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Racks and quandles

A binary algebra (Q, *) is called a rack if it is:

o a left quasigroup: the equation x x u = y has a unique
solution u € @ for every x,y € Q,

o left distributive: x x (y * z) = (x x y) % (x % z) for every
x,y,z € Q.
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A binary algebra (Q, *) is called a rack if it is:

o a left quasigroup: the equation x x u = y has a unique
solution u € @ for every x,y € Q,

o left distributive: x x (y * z) = (x x y) % (x % z) for every
x,y,z € Q.

All left translations L;: Q — Q; Li(x) = ax*x are
automorphisms of Q.

A quandle is an idempotent rack: x * x = x for each x € Q.
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Racks and quandles

Two basic binary operations * and left division: \.

A rack (Q,x*,\) if, for every x,y,z € Q:
@ xx(y*xz)=(xxy)*(x*2z),

o x\(x*xy) =y =xx(x\y).

If % is idempotent, then \ is idempotent, too.
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Two important groups

The (left) multiplication group of a rack Q is the permutation
group generated by left translations, i.e.,

LMIt(Q) = (L, | a € Q) < So.

The group of displacements is the subgroup
Dis(Q) = (LoL,* | a,b € Q).

Both groups are normal subgroups of Aut(Q).
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Two important groups

Proposition (Joyce; HSV)
Let Q be a rack. Then
O Dis(Q)={Lk ... L% ay,... 3, € Qand 37 ki = 0};

@ if Q is a quandle, the natural actions of LMIt(Q) and Dis(Q)
on Q have the same orbits;

@ Dis(Q) is abelian if and only if Q is medial.
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Two important groups

Proposition (Joyce; HSV)
Let Q be a rack. Then
O Dis(Q)={Lk ... L% ay,... 3, € Qand 37 ki = 0};

@ if Q is a quandle, the natural actions of LMIt(Q) and Dis(Q)
on Q have the same orbits;

@ Dis(Q) is abelian if and only if Q is medial.

A rack Q is called medial if, for every x,y,u,v € Q,

(x*xy)*(uxv)=(x*xu)x(y=*v),
(AN (\v) = A\ (y\v),
(x\y) * (u\v) = (x* u)\(y * v).
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Orbit decomposition for quandles

Orbits of a quandle Q are the orbits of transitivity of the groups
LMIt(Q) and Dis(Q) denoted

Qe = {a(e) | a € LMIt(Q)} = {a(e) | a € Dis(Q)},

i.e. Qe is the orbit containing an element e € Q.
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Orbit decomposition for quandles

Orbits of a quandle Q are the orbits of transitivity of the groups
LMIt(Q) and Dis(Q) denoted

Qe = {a(e) | « € LMIt(Q)} = {a(e) | « € Dis(Q)},
i.e. Qe is the orbit containing an element e € Q.
Orbits are subquandles of Q.

A rack (quandle) Q is connected if LMIt(Q) acts transitively on
Q.

For medial quandle, orbits are Alexander quandles.
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Alexander quandles

(A, +) - an abelian group, f € Aut(A). A quandle (A, x,\), where

xxy=x—f(x)+f(y)=(1-F)(x)+f(y),
x\y = (1= FH(x)+ (),

is called an Alexander quandle (or affine quandle).
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A left quasi-group (@, %, \) is m-reductive, if it satisfies for
X, Y12, Y3, Ym € Q

((xxy1) xy2) % .. )% ym = ((ya % y2) % y3) * ... ) * Ym.
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A left quasi-group (@, %, \) is m-reductive, if it satisfies for
X, Y12, Y3, Ym € Q

((xxy1) xy2) % .. )% ym = ((ya % y2) % y3) * ... ) * Ym.

It is called reductive, if it is m-reductive for some m and is
strictly m-reductive if it is m-reductive and not k-reductive for
any k < m.

A 1-reductive rack is called a projection quandle: x xy = y.

For medial quandles m-reductivity is equivalent to the following:

(xxy)xy)x...)xy=y.

m—times
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Reductive racks

Let Q be a rack. Then the following properties are equivalent:

@ Q@ is m-reductive,
@ LMIt(Q) is (m — 1)-nilpotent,
© @ is a multipermutation rack of class m.
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Reductive racks

Let Q be a rack. Then the following properties are equivalent:

@ Q@ is m-reductive,
@ LMIt(Q) is (m — 1)-nilpotent,
© @ is a multipermutation rack of class m.

For a rack @ the relation A defined by
alb iff V(xe Q)axx=bxx iff V(x € Q) a\x = b\x,

is a congruence.
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Multipermutation solution

Non-degenerate involutive solutions of QYBE <= involutive
biracks <= right cyclic left-quasigroups
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Multipermutation solution

Non-degenerate involutive solutions of QYBE <= involutive
biracks <= right cyclic left-quasigroups

Theorem (Gateva-lvanova, 2017)

Let (Q, 0, ) be an involutive birack satisfying

for every x € @ there exists some a € Q with ao x = x.

TFAE

o Q is a multipermutation solution level equal to m

e (Q,0) is m-reductive.
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Reductivity in (medial) quandles

n|l 2 3 4 5 6 7 8 9 10
all |1 1 3 7 22 73 298 1581 11079
medial |1 1 3 6 18 58 251 1410 10311 98577
non-reductive [0 0 1 1 3 1 5 3 10 3
n 11 12 13 14 15
medial | 1246488 20837439 466087635 563753074951
non-reductive 9 8 11 5 24

Table: The number of quandles of size n, up to isomorphism.
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Subdirectly irreducible medial quandles

Sl algebra: the intersection of all non-trivial congruences is
non-trivial (monolith congruence).
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Subdirectly irreducible medial quandles

Sl algebra: the intersection of all non-trivial congruences is
non-trivial (monolith congruence).

Sl finite medial quandles are:
@ either connected (Alexander quandles)

@ or reductive

For reductive case the monolith is 0 := 7N \.
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Theorem (Cedd, Jespers, Okninski, 2009)

Let (Q,0,e) be an idempotent, involutive birack with the group
LMIt(Q) being abelian. Then the solution (Q, r) is strongly
retractable.
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