Set-theoretic solutions of the pentagon equation

Francesco Catino

Università del Salento

Noncommutative and non-associative structures, braces and applications Malta - March 14, 2018

Solutions Set-theoretic solutions

Motivation

My interest in the pentagon equation starts from the following paper

A. Van Daele, S. Van Keer, *The Yang-Baxter equation and pentagon equation*, Compos. Math. **91** (1994), 201–221.

Solutions Set-theoretic solutions

Motivation

My interest in the pentagon equation starts from the following paper

A. Van Daele, S. Van Keer, *The Yang-Baxter equation and pentagon equation*, Compos. Math. **91** (1994), 201–221.

The pentagon equation appears in several contexts, as one can see from the paper

A. Dimakis, F. Müller-Hoissen, *Simplex and Polygon Equations*, SIGMA **11** (2015), Paper 042, 49 pp.

Solutions Set-theoretic solutions

My interest in the pentagon equation starts from the following paper

A. Van Daele, S. Van Keer, *The Yang-Baxter equation and pentagon equation*, Compos. Math. **91** (1994), 201–221.

The pentagon equation appears in several contexts, as one can see from the paper

A. Dimakis, F. Müller-Hoissen, *Simplex and Polygon Equations*, SIGMA **11** (2015), Paper 042, 49 pp.

In this talk I will present some classic results about solutions of the pentagon equation. Moreover, I will deal with set-theoretical solutions, showing both old and some new results that are in the paper

F. Catino, M. Mazzotta, M.M. Miccoli, *The set-theoretic solutions of the pentagon equation*, work in progress.

Solutions Set-theoretic solutions

Solutions of the pentagon equation

Definition

Let V be a vector space over a field F. A linear map $S: V \otimes V \to V \otimes V$ is said to be a solution of the pentagon equation if

 $S_{12}S_{13}S_{23}=S_{23}S_{12}$

where the map S_{ij} : $V \otimes V \otimes V \rightarrow V \otimes V \otimes V$ acting as S on the (i, j) tensor factor and as the identity on the remaining factor.

Solutions Set-theoretic solutions

Solutions of the pentagon equation

Definition

Let V be a vector space over a field F. A linear map $S: V \otimes V \to V \otimes V$ is said to be a solution of the pentagon equation if

 $S_{12}S_{13}S_{23}=S_{23}S_{12}$

where the map S_{ij} : $V \otimes V \otimes V \rightarrow V \otimes V \otimes V$ acting as S on the (i, j) tensor factor and as the identity on the remaining factor.

Solutions of the pentagon equation appear in various contexts and with different terminology.

Solutions Set-theoretic solutions

Fusion operators

For istance in R. Street, *Fusion operators and Cocycloids in Monomial Categories*, Appl. Categor. Struct. **6** (1998), 177–191

a solution of the pentagon equation is said to be a *fusion operator*.

Solutions Set-theoretic solutions

Fusion operators

For istance in R. Street, *Fusion operators and Cocycloids in Monomial Categories*, Appl. Categor. Struct. **6** (1998), 177–191

a solution of the pentagon equation is said to be a fusion operator.

Example

Let B be a bialgebra with product $m: B \otimes B \longrightarrow B$ and coproduct $\Delta: B \longrightarrow B \otimes B$. Then

 $S := (id_B \otimes m)(\Delta \otimes id_B)$

is a solution of the pentagon equation (or fusion operator).

Solutions Set-theoretic solutions

Example

Let B be a Hopf algebra with product $m : B \otimes B \longrightarrow B$, coproduct $\Delta : B \longrightarrow B \otimes B$ and antipode $\nu : B \longrightarrow B$. Then S is invertible and the inverse is given by

 $S^{-1} = (1_A \otimes m)(1_A \otimes \nu \otimes 1_A)(\Delta \otimes 1_A).$

Solutions Set-theoretic solutions

Example

Let B be a Hopf algebra with product $m : B \otimes B \longrightarrow B$, coproduct $\Delta : B \longrightarrow B \otimes B$ and antipode $\nu : B \longrightarrow B$. Then S is invertible and the inverse is given by

 $S^{-1} = (1_A \otimes m)(1_A \otimes \nu \otimes 1_A)(\Delta \otimes 1_A).$

Note that S^{-1} is a solution of the reversed pentagon equation

$$S_{23}S_{13}S_{12}=S_{12}S_{23}.$$

In

G. Militaru, *The Hopf modules category and the Hopf equation*, Comm. Algebra **10** (1998), 3071–3097

this equation is called Hopf equation.

Solutions Set-theoretic solutions

Multiplicative operators

Let \mathcal{H} be a Hilbert space. A unitary operator acting on $\mathcal{H} \otimes \mathcal{H}$ satisfying the pentagon equation, has been termed *multiplicative*.

These operators were introduced by Enok and Schwartz in the study of duality theory for Hopf-von Neumann algebras.

[M. Enok, J.-M Schwartz, Kac Algebras and Duality of Locally Compact Groups, *Springer-Verlag, Berlin* (1992)].

Solutions Set-theoretic solutions

Multiplicative operators

Let \mathcal{H} be a Hilbert space. A unitary operator acting on $\mathcal{H}\otimes\mathcal{H}$ satisfying the pentagon equation, has been termed *multiplicative*.

These operators were introduced by Enok and Schwartz in the study of duality theory for Hopf-von Neumann algebras.

[M. Enok, J.-M Schwartz, Kac Algebras and Duality of Locally Compact Groups, *Springer-Verlag, Berlin* (1992)].

Example (Kac-Takesaki operator)

Let G be a locally compact group. Fix a left Haar measure on G and let $\mathcal{H} = L^2(G)$ denote the Hilbert space of square integrable complex functions on G. Then the Hilbert space tensor product $\mathcal{H} \otimes \mathcal{H}$ is (isomorphic to) the Hilbert space $L^2(G \times G)$. Let S_G be the unitary operator acting on $\mathcal{H} \otimes \mathcal{H}$ defined by

$$(S_G\varphi)(x,y)=\varphi(xy,y)$$

for all $\varphi \in \mathcal{H}$ and $x, y \in G$. Then S_G is multiplicative, that is a solution of the pentagon equation.

Solutions Set-theoretic solutions

An abstract way

Kashaev and Sergeev watch this kind of operators in an abstract way. [R.M. Kashaev, S.M. Sergeev, *On Pentagon, Ten-Term and Tetrahedrom Relations*, Commun. Math. Phys. **1995** (1998), 309–319].

Example

Let G be a group. Let \mathbb{C}^G denote the vector space over the complex field \mathbb{C} of the functions from G to \mathbb{C} . The operator S_G on $\mathbb{C}^{G \times G}$ defined by

 $(S_G \varphi)(x, y) = \varphi(xy, y),$

for all $\varphi \in \mathbb{C}^{G \times G}$ and $x, y \in G$, is a solution of the pentagon equation.

Solutions Set-theoretic solutions

Set-theoretic solutions of the pentagon equation

Solutions Set-theoretic solutions

Set-theoretic solutions of the pentagon equation

Definition

Let M be a set. A set-theoretic solution of the pentagon equation on M is a map $s: M \times M \longrightarrow M \times M$ which satisfy the "reversed" pentagon equation

 $s_{23} s_{13} s_{12} = s_{12} s_{23}$

where $s_{12} = s \times id_M$, $s_{23} = id_M \times s$ and $s_{13} = (id_M \times \tau)s_{12}(id_M \times \tau)$ with τ the flip map.

Solutions Set-theoretic solutions

Set-theoretic solutions of the pentagon equation

Definition

Let M be a set. A set-theoretic solution of the pentagon equation on M is a map $s : M \times M \longrightarrow M \times M$ which satisfy the "reversed" pentagon equation

 $s_{23} s_{13} s_{12} = s_{12} s_{23}$

where $s_{12} = s \times id_M$, $s_{23} = id_M \times s$ and $s_{13} = (id_M \times \tau)s_{12}(id_M \times \tau)$ with τ the flip map.

Example

Let G be a group. The map $s : G \times G \longrightarrow G \times G, (x, y) \mapsto (xy, y)$ is a set-theoretic solution of the pentagon equation.

Note that the flip map τ is not a set-theoretic solution of the pentagon equation if |M| > 1.

Solutions Set-theoretic solutions

A bridge

Proposition

Let M be a set and F be a field. If $V := F^M$, then the tensor product $V \otimes V$ is isomorphic to $F^{M \times M}$. Let $s : M \times M \to M \times M$ and define the operator S on $V \otimes V$ by

$$(S\varphi)(x,y) = \varphi(s(x,y))$$

for all $\varphi \in F^{M \times M}$ and $x, y \in M$.

Then S is a solution of the pentagon equation if and only if s is a set-theoretic solution of the pentagon equation.

Solutions Set-theoretic solutions

A bridge

Proposition

Let M be a set and F be a field. If $V := F^M$, then the tensor product $V \otimes V$ is isomorphic to $F^{M \times M}$. Let $s : M \times M \to M \times M$ and define the operator S on $V \otimes V$ by

$$(S\varphi)(x,y) = \varphi(s(x,y))$$

for all $\varphi \in F^{M \times M}$ and $x, y \in M$.

Then S is a solution of the pentagon equation if and only if s is a set-theoretic solution of the pentagon equation.

Example (Kac-Takesaki solution)

If M is a group, then the map $s : M \times M \to M \times M, (x, y) \mapsto (xy, y)$ is a set-theoretic solution. So, the operator S defined by

$$(S\varphi)(x,y) = \varphi(xy,y)$$

for all $\varphi \in F^{M \times M}$ and $x, y \in M$, is a solution of the pentagon equation.

Solutions Set-theoretic solutions

Another version of Kac-Takesaki solution

Example

If M is a group, then the map $s : M \times M \to M \times M, (x, y) \mapsto (x, yx^{-1})$ is a set-theoretic solution. So, the operator S defined by

$$(S\varphi)(x,y) = \varphi(x,yx^{-1})$$

for all $\varphi \in F^{M \times M}$ and $x, y \in M$, is a solution of the pentagon equation.

Solutions Set-theoretic solutions

Set-theoretic solutions of the reversed pentagon equation

Set-theoretic solutions of the reversed pentagon equation

Definition

Let M be a set. A set-theoretic solution of the reversed pentagon equation on M is a map $s : M \times M \longrightarrow M \times M$ which satisfies the condition

 $s_{12} s_{13} s_{23} = s_{23} s_{12}$

where $s_{12} = s \times id_M$, $s_{23} = id_M \times s$ and $s_{13} = (id_M \times \tau)s_{12}(id_M \times \tau)$ with τ the flip map.

Remark

A map $s: M \times M \longrightarrow M \times M$ is a set-theoretic solution of the pentagon equation if and only if $\tau s \tau$ is a set-theoretic solution of the reversed pentagon equation. Moreover, if s is invertible, then s^{-1} is a set-theoretic solution of the reversed pentagon equation on M.

Solutions Set-theoretic solutions

Isomorphic solutions

Definition

Let M, N be two sets, s be a solution on M and r be a solution on N. Then s and r are called isomorphic if there exists a bijective map $\alpha : M \to N$ such that

$$s = (\alpha^{-1} \times \alpha^{-1})r(\alpha \times \alpha).$$

Example

Let G be a group. Then the solutions $r, s : G \times G \rightarrow G \times G$ defined by

$$r(x.y) = (yx, y), \quad s(x.y) = (xy, y)$$

are isomorphic by $\alpha : G \to G, \ x \mapsto x^{-1}$.

Solutions Set-theoretic solutions

Isomorphic solutions

Definition

Let M, N be two sets, s be a solution on M and r be a solution on N. Then s and r are called isomorphic if there exists a bijective map $\alpha : M \to N$ such that

$$s = (\alpha^{-1} \times \alpha^{-1})r(\alpha \times \alpha).$$

Example

Let G be a group. Then the solutions $r, s : G \times G \rightarrow G \times G$ defined by

$$r(x.y) = (yx, y), \quad s(x.y) = (xy, y)$$

are isomorphic by $\alpha : G \to G, \ x \mapsto x^{-1}$.

A challenging question:

are the solutions s(x, y) = (xy, y) and $s^{op}(x, y) = (x, yx^{-1})$ related to two versions of Kac-Takesaki operator isomorphic?

Solutions Set-theoretic solutions

Isomorphic solutions

Definition

Let M, N be two sets, s be a solution on M and r be a solution on N. Then s and r are called isomorphic if there exists a bijective map $\alpha : M \to N$ such that

$$s = (\alpha^{-1} \times \alpha^{-1})r(\alpha \times \alpha).$$

Example

Let G be a group. Then the solutions $r, s : G \times G \rightarrow G \times G$ defined by

$$r(x.y) = (yx, y), \quad s(x.y) = (xy, y)$$

are isomorphic by $\alpha : G \to G, \ x \mapsto x^{-1}$.

A challenging question:

are the solutions s(x, y) = (xy, y) and $s^{op}(x, y) = (x, yx^{-1})$ related to two versions of Kac-Takesaki operator isomorphic? I will answer later.

Solutions Set-theoretic solutions

Isomorphic solutions

Definition

Let M, N be two sets, s be a solution on M and r be a solution on N. Then s and r are called isomorphic if there exists a bijective map $\alpha : M \to N$ such that

$$s = (\alpha^{-1} \times \alpha^{-1})r(\alpha \times \alpha).$$

Example

Let G be a group. Then the solutions $r, s : G \times G \rightarrow G \times G$ defined by

$$r(x.y) = (yx, y), \quad s(x.y) = (xy, y)$$

are isomorphic by $\alpha : G \to G, \ x \mapsto x^{-1}$.

A challenging question:

are the solutions s(x, y) = (xy, y) and $s^{op}(x, y) = (x, yx^{-1})$ related to two versions of Kac-Takesaki operator isomorphic? I will answer later. Why wait?

Solutions Set-theoretic solutions

Isomorphic solutions

Definition

Let M, N be two sets, s be a solution on M and r be a solution on N. Then s and r are called isomorphic if there exists a bijective map $\alpha : M \to N$ such that

$$s = (\alpha^{-1} \times \alpha^{-1})r(\alpha \times \alpha).$$

Example

Let G be a group. Then the solutions $r, s : G \times G \rightarrow G \times G$ defined by

$$r(x.y) = (yx, y), \quad s(x.y) = (xy, y)$$

are isomorphic by $\alpha : G \to G, \ x \mapsto x^{-1}$.

A challenging question:

are the solutions s(x, y) = (xy, y) and $s^{op}(x, y) = (x, yx^{-1})$ related to two versions of Kac-Takesaki operator isomorphic? I will answer later. Why wait? No!

Opposite solutions Commutativity

Related structures

For a map $s: M \times M \to M \times M$ define binary operations \cdot and * as

$$s(x,y) = (x \cdot y , x * y).$$

Lemma

Let M be a set. A map $s:M\times M\to M\times M$ is a solution of the pentagon equation if and only if the following conditions hold

(1)
$$(x \cdot y) \cdot z = x \cdot (y \cdot z)$$

(2) $(x * y) \cdot ((x \cdot y) * z) = x * (y \cdot z)$
(3) $(x * y) * ((x \cdot y) * z) = y * z$
for all $x, y, z \in M$.
Moreover, s is invertible if and only if for any pair $(x, y) \in M \times M$ there exists
a unique pair $(u, z) \in M \times M$ such that
(4) $u \cdot z = x$, $u * z = y$.

Opposite solutions Commutativity

A question

Kashaev and Reshetikhin in Symmetrically Factorizable Groups and Set-theoretical Solutions of the Pentagon Equation, Contemp. Math. **433** (2007), 267–279 (2007) noted that assuming (M, \cdot) is a group greatly limits the operation *.

Opposite solutions Commutativity

A question

Kashaev and Reshetikhin in Symmetrically Factorizable Groups and Set-theoretical Solutions of the Pentagon Equation, Contemp. Math. **433** (2007), 267–279 (2007) noted that assuming (M, \cdot) is a group greatly limits the operation *.

Corollary

Let \cdot and * be a pair of operations on a set M satisfying the conditions (1)–(4) of the Lemma. If the operation \cdot defines a group structure on M, then x * y = y for all $x, y \in M$. So, if M is a group, then the only invertible solution s of the pentagon equation on M with $x \cdot y = xy$, for all $x, y \in M$, is given by s(x, y) = (xy, y).

Opposite solutions Commutativity

A question

Kashaev and Reshetikhin in Symmetrically Factorizable Groups and Set-theoretical Solutions of the Pentagon Equation, Contemp. Math. **433** (2007), 267–279 (2007) noted that assuming (M, \cdot) is a group greatly limits the operation *.

Corollary

Let \cdot and * be a pair of operations on a set M satisfying the conditions (1)–(4) of the Lemma. If the operation \cdot defines a group structure on M, then x * y = y for all $x, y \in M$. So, if M is a group, then the only invertible solution s of the pentagon equation on M with $x \cdot y = xy$, for all $x, y \in M$, is given by s(x, y) = (xy, y).

If (M, \cdot) is a group, then a solution of the pentagon equation on M is given by $s(x, y) = (x \cdot y, 1)$ for all $x, y \in M$.

Actually, we are not able to obtain all solutions when the operation \cdot is a group operation.

Opposite solutions Commutativity

Some examples

Example

Let (M, \cdot) be a semigroup, and let α be an endomorphism of (M, \cdot) such that $\alpha^2 = \alpha$. Define $x * y := \alpha(y)$, for all $x, y \in M$, then the pair of operations \cdot and * satisfied the conditions (1)-(3) of Lemma. Hence the map $s : M \times M \to M \times M$ given by

$$s(x,y) = (xy,\alpha(y))$$

is a solution of the pentagon equation.

Opposite solutions Commutativity

Interesting invertible set-theoretic solutions can be obtained assuming M is a closed subset of a group G [R.M. Kashaev, S.M. Sergeev, *On Pentagon, Ten-Term and Tetrahedrom Relations*, Commun. Math. Phys. **1995** (1998), 309–319].

Proposition

Let M be a closed subset of a group (G, ·), and let $\lambda, \mu : M \to G$ be maps such that

$$x * y = \mu(x)^{-1}\mu(xy) \in M, \qquad \mu(x * y) = \lambda(x)\mu(y),$$

for all $x, y \in M$. Then the pair of operations \cdot and * satisfies the conditions (1)-(4) of Lemma. If furthemore $1 \in M$, then x * y = y is the only possibility for the operation *.

Consequently, the map $s: M \times M \rightarrow M \times M$ given by

$$s(x, y) = (xy, \mu(x)^{-1}\mu(xy))$$

for all $x, y \in M$, is a set-theoretic solution of the pentagon equation.

Opposite solutions Commutativity

Example

Let $M =]0, 1[\subseteq \mathbb{R}^*$ be the open unit interval with the dot-mapping \cdot given by the multiplication in \mathbb{R} . Set

$$\mu(x) = rac{x}{1-x}$$
 and $\lambda(x) = 1-x$,

for all $x \in M$. Then

$$s(x,y) = (xy, \frac{(1-x)y}{1-xy})$$

is a solution on M.

Opposite solutions Commutativity

Examples of Zakrzewski

Opposite solutions Commutativity

Examples of Zakrzewski

S. Zakrzewski, *Poisson Lie Groups and Pentagonal Transformations*, Lett. Math. Phys. **24** (1992), 13–19.

Example

Let G be a group and A, B its subgroups such that G = AB and $A \cap B = \{1\}$. Then for every $x \in G$ there exists a unique couple $(a, b) \in A \times B$ such that x = ab. Let $p_1 : G \to A$ and $p_2 : G \to B$ be maps such that $x = p_1(x)p_2(x)$, for every $x \in G$.

Opposite solutions Commutativity

Examples of Zakrzewski

S. Zakrzewski, *Poisson Lie Groups and Pentagonal Transformations*, Lett. Math. Phys. **24** (1992), 13–19.

Example

Let G be a group and A, B its subgroups such that G = AB and $A \cap B = \{1\}$. Then for every $x \in G$ there exists a unique couple $(a, b) \in A \times B$ such that x = ab. Let $p_1 : G \to A$ and $p_2 : G \to B$ be maps such that $x = p_1(x)p_2(x)$, for every $x \in G$. Then the map $s : G \times G \longrightarrow G \times G$ defined by $s(x, y) = (p_2(yp_1(x)^{-1})x, yp_1(x)^{-1})$

for all $x, y \in G$, is a solution of the pentagon equation.

Opposite solution Commutativity

Examples of Baaj and Skandalis

The following example is slightly different from Zakrzewski's one.

Opposite solutions Commutativity

Examples of Baaj and Skandalis

The following example is slightly different from Zakrzewski's one.

S. Baaj, G. Skandalis, Unitaries multiplicatifs et dualité pour le produits croisés de C*-algèbres, Ann. Sci. Éc. Norm. Sup. (4) **26** (1993), 425–488

Example

Let G be a group and A, B its subgroups such that G = AB and $A \cap B = \{1\}$. Let $p_1 : G \to A \ e \ p_2 : G \to B$ maps such that $x = p_1(x)p_2(x)$, for every $x \in G$. Then the map $s : G \times G \longrightarrow G \times G$ defined by

 $s(x, y) = (xp_1(p_2(x)^{-1}y), p_2(x)^{-1}y)$

for all $x, y \in G$, is a solution of the pentagon equation.

Opposite solutions Commutativity

Opposite operators

Following T. Timmerman, An invitation to Quantum Groups and Duality. *Europan Math. Soc.* (2008) we give the

Definition

Opposite solutions Commutativity

Opposite operators

Following T. Timmerman, An invitation to Quantum Groups and Duality. *Europan Math. Soc.* (2008) we give the

Definition

Let V be a vector space over a field F and, Σ be the flip map on $V \otimes V$. If $S : V \otimes V \rightarrow V \otimes V$ is an invertible operator, then

$$S^{op} := \Sigma S^{-1} \Sigma$$

is the opposite operator of S.

Opposite solutions Commutativity

Opposite operators

Following T. Timmerman, An invitation to Quantum Groups and Duality. *Europan Math. Soc.* (2008) we give the

Definition

Let V be a vector space over a field F and, Σ be the flip map on $V \otimes V$. If $S : V \otimes V \rightarrow V \otimes V$ is an invertible operator, then

$$S^{op} := \Sigma S^{-1} \Sigma$$

is the opposite operator of S.

Example (Kac-Takesaki operators)

If M is a group and $(S\varphi)(x, y) = \varphi(xy, y)$, for all $\varphi \in \mathbb{C}^{M \times M}$ and $x, y \in M$, is the Kac-Takesaki operator, then

$$(S^{op}\varphi)(x,y) = \varphi(x,yx^{-1})$$

is the opposite operator of S.

Opposite solutions Commutativity

Opposite solutions

Definition

Let M be a set and s be an invertible solution on M. Then

$$s^{op} := \tau s^{-1} \tau$$

is the opposite solution of s.

Example

Let G be a group. The following maps $s, r : G \times G \longrightarrow G \times G$ defined by 1) $s(x, y) = (xy, y), r(x, y) = (x, yx^{-1}),$ 2) $s(x, y) = (yx, y), r(x, y) = (x, x^{-1}y)$ are opposite solutions of the pentagon equation on G.

Opposite solution Commutativity

Commutative and cocommutative solutions

Following Baaj and Skandalis [*Unitaries multiplicatifs et dualité pour le produits croisés de C*-algèbres*, Ann. Sci. Éc. Norm. Sup. (4) **26** (1993), 425–488]

Definition

Let M be a set and s : $M \times M \rightarrow M \times M$ be a solution. Then

(1) s is called commutative if $s_{13}s_{23} = s_{23}s_{13}$;

(2) s is called cocommutative if $s_{13}s_{12} = s_{12}s_{13}$.

Example

Let G be a group. Then the solution given by s(x, y) = (xy, y), for all $x, y \in G$, is commutative. Instead, the solution given by $s^{op}(x, y) = (x, yx^{-1})$, for all $x, y \in G$, is cocommutative.

Opposite solution Commutativity

Remark

If s is an invertible solution on a set M, then s is commutative (respectively cocommutative) if and only if s^{op} is cocommutative (respectively commutative).

Opposite solution Commutativity

Remark

If s is an invertible solution on a set M, then s is commutative (respectively cocommutative) if and only if s^{op} is cocommutative (respectively commutative).

Example

Let M be a set and $f, g : M \to M$ be two maps such that $f^2 = f$, $g^2 = g$ and fg = gf. Then the map

 $s: M \times M \to M \times M$, $(x, y) \mapsto (f(x), g(y))$

is a solution both commutative and cocommutative.

Quasi-linear solutions

Quasi-linear solutions

L. Jiang, M. Liu, *On set-theoretical solution of the pentagon equation*, Adv. Math. (China) **34** (2005), 331–337

Definition

Let G be a (additive) group. A map $s : G \times G \rightarrow G \times G$ is called quasi-linear if

$$s(x, y) = (A(x) + B(y), C(x) + D(y))$$

where $A, B, C, D \in End(G)$. If G is abelian, s is called linear.

Proposition

Let G be a group. Then a quasi-linear map s is a solution of the pentagon equation if and only if

(1)	$A = A^2$	(2)	$B = B^2$	(3)	$D^2 = D$
(4)	[A, B] = 0	(5)	BCB = [-D, A]	(6)	[B, D] = 0
(7)	$C^2 = -DCA$	(8)	AC = C - BCA	(9)	CD = C - DCB.

Quasi-affine solutions

Quasi-affine solutions

Definition

Let G be a group. A map $s : G \times G \rightarrow G \times G$ is called quasi-affine if

$$s(x, y) = (A(x) + B(y) + u, C(x) + D(y) + v)$$

where $A, B, C, D \in End(G)$ and $u, v \in G$. If G is abelian, s is called affine.

Proposition

Let G be a group. Then a quasi-affine map s is a solution of the pentagon equation if and only if conditions (1)-(9) of above Proposition are satisfied, C and D are invertible and $u = C^{-1}D^{-1}(-C - D)(v)$.

P-involutive solutions

L. Jiang, M. Liu also characterized all P-involutive solutions.

Definition

Let G be a (additive) finite group and $P \in End(G)$. A function $s : G \times G \longrightarrow G \times G$ is called *P*-involutive if

$$(\sigma s)^2 = P \times P.$$

where $\sigma : G \times G \longrightarrow G \times G, (x, y) \mapsto (-x, y).$

Semisymmetric solutions

R. Kashaev in *Full noncommutative discrete Liouville equation*, RIMS (2011), 89–98 considers this type of solutions.

Semisymmetric solutions

R. Kashaev in *Full noncommutative discrete Liouville equation*, RIMS (2011), 89–98 considers this type of solutions.

Definition

Let M be a set. A solution $s: M \times M \longrightarrow M \times M$ is called semisymmetric if there exists a map $\alpha: M \longrightarrow M$ such that

$$\alpha^3 = id_M, \quad s\tau(\alpha \times id_M)s = \alpha \times \alpha$$

where τ is the flip map.

Semisymmetric solutions

R. Kashaev in *Full noncommutative discrete Liouville equation*, RIMS (2011), 89–98 considers this type of solutions.

Definition

Let M be a set. A solution $s: M \times M \longrightarrow M \times M$ is called semisymmetric if there exists a map $\alpha: M \longrightarrow M$ such that

$$\alpha^3 = id_M, \quad s\tau(\alpha \times id_M)s = \alpha \times \alpha$$

where τ is the flip map.

He gives solutions using groups with addition.

Definition

A group G is called group with addition if it is provided with an associative and commutative binary operation, called addition, with respect to which the group multiplication is distributive.

- The set of positive real numbers is naturally a group with addition as well as its subgroup of positive rationals.
- The group of integers \mathbb{Z} is also a group with addition where the addition is the maximum operation max(m, n).
- An example of a non Abelian group with addition is given by the group of upper-triangular real two-by-two matrices with positive reals on the diagonal. The addition here is given by the usual matrix addition.

Proposition

Let G be a group with addition and $c \in G$ a central element. Then there exists a set-theoretic semisymmetric solution $s(x, y) = (x \cdot y, x * y)$ on $G \times G$ where

$$x \cdot y = (x_1, x_2)(y_1, y_2) = (x_1y_1, x_1y_2 + x_2)$$

and

$$x * y = ((1 + y_2 x_2^{-1} x_1)^{-1} y_1, (1 + y_2 x_2^{-1} x_1)^{-1} y_2 x_2^{-1}),$$

with $\alpha(x_1, x_2) = (cx_1^{-1} x_2, x_1^{-1}).$

THANK YOU!

Francesco Catino - Set-theoretic solution of the pentagon equation