by the same presentation is called the structure
group of (X, r).
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FROM YB TO BRACES

Theorem (ESS, LYZ, S, GV)
Let (X, r) be a non-degenerate solution to YBE, then there exists
a unique skew left brace structure on G(X, r) such that the
associated solution rG satisfies

rG(i× i) = (i× i)r,

where i : X → G(X, r) is the canonical map.

Moreover, if (X, r) is
involutive, then G(X, r) is a left brace and

rG|X×X = r.
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FROM BRACES TO YB

Definition
Let (B, ·, ◦) be a skew left brace. Define λa(b) = a−1(a ◦ b) and
ρb(a) = (a · b) ◦ b. Then, rB(a, b) = (λa(b), ρa(b)) is a bijective
non-degenerate solution to YB.

Moreover, if (B, ·, ◦) is a left
brace, then rB is involutive.
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LEFT SEMI-BRACES

Definition
Let (B, ·, ◦) be a triple such that (B, ·) is a semi-group and (B, ◦)
is a group. If, for any a, b, c ∈ B, it holds that

a ◦ (b · c) = (a ◦ b) · (a ◦ (a · c)),

then this triple is called a left semi-brace.

Moreover, if (B, ·) is left cancellative, then (B, ·, ◦) is called a left
cancellative left semi-brace. This is a left semi-brace in the
sense of Catino, Colazzo and Stefanelli.
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COMPLETELY SIMPLE
Definition
Let G be a group, I, J sets and P = (pji) a |J| × |I|-matrix with
entries in G. Then

M(G, I, J,P) = {(g, i, j) | g ∈ G, i ∈ I, j ∈ J} ,

is called the Rees matrix semi-group associated to (G, I, J,P),
where multiplication is defined as (g, i, j)(h, k, l) = (gpjkh, i, l).

Theorem
Let S be a finite semi-group such that S has no non-trivial ideals
and every idempotent of S is primitive (i.e. S is completely
simple), then S is isomorphic to a Rees matrix semi-group.
Conversely, every finite Rees matrix semi-group satisfies these
conditions.
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FINITE SEMI-BRACES

Theorem
Let (B, ·, ◦) be a finite left semi-brace. Then (B, ·) is completely
simple. Moreover, there exists a finite group G and finite sets I, J
such that (B, ·) ∼=M(G, I, J, IJ,I), where IJ,I is the J× I-matrix
where every entry is 1. Furthermore, (G, ·, ◦) is a skew left brace.

Proposition
Let (B, ·, ◦) be a left semi-brace. Then, the map
λa : B→ B : b 7→ a ◦ (ab) is an endomorphism of (B, ·).
Furthermore, λ : (B, ◦)→ End(B, ·) is a semi-group morphism.
Define for any a, b ∈ B, the map ρb(a) = (ab) ◦ b.
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THE ρ-CONDITION AND SOLUTIONS

Proposition
Let (B, ·, ◦) be a left semi-brace. If ρ : (B, ◦)→ Map(B,B) is a
semi-group anti-morphism, then rB(a, b) = (λa(b), ρb(a)) is a
set-theoretic solution to YB.
Not every left semi-brace satisfies this condition. However, is
ρ-condition necessary?
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THE CONDITION IN EQUATIONS

Proposition
Let (B, ·, ◦) be a left semi-brace. TFAE
(1) ρ : (B, ◦) −→ Map(B,B) is an anti-homomorphism.
(2) c (a ◦ (1◦b)) = c (a ◦ b) for all a, b, c ∈ B.

(3) (B, ·) is completely simple and, for any (g, i, j) ∈ B and
(1, k, l) ∈ E(B), if (h, r, s) = (g, i, j) ◦ (1, k, l), then h = g.

Moreover, in these cases, the idempotents E(B) form a left
subsemi-brace as well as the idempotents E(B1◦) of the left
subsemi-brace B1◦.
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THE CONDITION IN STRUCTURE

Theorem
Let (B, ·, ◦) be a left semi-brace. The following conditions are
equivalent.
1. ρ is an anti-homomorphism,
2. B ∼= (1◦B1◦ ./ E(B1◦))) ./ E(1◦B) and E(B) is a left

subsemi-brace of B.
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ALGEBRA OF STRUCTURE MONOID

Proposition
Let (B, ·, ◦) be a left semi-brace such that ρ is an
anti-homomorphism. Then, for any field K, the algebra KM(B) is
generated as a left (and right) KM(1◦B1◦)-module by (1◦B)∗ (B1◦).

Theorem
Let (B, ·, ◦) be a finite left semi-brace such that ρ is an
anti-homomorphism. Then, KM(B) is a Noetherian, PI-algebra of
finite Gelfand-Kirillov dimension equal to that of KM(1◦B1◦). In
particular, this dimension is at most |1◦B1◦| and it is precisely
equal to |1◦B1◦| if B is a left brace.
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