Medial solutions to QYBE

Přemysl Jedlička¹, Agata Pilitowska², Anna Zamojska-Dzienio²

¹Department of Mathematics, Faculty of Engineering, Czech University of Life Sciences ²Faculty of Mathematics and Information Science, Warsaw University of Technology

Noncommutative and non-associative structures, braces and applications

Racks and quandles

A binary algebra (Q, *) is called a rack if it is:

- a left quasigroup: the equation x ∗ u = y has a unique solution u ∈ Q for every x, y ∈ Q,
- left distributive: x * (y * z) = (x * y) * (x * z) for every $x, y, z \in Q$.

A binary algebra (Q, *) is called a rack if it is:

- a left quasigroup: the equation x ∗ u = y has a unique solution u ∈ Q for every x, y ∈ Q,
- left distributive: x * (y * z) = (x * y) * (x * z) for every $x, y, z \in Q$.

All left translations $L_a: Q \to Q; L_a(x) = a * x$ are automorphisms of Q.

A binary algebra (Q, *) is called a rack if it is:

- a left quasigroup: the equation x ∗ u = y has a unique solution u ∈ Q for every x, y ∈ Q,
- left distributive: x * (y * z) = (x * y) * (x * z) for every $x, y, z \in Q$.

All left translations $L_a: Q \to Q; L_a(x) = a * x$ are automorphisms of Q.

A **quandle** is an **idempotent** rack: x * x = x for each $x \in Q$.

Two basic binary operations * and left division: \setminus .

Two basic binary operations * and left division: \setminus .

A rack ($Q, *, \setminus$) if, for every $x, y, z \in Q$:

•
$$x * (y * z) = (x * y) * (x * z)$$

•
$$x \setminus (x * y) = y = x * (x \setminus y).$$

Two basic binary operations * and left division: \setminus .

A rack ($Q, *, \setminus$) if, for every $x, y, z \in Q$:

•
$$x * (y * z) = (x * y) * (x * z)$$
,

•
$$x \setminus (x * y) = y = x * (x \setminus y).$$

If * is idempotent, then \setminus is idempotent, too.

Two important groups

Malta, 2018 Reductivity

▲ □ ▶ ▲ 三

-∢ ≣⇒

The (left) **multiplication group** of a rack Q is the permutation group generated by left translations, i.e.,

$$\operatorname{LMlt}(Q) = \langle L_a \mid a \in Q \rangle \leq S_Q.$$

The (left) **multiplication group** of a rack Q is the permutation group generated by left translations, i.e.,

$$\operatorname{LMlt}(Q) = \langle L_a \mid a \in Q \rangle \leq S_Q.$$

The group of displacements is the subgroup

$$\mathrm{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

The (left) **multiplication group** of a rack Q is the permutation group generated by left translations, i.e.,

$$\operatorname{LMlt}(Q) = \langle L_a \mid a \in Q \rangle \leq S_Q.$$

The group of displacements is the subgroup

$$\mathrm{Dis}(Q) = \langle L_a L_b^{-1} \mid a, b \in Q \rangle.$$

Both groups are normal subgroups of Aut(Q).

Proposition (Joyce; HSV)

Let Q be a rack. Then

- **9** $\operatorname{Dis}(Q) = \{L_{a_1}^{k_1} \dots L_{a_n}^{k_n} : a_1, \dots, a_n \in Q \text{ and } \sum_{i=1}^n k_i = 0\};$
- if Q is a quandle, the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits;
- **3** Dis(Q) is abelian if and only if Q is medial.

Proposition (Joyce; HSV)

Let Q be a rack. Then

•
$$\mathrm{Dis}(Q) = \{L_{a_1}^{k_1} \dots L_{a_n}^{k_n} : a_1, \dots, a_n \in Q \text{ and } \sum_{i=1}^n k_i = 0\};$$

- if Q is a quandle, the natural actions of LMlt(Q) and Dis(Q) on Q have the same orbits;
- **3** Dis(Q) is abelian if and only if Q is medial.

A rack Q is called **medial** if, for every $x, y, u, v \in Q$,

$$(x * y) * (u * v) = (x * u) * (y * v),$$

$$(x \setminus y) \setminus (u \setminus v) = (x \setminus u) \setminus (y \setminus v),$$

$$(x \setminus y) * (u \setminus v) = (x * u) \setminus (y * v).$$

$$Qe = \{\alpha(e) \mid \alpha \in \mathrm{LMlt}(Q)\} = \{\alpha(e) \mid \alpha \in \mathrm{Dis}(Q)\},\$$

i.e. Qe is the orbit containing an element $e \in Q$.

$$Qe = \{\alpha(e) \mid \alpha \in \operatorname{LMlt}(Q)\} = \{\alpha(e) \mid \alpha \in \operatorname{Dis}(Q)\},\$$

i.e. Qe is the orbit containing an element $e \in Q$.

Orbits are subquandles of Q.

$$Qe = \{\alpha(e) \mid \alpha \in \mathrm{LMlt}(Q)\} = \{\alpha(e) \mid \alpha \in \mathrm{Dis}(Q)\},\$$

i.e. Qe is the orbit containing an element $e \in Q$.

Orbits are subquandles of Q.

A rack (quandle) Q is **connected** if LMlt(Q) acts transitively on Q.

$$Qe = \{\alpha(e) \mid \alpha \in \operatorname{LMlt}(Q)\} = \{\alpha(e) \mid \alpha \in \operatorname{Dis}(Q)\},\$$

i.e. Qe is the orbit containing an element $e \in Q$.

Orbits are subquandles of Q.

A rack (quandle) Q is **connected** if LMlt(Q) acts transitively on Q.

For medial quandle, orbits are Alexander quandles.

(A, +) - an abelian group, $f \in Aut(A)$. A quandle $(A, *, \backslash)$, where x * y = x - f(x) + f(y) = (1 - f)(x) + f(y), $x \backslash y = (1 - f^{-1})(x) + f^{-1}(y),$

is called an Alexander quandle (or affine quandle).

A left quasi-group $(Q, *, \setminus)$ is *m*-reductive, if it satisfies for $x, y_1, y_2, y_3, \ldots, y_m \in Q$

$$(((x * y_1) * y_2) * \dots) * y_m = (((y_1 * y_2) * y_3) * \dots) * y_m.$$

A left quasi-group $(Q, *, \setminus)$ is *m*-reductive, if it satisfies for $x, y_1, y_2, y_3, \ldots, y_m \in Q$

$$(((x * y_1) * y_2) * \dots) * y_m = (((y_1 * y_2) * y_3) * \dots) * y_m.$$

It is called **reductive**, if it is *m*-reductive for some *m* and is **strictly** *m*-**reductive** if it is *m*-reductive and not *k*-reductive for any k < m.

A left quasi-group $(Q, *, \setminus)$ is *m*-reductive, if it satisfies for $x, y_1, y_2, y_3, \ldots, y_m \in Q$

$$(((x * y_1) * y_2) * ...) * y_m = (((y_1 * y_2) * y_3) * ...) * y_m.$$

It is called **reductive**, if it is *m*-reductive for some *m* and is **strictly** *m*-**reductive** if it is *m*-reductive and not *k*-reductive for any k < m.

A 1-reductive rack is called a **projection quandle**: x * y = y.

A left quasi-group $(Q, *, \setminus)$ is *m*-reductive, if it satisfies for $x, y_1, y_2, y_3, \ldots, y_m \in Q$

$$(((x * y_1) * y_2) * \dots) * y_m = (((y_1 * y_2) * y_3) * \dots) * y_m.$$

It is called **reductive**, if it is *m*-reductive for some *m* and is **strictly** *m*-**reductive** if it is *m*-reductive and not *k*-reductive for any k < m.

A 1-reductive rack is called a **projection quandle**: x * y = y.

For medial quandles *m*-reductivity is equivalent to the following:

$$(((x * \underbrace{y) * y) * \dots) * y}_{m-\text{times}} = y.$$

Theorem

Let Q be a rack. Then the following properties are equivalent:

- **Q** is m-reductive,
- 2 $\operatorname{LMlt}(Q)$ is (m-1)-nilpotent,
- **Q** is a multipermutation rack of class m.

Theorem

Let Q be a rack. Then the following properties are equivalent:

- **Q** is m-reductive,
- 2 $\operatorname{LMlt}(Q)$ is (m-1)-nilpotent,
- **Q** is a multipermutation rack of class m.

For a rack Q the relation λ defined by

$$a \ \lambda \ b \ ext{iff} \ \forall (x \in Q) \ a * x = b * x \ ext{iff} \ \forall (x \in Q) \ a \backslash x = b \backslash x,$$

is a congruence.

Non-degenerate involutive solutions of QYBE \iff involutive biracks \iff right cyclic left-quasigroups

Non-degenerate involutive solutions of QYBE \iff involutive biracks \iff right cyclic left-quasigroups

Theorem (Gateva-Ivanova, 2017)

Let (Q, \circ, \bullet) be an involutive birack satisfying

for every $x \in Q$ there exists some $a \in Q$ with $a \circ x = x$.

TFAE

- Q is a multipermutation solution level equal to m
- (Q, \circ) is m-reductive.

n	1	2	3	4	5	6	7	8	9	10
all	1	1	3	7	22	73	298	1581	11079	
medial	1	1	3	6	18	58	251	1410	10311	98577
non-reductive	0	0	1	1	3	1	5	3	10	3

n	11	12	13	14	15
medial	1246488	20837439	466087635		563753074951
non-reductive	9	8	11	5	24

Table: The number of quandles of size *n*, up to isomorphism.

SI algebra: the intersection of all non-trivial congruences is non-trivial (monolith congruence).

SI algebra: the intersection of all non-trivial congruences is non-trivial (monolith congruence).

SI finite medial quandles are:

- either connected (Alexander quandles)
- or reductive

SI algebra: the intersection of all non-trivial congruences is non-trivial (monolith congruence).

SI finite medial quandles are:

- either connected (Alexander quandles)
- or reductive

For reductive case the monolith is $\theta := \pi \cap \lambda$.

Theorem (Cedó, Jespers, Okniński, 2009)

Let (Q, \circ, \bullet) be an idempotent, involutive birack with the group LMlt(Q) being abelian. Then the solution (Q, r) is strongly retractable.

THANK YOU FOR YOUR ATTENTION!

個 と く き と く き と

3