Growth, relations and prime spectra of monomial algebras

Be'eri Greenfeld

Department of Mathematics Bar Ilan University, Israel

Noncommutative and non-associative structures, braces and applications, Malta, 2018

R- finitely generated associative algebra over a field F.

V- fin. dim. generating subspace, $1 \in V$.

Definition

The growth of R is the asymptotic behavior of the sequence $\dim_F V^n$.

Remark

- The growth is indpt. of choice of V (up to: $f \sim g$ iff $f(n) \leq Cg(Dn) \leq C'f(D'n)$)
- Polynomial, intermediate, exponential
- If polynomially bounded: $GKdim(R) = \limsup_{n \to \infty} \log_n(\dim_F V^n)$
- If R is commutative then it grows ~ n^d where d = Krull(R) = GKdim(R)

- GK-dimension = dimension of noncommutative projective schemes
- GK-dimension plays important role in theory of D-modules, holonomicity (Bernstein's inequality...)
- $\mathit{GKdim}(R) \in \{0\} \cup \{1\} \cup [2,\infty]$ (Bergman's gap)
- Allows to define 'noncommutative transcendence degree' = invariant for division algebras (even with exponential growth)
- Groups of intermediate growth (e.g. Grigorchuk's group) give rise to algebras of intermediate growth
- Algebras of subexponential growth are amenable
- Much more in NC-geometry, combinatorial algebra, geometric group theory...

A natural question arises: which functions describe the growth rate of an algebra? (For groups, very little is known)

A natural question arises: which functions describe the growth rate of an algebra? (For groups, very little is known) Necessary conditions:

- Monotonely increasing: f(n) < f(n+1);
- Submultiplicative: $f(n+m) \leq f(n)f(m)$

A natural question arises: which functions describe the growth rate of an algebra? (For groups, very little is known) Necessary conditions:

- Monotonely increasing: f(n) < f(n+1);
- Submultiplicative: $f(n+m) \leq f(n)f(m)$

Theorem (Bartholdi-Smoktunowicz, '14)

If f satisfies the above assumptions then there is an algebra R with growth function:

$$f(n) \preceq \gamma_R(n) \preceq n^2 f(n)$$

In particular, if $\exists C$ such that $f(Cn) \ge nf(n)$ (any sufficiently regular function more rapid than $n^{\log n}$) then $\gamma_R \sim f$.

A natural question arises: which functions describe the growth rate of an algebra? (For groups, very little is known) Necessary conditions:

- Monotonely increasing: f(n) < f(n+1);
- Submultiplicative: $f(n+m) \leq f(n)f(m)$

Theorem (Bartholdi-Smoktunowicz, '14)

If f satisfies the above assumptions then there is an algebra R with growth function:

$$f(n) \preceq \gamma_R(n) \preceq n^2 f(n)$$

In particular, if $\exists C$ such that $f(Cn) \ge nf(n)$ (any sufficiently regular function more rapid than $n^{\log n}$) then $\gamma_R \sim f$.

However, they do not treat algebraic properties of the realizing algebras; they pose the question of whether their resulting algebras are (or can be made) prime.

Be'eri Greenfeld (BIU)

The Bartholdi-Smoktunowicz construction

Consider free algebra $F(x_1, \ldots, x_d)$. Inductively define for $n \ge 0$:

•
$$W(1) = \{x_1, \ldots, x_d\};$$

- $C(2^n) \subseteq W(2^n)$ arbitrary;
- $W(2^{n+1}) = C(2^n)W(2^n).$

The Bartholdi-Smoktunowicz construction

Consider free algebra $F(x_1, \ldots, x_d)$. Inductively define for $n \ge 0$:

•
$$W(1) = \{x_1, \ldots, x_d\};$$

- $C(2^n) \subseteq W(2^n)$ arbitrary;
- $W(2^{n+1}) = C(2^n)W(2^n).$

Mod out the free algebra by all monomials which are not subwords of monomials from $\bigcup_{n\geq 0} W(2^n)$. We get an algebra spanned by all finite subwords of words from the infinite set:

 $\cdots C(8)C(4)C(2)C(1)W(1)$

The Bartholdi-Smoktunowicz construction

Consider free algebra $F(x_1, \ldots, x_d)$. Inductively define for $n \ge 0$:

•
$$W(1) = \{x_1, \ldots, x_d\};$$

- $C(2^n) \subseteq W(2^n)$ arbitrary;
- $W(2^{n+1}) = C(2^n)W(2^n).$

Mod out the free algebra by all monomials which are not subwords of monomials from $\bigcup_{n\geq 0} W(2^n)$. We get an algebra spanned by all finite subwords of words from the infinite set:

$$\cdots C(8)C(4)C(2)C(1)W(1)$$

If $|C(2^n)| = f(2^{n+1})/f(2^n)$ then the factor algebra has growth $f(n) \leq \gamma_R(n) \leq n^2 f(n)$.

Lemma (G., 2016)

If every $w \in W(2^n)$ is the suffix of some $v \in C(2^N)$ with $N \ge n$, then the factor algebra is prime.

Be'eri Greenfeld (BIU)

Alahmadi-Alsulami-Jain-Zelmanov conjecture

Recall that a primitive algebra is an algebra admitting a faithful simple module. Every primitive algebra is prime.

Conjecture (Alahmadi-Alsulami-Jain-Zelmanov, 2017)

If $f : \mathbb{N} \to \mathbb{N}$ is sufficiently rapid and realizable as growth function of a finitely generated algebra, then it is realizable as the growth function of a finitely generated primitive algebra.

Alahmadi-Alsulami-Jain-Zelmanov conjecture

Recall that a primitive algebra is an algebra admitting a faithful simple module. Every primitive algebra is prime.

Conjecture (Alahmadi-Alsulami-Jain-Zelmanov, 2017)

If $f : \mathbb{N} \to \mathbb{N}$ is sufficiently rapid and realizable as growth function of a finitely generated algebra, then it is realizable as the growth function of a finitely generated primitive algebra.

The largest known source for growth rate functions arises from Bartholdi-Smoktunowicz.

Theorem (G., 2016)

If f satisfies the conditions of the Bartholdi-Smoktunowicz construction (submultiplicative, $\exists C : f(Cn) \ge nf(n)$) then there exists a primitive algebra with growth function $\sim f$.

Alahmadi-Alsulami-Jain-Zelmanov conjecture

Recall that a primitive algebra is an algebra admitting a faithful simple module. Every primitive algebra is prime.

Conjecture (Alahmadi-Alsulami-Jain-Zelmanov, 2017)

If $f : \mathbb{N} \to \mathbb{N}$ is sufficiently rapid and realizable as growth function of a finitely generated algebra, then it is realizable as the growth function of a finitely generated primitive algebra.

The largest known source for growth rate functions arises from Bartholdi-Smoktunowicz.

Theorem (G., 2016)

If f satisfies the conditions of the Bartholdi-Smoktunowicz construction (submultiplicative, $\exists C : f(Cn) \ge nf(n)$) then there exists a primitive algebra with growth function $\sim f$.

Note: under additional mild rapidness condition we are able to realize with simple algebras (convolution algebras of appropriate étale groupoids).

Be'eri Greenfeld (BIU)

Proof idea:

• Construct an inverse systems of monomial algebras, each of which arises from the Bartholdi-Smoktunowicz construction:

$$\cdots \rightarrow R_2 \rightarrow R_1$$

- The intersection of the defining ideals defines a 'limit' algebra R_{∞} whose Jacobson radical we can vanish (carefully defining the inverse system each finite step is *not* primitive);
- Prove the resulting algebra is prime (using the lemma);
- Deduce primitivity by Okniński's trichotomy for monomial algebras;
- Achieve precise control on growth of the limit algebra by careful analysis and 'sparse' enough choice of defining ideals along the inverse system.

Question (Bergman, 1989)

Is it always true that $cl.Krull(R) \leq GKdim(R)$?

Question (Bergman, 1989)

Is it always true that $cl.Krull(R) \leq GKdim(R)$?

Answer (Bell, 2005): NO! There exist algebras of GKdim = 2 and infinite chains of primes.

Question (Bergman, 1989)

Is it always true that $cl.Krull(R) \leq GKdim(R)$?

Answer (Bell, 2005): NO! There exist algebras of GKdim = 2 and infinite chains of primes.

Method: Affinization (embedding countable dim. alg. as 'corner' of f.g.)

- Uses Zorn's lemma non-constructive
- No concrete/computable example
- No control on precise growth (only known GKdim = 2)

A concrete, tame example

We recall the following positive partial answer to Bergman's question:

Theorem (G.-Leroy-Smoktunowicz-Ziembowski, 2015)

If $R = \bigoplus_{i \in \mathbb{Z}} R_i$ is generated in degrees -1, 0, 1 and has quadratic growth $(\dim_F V^n \sim C \cdot n^2)$ then cl.Krull $(R) \leq 2C + 4$ so no infinite chains of primes can occur.

We recall the following positive partial answer to Bergman's question:

Theorem (G.-Leroy-Smoktunowicz-Ziembowski, 2015)

If $R = \bigoplus_{i \in \mathbb{Z}} R_i$ is generated in degrees -1, 0, 1 and has quadratic growth $(\dim_F V^n \sim C \cdot n^2)$ then $cl.Krull(R) \leq 2C + 4$ so no infinite chains of primes can occur.

On the other hand:

Theorem (G., 2018)

Suppose $\omega(n) \to \infty$ arbitrarily slowly (non-decreasing) and N > 1 given. Then there exists a monomial algebra (hence graded, gen. in deg. 1) R such that:

•
$$n^2 \preceq \gamma_R(n) \preceq n^2 \omega(n);$$

• cl.Krull(R) > N.

イロト イヨト イヨト イヨト

Can every Golod-Shafarevich algebra be mapped onto an infinite dimensional algebra with finite GK-dimension?

(Motivation: Lenagan-Smoktunowicz example of nil algebra with finite GK-dim.)

Can every Golod-Shafarevich algebra be mapped onto an infinite dimensional algebra with finite GK-dimension?

(Motivation: Lenagan-Smoktunowicz example of nil algebra with finite GK-dim.) Answer (Smoktunowicz, 2009): NO! (Algebras with many generic relations)

Can every Golod-Shafarevich algebra be mapped onto an infinite dimensional algebra with finite GK-dimension?

(Motivation: Lenagan-Smoktunowicz example of nil algebra with finite GK-dim.)

Answer (Smoktunowicz, 2009): NO! (Algebras with many generic relations)

Zelmanov's fixed question: What if in addition the relations are 'sparse enough'?

Can every Golod-Shafarevich algebra be mapped onto an infinite dimensional algebra with finite GK-dimension?

(Motivation: Lenagan-Smoktunowicz example of nil algebra with finite GK-dim.)

Answer (Smoktunowicz, 2009): NO! (Algebras with many generic relations)

Zelmanov's fixed question: What if in addition the relations are 'sparse enough'?

Drensky's question: If the realtions of a graded algebra are sparse enough, can it be mapped onto an algebra with intermediate growth?

Can every Golod-Shafarevich algebra be mapped onto an infinite dimensional algebra with finite GK-dimension?

(Motivation: Lenagan-Smoktunowicz example of nil algebra with finite GK-dim.)

Answer (Smoktunowicz, 2009): NO! (Algebras with many generic relations)

Zelmanov's fixed question: What if in addition the relations are 'sparse enough'?

Drensky's question: If the realtions of a graded algebra are sparse enough, can it be mapped onto an algebra with intermediate growth? Answer (Smoktunowicz, 2013; Bartholdi-Smoktunowicz, 2014): YES!

Strengthened analogy for monomial relations

Can we construct monomial algebras with prescribed growth rate, satisfying prescribed monomial relations?

Theorem (G., 2018)

Suppose we have a set of monomial relations in the free algebra with r_n relations in degree n, and a submultiplicative function $f : \mathbb{N} \to \mathbb{N}$ such that:

- $r_{n+m} \leq r_n r_m;$
- $r_n = 0$ for n < N (for some large enough N);
- $r_n \prec f(n)/n$

Then there exists a prime, monomial algebra satisfying the prescribed relations with growth function $f(n) \leq \gamma(n) \leq n^2 \gamma(n)$.

Strengthened analogy for monomial relations

Can we construct monomial algebras with prescribed growth rate, satisfying prescribed monomial relations?

Theorem (G., 2018)

Suppose we have a set of monomial relations in the free algebra with r_n relations in degree n, and a submultiplicative function $f : \mathbb{N} \to \mathbb{N}$ such that:

- $r_{n+m} \leq r_n r_m;$
- $r_n = 0$ for n < N (for some large enough N);
- $r_n \prec f(n)/n$

Then there exists a prime, monomial algebra satisfying the prescribed relations with growth function $f(n) \leq \gamma(n) \leq n^2 \gamma(n)$.

- 'subexponentially many' relations \implies algebra with intermediate growth (cf. Drensky's question)
- 'polynomially many' \implies finite GK-dim (cf. Zelmanov's question)

Question

Suppose R is graded, fin. gen. in deg. 1 with quadratic growth. Is it possible that cl.Krull(R) > 2?

Question

Is there a f.g. nil algebra of quadratic growth? Of GKdim = 2?

Questions?

・ロト ・ 日 ト ・ 目 ト ・