Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

University of Haifa, Campus Oranim

イロン 不同と 不同と 不同と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Joint work with Eddy Godelle, Caen

Finite quotients of groups of I-type 2014

Properties of a solution (X, r)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Let $X = \{x_1, ..., x_n\}$ and let r be defined in the following way: $r(i,j) = (\sigma_i(j), \gamma_j(i))$, where $\sigma_i, \gamma_i : X \to X$.

Proposition [P.Etingof, T.Schedler, A.Soloviev - 1999]

• (X, r) is non-degenerate $\Leftrightarrow \sigma_i$ and γ_i are bijective, $1 \le i \le n$.

•
$$(X, r)$$
 is involutive $\Leftrightarrow r^2 = Id_{X \times X}$.

• (X, r) is braided \Leftrightarrow $(Id \times r)(r \times Id)(Id \times r) = (r \times Id)(Id \times r)(r \times Id)$

◆□→ ◆□→ ◆注→ ◆注→ □ 注

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A retract relation \equiv on X is defined by:

・ロン ・回と ・ヨン・

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A retract relation \equiv on X is defined by:

 $x_i \equiv x_j$ if and only if $\sigma_i = \sigma_j$.

・ロン ・四マ ・ヨマ ・ヨマ

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A retract relation \equiv on X is defined by:

 $x_i \equiv x_j$ if and only if $\sigma_i = \sigma_j$.

(X, r) is a multipermutation solution of level m or retractable if:

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A retract relation \equiv on X is defined by:

$$x_i \equiv x_j$$
 if and only if $\sigma_i = \sigma_j$.

(X, r) is a multipermutation solution of level m or retractable if:

There exits $m \ge 1$ such that $\operatorname{Ret}^m(G)$ is a cyclic group and m is the smallest such integer, where $\operatorname{Ret}^{k+1}(G) = \operatorname{Ret}^1(\operatorname{Ret}^k(G))$.

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Assumption: (X, r) is a non-degenerate, involutive and braided solution.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Assumption: (X, r) is a non-degenerate, involutive and braided solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}$$
.

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Assumption: (X, r) is a non-degenerate, involutive and braided solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}.$$

• The defining relations: $x_i x_j = x_k x_l$ whenever r(i, j) = (k, l)

(ロ) (同) (E) (E) (E)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Assumption: (X, r) is a non-degenerate, involutive and braided solution.

The structure group G of (X, r) [Etingof, Schedler, Soloviev]

• The generators:
$$X = \{x_1, x_2, ..., x_n\}.$$

• The defining relations: $x_i x_j = x_k x_l$ whenever r(i, j) = (k, l)

There are exactly
$$\frac{n(n-1)}{2}$$
 defining relations.

(ロ) (同) (E) (E) (E)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define r

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) is a non-degenerate, involutive and braided solution. (X, r) is a multipermutation of level 2.

・ロン ・四マ ・ヨマ ・ヨマ

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define r

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) is a non-degenerate, involutive and braided solution. (X, r) is a multipermutation of level 2.

The defining relations in G and in M			
$x_1^2 = x_2^2$	$x_3^2 = x_4^2$		
$x_1x_2 = x_3x_4$	$x_1x_3 = x_4x_2$		
$x_2x_4=x_3x_1$	$x_2x_1 = x_4x_3$		

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define r

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) is a non-degenerate, involutive and braided solution. (X, r) is a multipermutation of level 2.

The defining relations in G and in M				
$x_1^2 = x_2^2$	$x_3^2 = x_4^2$	$(x_1x_4=x_1x_4$	$x_2x_3=x_2x_3)$	
$x_1x_2 = x_3x_4$	$x_1x_3 = x_4x_2$			
$x_2x_4=x_3x_1$	$x_2x_1 = x_4x_3$	$(x_3x_2=x_3x_2$	$x_4x_1=x_4x_1)$	

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define r

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) is a non-degenerate, involutive and braided solution. (X, r) is a multipermutation of level 2.

The defining relations in G and in M $x_1^2 = x_2^2$ $x_3^2 = x_4^2$ $(x_1x_4 = x_1x_4$ $x_2x_3 = x_2x_3)$ $x_1x_2 = x_3x_4$ $x_1x_3 = x_4x_2$ $x_2x_4 = x_3x_1$ $x_2x_1 = x_4x_3$ $(x_3x_2 = x_3x_2$ $x_4x_1 = x_4x_1)$ There are $\frac{n(n-1)}{2}$ relations (and n trivial relations)

The correspondence between QYBE groups and Garside groups

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, r) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

(ロ) (同) (E) (E) (E)

The correspondence between QYBE groups and Garside groups

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, r) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Assume that Mon(X | R) is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once.

・ロン ・回 と ・ ヨ と ・ ヨ と

The correspondence between QYBE groups and Garside groups

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C. 2009)

Let (X, r) be a non-degenerate, involutive and braided set-theoretical solution of the quantum Yang-Baxter equation with structure group G. Then G is Garside.

Assume that $Mon\langle X \mid R \rangle$ is a **Garside monoid** such that:

- the cardinality of R is n(n-1)/2
- each side of a relation in R has length 2.
- if the word $x_i x_j$ appears in R, then it appears only once. Then $G = \text{Gp}\langle X \mid R \rangle$ is the structure group of a non-degenerate, involutive and braided solution (X, r), with $\mid X \mid = n$.

(ロ) (同) (E) (E) (E)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

イロン イヨン イヨン イヨン

э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The advantages of being Garside

If the group G is Garside, then

■ *G* is torsion-free [P.Dehornoy 1998]

・ロト ・回ト ・ヨト ・ヨト

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The advantages of being Garside

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The advantages of being Garside

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The advantages of being Garside

If the group G is Garside, then

- G is torsion-free [P.Dehornoy 1998]
- G is bi-automatic [P.Dehornoy 2002]
- G has word and conjugacy problem solvable
- G has finite homological dimension [P.Dehornoy and Y.Lafont 2003][R.Charney, J. Meier and K. Whittlesey 2004]

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups	
Fabienne Chouraqui	
Introduction to the QYBE	
Garside groups and the QYBE	
Coxeter-like finite quotients	
Orderability of groups	
Remarks and questions to conclude	

・ロン ・回と ・ヨン・

æ

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999.

э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

The definition of a Garside monoid [P.Dehornoy 2002]

The monoid M is Garside if

• 1 is the unique invertible element in M.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

The definition of a Garside monoid [P.Dehornoy 2002]

The monoid M is Garside if

- 1 is the unique invertible element in M.
- *M* is left and right cancellative.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

The definition of a Garside monoid [P.Dehornoy 2002]

The monoid M is Garside if

- 1 is the unique invertible element in M.
- *M* is left and right cancellative.
- Each pair of elements in *M* has: left, right lcm and gcd

イロン イヨン イヨン イヨン

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

The definition of a Garside monoid [P.Dehornoy 2002]

The monoid M is Garside if

- 1 is the unique invertible element in M.
- *M* is left and right cancellative.
- Each pair of elements in *M* has: left, right lcm and gcd
- M has a balanced element Δ such that Div(Δ) is a finite generating set of M.

イロン 不同と 不同と 不同と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The notion was first defined by P.Dehornoy and L.Paris in 1999. Examples of Garside groups: Braid groups, Artin groups of finite-type.

The definition of a Garside monoid [P.Dehornoy 2002]

The monoid M is Garside if

- 1 is the unique invertible element in M.
- *M* is left and right cancellative.
- Each pair of elements in *M* has: left, right lcm and gcd
- M has a balanced element Δ such that Div(Δ) is a finite generating set of M.

A Garside group is the group of fractions of a Garside monoid.

・ロン ・回 と ・ ヨ と ・ ヨ と

The BRAID group B_n

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude The BRAID group?

イロン イヨン イヨン イヨン

Э

The BRAID group B_n

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The BRAID group?

The BRAID group $B_3 = \langle \sigma_1, \sigma_2 \mid \sigma_1 \sigma_2 \sigma_1 = \sigma_2 \sigma_1 \sigma_2 \rangle$

Fabienne Chouraqui

Finite quotients of groups of I-type or Quantum Yang-Baxter g

The original Coxeter group construction

Finite auotients of groups of I-type or Quantum Yang-Baxter groups

Chouragui

Coxeter-like finite auotients

 \exists epimorphism $B_3 \rightarrow S_3$: $\overline{\sigma_1 \mapsto (1,2)}; \ \overline{\sigma_2 \mapsto (2,3)}$

Fabienne Chouraqui

The original Coxeter group construction

Fabienne Chouragui

Coxeter-like finite auotients

 \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

Fabienne Chouragui

・ロン ・回と ・ヨン ・ヨン Finite quotients of groups of I-type or Quantum Yang-Baxter g

3

In B₃: $\Delta = \sigma_1 \sigma_2 \sigma_1$

The original Coxeter group construction

The original Coxeter group construction

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 \rightarrow S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

 In B_3 : $\Delta = \sigma_1 \sigma_2 \sigma_1$

・ロン ・回と ・ヨン ・ヨン

3

 $Div(\Delta) = \{\sigma_1, \sigma_2, \sigma_1\sigma_2, \sigma_2\sigma_1, \sigma_1\sigma_2\sigma_1\} \\ S_3 \leftrightarrow Div(\Delta)$

The original Coxeter group construction

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\exists \text{ epimorphism } B_3 \to S_3 :$ $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

 $\begin{array}{l} \ln B_3: \ \Delta = \sigma_1 \sigma_2 \sigma_1 \\ \text{Div}(\Delta) = \\ \{\sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1\} \\ S_3 \leftrightarrow \text{Div}(\Delta) \end{array}$

The original Coxeter group

(ロ) (同) (E) (E) (E)

 $\exists \text{ a short exact sequence:} \\ 1 \to P_n \to B_n \to S_n \to 1 \end{cases}$

The original Coxeter group construction

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude \exists epimorphism $B_3 o S_3$: $\sigma_1 \mapsto (1,2); \ \sigma_2 \mapsto (2,3)$

 $\ln B_3: \Delta = \sigma_1 \sigma_2 \sigma_1$

 $\begin{aligned} \mathsf{Div}(\Delta) &= \\ \{\sigma_1, \sigma_2, \sigma_1 \sigma_2, \sigma_2 \sigma_1, \sigma_1 \sigma_2 \sigma_1\} \\ S_3 &\leftrightarrow \mathsf{Div}(\Delta) \end{aligned}$

The original Coxeter group

・ロン ・回 と ・ ヨ と ・ ヨ と

 $\exists \text{ a short exact sequence:} \\ 1 \to P_n \to B_n \to S_n \to 1 \\ \exists \text{ a bijection} \\ S_n \leftrightarrow \text{Div}(\Delta) \end{cases}$

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$

・ロン ・回と ・ヨン・

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

소리가 소문가 소문가 소문가

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

What is so special with this finite quotient group?

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The original Coxeter group

There exits a short exact sequence: $1 \rightarrow P_n \rightarrow B_n \rightarrow S_n \rightarrow 1$ More generally, finite-type Artin groups have a finite quotient group: the finite Coxeter group.

What is so special with this finite quotient group?

There exits a bijection between the elements in the finite quotient group (S_n or general Coxeter) and the set $Div(\Delta)$ in B_n or finite-type Artin group.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

イロン 不同と 不同と 不同と

э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

The question raised by D.Bessis

Do Garside groups admit a finite quotient that plays the same role S_n plays for B_n or the Coxeter groups for finite-type Artin groups?

Our answer: yes for QYBE groups with additional condition (C)

Dehornoy's extension: condition (C) can be removed

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and Div(Δ)
- W is a finite group or order 2ⁿ

Finite auotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne

Coxeter-like finite auotients

Theorem (F.C and E.Godelle)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

- N is a normal free abelian group of rank n
- There exists a bijection between W and $Div(\Delta)$
- W is a finite group or order 2ⁿ

What is condition (C)?

Let
$$x_i, x_j \in X$$
. If $r(i, j) = (i, j)$, then $\sigma_i \sigma_j = \gamma_i \gamma_j = Id_X$.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

E.Jespers and J.Okninski show the existence of such a sequence

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

E.Jespers and J.Okninski show the existence of such a sequence T.Gateva-vanova and M. Van den Bergh: G is Bieberbach

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Theorem (F.C and E.Godelle 2013)

Let (X, r) be a non-degenerate, involutive and braided solution of the QYBE with structure group G and |X| = n. Assume (X, r) satisfies the condition (C). Then there exits a short exact sequence: $1 \rightarrow N \rightarrow G \rightarrow W \rightarrow 1$ satisfying

N is a normal free abelian group of rank n

E.Jespers and J.Okninski show the existence of such a sequence T.Gateva-vanova and M. Van den Bergh: G is Bieberbach but they do not satisfy

• There exists a bijection between W and $Div(\Delta)$

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

 $\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$ $\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) satisfies (C): If S(i, j) = (i, j), then $\sigma_i \sigma_j = \gamma_i \gamma_j = Id_X$

・ロト ・四ト ・ヨト ・ヨト - ヨ

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) satisfies (C): If S(i, j) = (i, j), then $\sigma_i \sigma_j = \gamma_i \gamma_j = Id_X$

The 4 trivial relations in G and in M

$x_1x_4 = x_1x_4$	$x_4x_1 = x_4x_1$
-------------------	-------------------

$$x_3x_2 = x_3x_2$$
 $x_2x_3 = x_2x_3$

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}.$$

The functions that define S

$$\sigma_1 = \gamma_1 = \sigma_3 = \gamma_3 = (1, 2, 3, 4)$$

$$\sigma_2 = \gamma_2 = \sigma_4 = \gamma_4 = (1, 4, 3, 2)$$

(X, r) satisfies (C): If S(i, j) = (i, j), then $\sigma_i \sigma_j = \gamma_i \gamma_j = Id_X$

The 4 trivial relations in G and in M

$x_1x_4 = x_1x_4$	$x_4x_1 = x_4x_1$

 $x_3x_2 = x_3x_2$ $x_2x_3 = x_2x_3$

 $\theta_1 = x_1 x_4$, $\theta_2 = x_2 x_3$, $\theta_3 = x_3 x_2$, $\theta_4 = x_4 x_1$ are called **frozen** elements.

<ロ> (四) (四) (注) (三) (三)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Definition of *N*: $N = \langle \theta_1, \theta_2, ..., \theta_n \rangle$

・ロト ・回ト ・ヨト ・ヨト

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Definition of *N*: $N = \langle \theta_1, \theta_2, .., \theta_n \rangle$

• *N* is generated by the *n* frozen elements $\theta_1, \theta_2, ..., \theta_n$.

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Definition of *N*: $N = \langle \theta_1, \theta_2, .., \theta_n \rangle$

- *N* is generated by the *n* frozen elements $\theta_1, \theta_2, ..., \theta_n$.
- N is free abelian of rank n.

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Definition of *N*: $N = \langle \theta_1, \theta_2, .., \theta_n \rangle$

- *N* is generated by the *n* frozen elements $\theta_1, \theta_2, ..., \theta_n$.
- N is free abelian of rank n.

Presentation of W

W is obtained by adding to the presentation of G the relations $\theta_i = 1, \forall 1 \le i \le n$.

(日) (四) (王) (王) (王)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let $X = \{x_1, x_2, x_3, x_4\}.$ (X, r) satisfies the condition (C)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・

э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}$$
.
(X, r) satisfies the condition (C)

The 4 frozen elements

$$\theta_1 = x_1 x_4, \ \theta_2 = x_2 x_3, \ \theta_3 = x_3 x_2, \ \theta_4 = x_4 x_1$$

・ロト ・回ト ・ヨト ・ヨト

Э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}$$
.
(*X*, *r*) satisfies the condition (*C*

The 4 frozen elements

$$\theta_1 = x_1 x_4, \ \theta_2 = x_2 x_3, \ \theta_3 = x_3 x_2, \ \theta_4 = x_4 x_1$$

The normal free abelian subgroup N

$$N = \langle \theta_1, \theta_2, \theta_3, \theta_4 \rangle = \langle x_1 x_4, x_2 x_3, x_3 x_2, x_4 x_1 \rangle$$

・ロン ・回と ・ヨン・

Э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Let
$$X = \{x_1, x_2, x_3, x_4\}$$
.
(X, r) satisfies the condition (C

The 4 frozen elements

$$\theta_1 = x_1 x_4, \ \theta_2 = x_2 x_3, \ \theta_3 = x_3 x_2, \ \theta_4 = x_4 x_1$$

The normal free abelian subgroup N

$$N = \langle \theta_1, \theta_2, \theta_3, \theta_4 \rangle = \langle x_1 x_4, x_2 x_3, x_3 x_2, x_4 x_1 \rangle$$

The Coxeter-like group W

$$W = \langle G | x_4 = x_1^{-1}, x_3 = x_2^{-1} \rangle$$

・ロン ・回 と ・ ヨ と ・ ヨ と

э

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

<ロ> (四) (四) (注) (三) (三)

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is *left-orderable*

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is *left-orderable*

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups, torsion-free abelian groups,
A group G is left-orderable

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication:

 $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups,

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is *bi-orderable*

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups,

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups,

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

A group G is left-orderable

if there exists a strict total ordering \prec of its elements which is invariant under left multiplication: $g \prec h \Longrightarrow fg \prec fh, \forall f, g, h \in G.$

G is bi-orderable

if \prec is invariant under left and right multiplication: $g \prec h \Longrightarrow fgk \prec fhk, \forall f, g, h, k \in G.$

Examples of bi-orderable and left-orderable groups

Bi-orderable: free groups,torsion-free abelian groups,pure braid groups, f.g of surfaces except the Klein bottle group and the projective plane's group Left-orderable: knot groups, braid groups, Homeo⁺(\mathbb{R})

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

・ロン ・回 と ・ ヨ と ・ ヨ と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

Left orders in Garside group (IJAC 2016)

In the book of E. Jespers and I. Okninski (2007):

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude Are all the Garside groups left-orderable?

Question from book *Ordering braids* of P. Dehornoy, I. Dynnikov, D. Rolfsen and B. Wiest

The short answer is: Not necessarily!!

Left orders in Garside group (IJAC 2016)

In the book of E. Jespers and I. Okninski (2007):

There exist Garside groups that do not satisfy the unique product property.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

・ロン ・回と ・ヨン ・ヨン

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Locally\ indicable} \Rightarrow \mathsf{Left-orderable} \Rightarrow \mathsf{Unique} \\ \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

For multipermutations (retractable) solutions, we show

Their structure group satisfies a property stronger than locally indicable ("almost" bi-orderable)

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Locally \ indicable} \Rightarrow \mathsf{Left-orderable} \Rightarrow \mathsf{Unique} \\ \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

For multipermutations (retractable) solutions, we show

Their structure group satisfies a property stronger than locally indicable ("almost" bi-orderable)

In our paper, we asked whether there exist structure groups of non-retractable solutions that are left-orderable.

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Locally\ indicable} \Rightarrow \mathsf{Left-orderable} \Rightarrow \mathsf{Unique} \\ \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

For multipermutations (retractable) solutions, we show

Their structure group satisfies a property stronger than locally indicable ("almost" bi-orderable)

In our paper, we asked whether there exist structure groups of non-retractable solutions that are left-orderable.

The answer is: No! Bachiller-Cedo-Vendramin- 2017

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

> Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

イロン イヨン イヨン イヨン

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

イロン イヨン イヨン イヨン

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied: the units in the group algebra are trivial

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied

・ロン ・回 と ・ 回 と ・ 回 と

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied: there are no zero divisors in the group algebra

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mathsf{Bi-orderable} \Rightarrow \mathsf{Locally} \text{ indicable} \Rightarrow \mathsf{Left-orderable} \Rightarrow \mathsf{Unique} \\ \mathsf{product} \Rightarrow \mathsf{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude $\begin{array}{l} \mbox{Bi-orderable} \Rightarrow \mbox{Locally indicable} \Rightarrow \mbox{Left-orderable} \Rightarrow \mbox{Unique} \\ \mbox{product} \Rightarrow \mbox{Torsion-free} \end{array}$

A group G satisfies the unique product property, if for any finite subsets $A, B \subseteq G$, there exists at least one element $x \in AB$ that can be uniquely written as x = ab, with $a \in A$ and $b \in B$.

For a torsion free group

Unique product \Rightarrow Kaplansky's Unit conjecture satisfied \Rightarrow Kaplansky's Zero-divisor conjecture satisfied \Rightarrow Kaplansky's Idempotent conjecture satisfied: there are no non-trivial idempotents in the group algebra

Some remarks to conclude

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

 G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.

Some remarks to conclude

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).

Some remarks to conclude

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Some remarks to conclude

- G is a Bieberbach group (T. Gateva-Ivanova and M. Van den Bergh, P. Etingof et al.) i.e. it is a torsion free crystallographic group.
- Bieberbach groups satisfy Kaplansky's zero divisor conjecture, as it holds for all torsion-free finite-by-solvable groups (P.H. Kropholler, P.A. Linnell, and J.A. Moody).
- *B_n* satisfy the zero divisor conjecture, as they are left-orderable (P. Dehornoy).

The original question can be replaced by:

Finite quotients of groups of I-type or Quantum Yang-Baxter groups

Fabienne Chouraqui

General

Introduction to the QYBE

Garside groups and the QYBE

Coxeter-like finite quotients

Orderability of groups

Remarks and questions to conclude

Question: does a Garside group satisfy Kaplansky's zero divisor conjecture?

イロン イヨン イヨン イヨン

	The end
Finite quotients of groups of I-type or Quantum Yang-Baxter groups	
Fabienne Chouraqui	
General	Thank you!
to the QYBE	
Garside groups and the QYBE	
Coxeter-like finite quotients	
Orderability of groups	
Remarks and questions to conclude	< ロ > < 団 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 豆 > < 〇 へ ()
	Fabienne Chouraqui Finite quotients of groups of I-type or Quantum Yang-Baxter g