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Motivation

My interest in the pentagon equation starts from the following paper

A. Van Daele, S. Van Keer, The Yang-Baxter equation and pentagon equation,
Compos. Math. 91 (1994), 201–221.

The pentagon equation appears in several contexts, as one can see from the
paper
A. Dimakis, F. Müller-Hoissen, Simplex and Polygon Equations, SIGMA 11
(2015), Paper 042, 49 pp.

In this talk I will present some classic results about solutions of the pentagon
equation. Moreover, I will deal with set-theoretical solutions, showing both old
and some new results that are in the paper

F. Catino, M. Mazzotta, M.M. Miccoli, The set-theoretic solutions of the
pentagon equation, work in progress.
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Solutions of the pentagon equation

Definition

Let V be a vector space over a field F . A linear map S : V ⊗ V → V ⊗ V is
said to be a solution of the pentagon equation if

S12S13S23 = S23S12

where the map Sij : V ⊗ V ⊗ V → V ⊗ V ⊗ V acting as S on the (i , j) tensor
factor and as the identity on the remaining factor.

Solutions of the pentagon equation appear in various contexts and with
different terminology.
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Fusion operators

For istance in
R. Street, Fusion operators and Cocycloids in Monomial Categories, Appl.
Categor. Struct. 6 (1998), 177–191

a solution of the pentagon equation is said to be a fusion operator.

Example

Let B be a bialgebra with product m : B ⊗ B −→ B and coproduct
∆ : B −→ B ⊗ B. Then

S := (idB ⊗m)(∆⊗ idB)

is a solution of the pentagon equation (or fusion operator).
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Example

Let B be a Hopf algebra with product m : B ⊗ B −→ B, coproduct
∆ : B −→ B ⊗ B and antipode ν : B −→ B. Then S is invertible and the
inverse is given by

S−1 = (1A ⊗m)(1A ⊗ ν ⊗ 1A)(∆⊗ 1A).

Note that S−1 is a solution of the reversed pentagon equation

S23S13S12 = S12S23.

In
G. Militaru, The Hopf modules category and the Hopf equation, Comm.
Algebra 10 (1998), 3071–3097

this equation is called Hopf equation.
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Multiplicative operators

Let H be a Hilbert space. A unitary operator acting on H⊗H satisfying the
pentagon equation, has been termed multiplicative.

These operators were introduced by Enok and Schwartz in the study of duality
theory for Hopf-von Neumann algebras.
[ M. Enok, J.-M Schwartz, Kac Algebras and Duality of Locally Compact
Groups, Springer-Verlag, Berlin (1992)].

Example (Kac-Takesaki operator)

Let G be a locally compact group. Fix a left Haar measure on G and let
H = L2(G) denote the Hilbert space of square integrable complex functions on
G . Then the Hilbert space tensor product H⊗H is (isomorphic to) the Hilbert
space L2(G × G). Let SG be the unitary operator acting on H⊗H defined by

(SGϕ)(x , y) = ϕ(xy , y)

for all ϕ ∈ H and x , y ∈ G . Then SG is multiplicative, that is a solution of the
pentagon equation.
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An abstract way

Kashaev and Sergeev watch this kind of operators in an abstract way.
[ R.M. Kashaev, S.M. Sergeev, On Pentagon, Ten-Term and Tetrahedrom
Relations, Commun. Math. Phys. 1995 (1998), 309–319 ].

Example

Let G be a group. Let CG denote the vector space over the complex field C of
the functions from G to C. The operator SG on CG×G defined by

(SGϕ)(x , y) = ϕ(xy , y),

for all ϕ ∈ CG×G and x , y ∈ G , is a solution of the pentagon equation.
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Set-theoretic solutions of the pentagon equation

Definition

Let M be a set. A set-theoretic solution of the pentagon equation on M is a
map s : M ×M −→ M ×M which satisfy the ”reversed” pentagon equation

s23 s13 s12 = s12 s23

where s12 = s × idM , s23 = idM × s and s13 = (idM × τ)s12(idM × τ) with τ the
flip map.

Example

Let G be a group. The map s : G × G −→ G × G , (x , y) 7→ (xy , y) is a
set-theoretic solution of the pentagon equation.

Note that the flip map τ is not a set-theoretic solution of the pentagon
equation if |M| > 1.
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A bridge

Proposition

Let M be a set and F be a field. If V := FM , then the tensor product V ⊗V is
isomorphic to FM×M . Let s : M ×M → M ×M and define the operator S on
V ⊗ V by

(Sϕ)(x , y) = ϕ(s(x , y))

for all ϕ ∈ FM×M and x , y ∈ M.
Then S is a solution of the pentagon equation if and only if s is a set-theoretic
solution of the pentagon equation.

Example (Kac-Takesaki solution)

If M is a group, then the map s : M ×M → M ×M, (x , y) 7→ (xy , y) is a
set-theoretic solution. So, the operator S defined by

(Sϕ)(x , y) = ϕ(xy , y)

for all ϕ ∈ FM×M and x , y ∈ M, is a solution of the pentagon equation.
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Another version of Kac-Takesaki solution

Example

If M is a group, then the map s : M ×M → M ×M, (x , y) 7→ (x , yx−1) is a
set-theoretic solution. So, the operator S defined by

(Sϕ)(x , y) = ϕ(x , yx−1)

for all ϕ ∈ FM×M and x , y ∈ M, is a solution of the pentagon equation.
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Set-theoretic solutions of the reversed pentagon equation

Definition

Let M be a set. A set-theoretic solution of the reversed pentagon equation on
M is a map s : M ×M −→ M ×M which satisfies the condition

s12 s13 s23 = s23 s12

where s12 = s × idM , s23 = idM × s and s13 = (idM × τ)s12(idM × τ) with τ the
flip map.

Remark

A map s : M ×M −→ M ×M is a set-theoretic solution of the pentagon
equation if and only if τsτ is a set-theoretic solution of the reversed pentagon
equation.
Moreover, if s is invertible, then s−1 is a set-theoretic solution of the reversed
pentagon equation on M.
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Isomorphic solutions

Definition

Let M,N be two sets, s be a solution on M and r be a solution on N. Then s
and r are called isomorphic if there exists a bijective map α : M → N such that

s = (α−1 × α−1)r(α× α).

Example

Let G be a group. Then the solutions r , s : G × G → G × G defined by

r(x .y) = (yx , y), s(x .y) = (xy , y)

are isomorphic by α : G → G , x 7→ x−1.

A challenging question:
are the solutions s(x , y) = (xy , y) and sop(x , y) = (x , yx−1) related to two
versions of Kac-Takesaki operator isomorphic?
I will answer later. Why wait? No!
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Related structures

For a map s : M ×M → M ×M define binary operations · and ∗ as

s(x , y) = (x · y , x ∗ y).

Lemma

Let M be a set. A map s : M ×M → M ×M is a solution of the pentagon
equation if and only if the following conditions hold

(1) (x · y) · z = x · (y · z)

(2) (x ∗ y) · ((x · y) ∗ z) = x ∗ (y · z)

(3) (x ∗ y) ∗ ((x · y) ∗ z) = y ∗ z
for all x , y , z ∈ M.
Moreover, s is invertible if and only if for any pair (x , y) ∈ M ×M there exists
a unique pair (u, z) ∈ M ×M such that

(4) u · z = x , u ∗ z = y .
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A question

Kashaev and Reshetikhin in Symmetrically Factorizable Groups and
Set-theoretical Solutions of the Pentagon Equation, Contemp. Math. 433
(2007), 267–279 (2007)
noted that assuming (M, ·) is a group greatly limits the operation ∗.

Corollary

Let · and ∗ be a pair of operations on a set M satisfying the conditions (1)–(4)
of the Lemma. If the operation · defines a group structure on M, then
x ∗ y = y for all x , y ∈ M.
So, if M is a group, then the only invertible solution s of the pentagon
equation on M with x · y = xy , for all x , y ∈ M, is given by s(x , y) = (xy , y).

If (M, ·) is a group, then a solution of the pentagon equation on M is given by
s(x , y) = (x · y , 1) for all x , y ∈ M.
Actually, we are not able to obtain all solutions when the operation · is a group
operation.
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Some examples

Example

Let (M, ·) be a semigroup, and let α be an endomorphism of (M, ·) such that
α2 = α. Define x ∗ y := α(y), for all x , y ∈ M, then the pair of operations ·
and ∗ satisfied the conditions (1)-(3) of Lemma. Hence the map
s : M ×M → M ×M given by

s(x , y) = (xy , α(y))

is a solution of the pentagon equation.
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Interesting invertible set-theoretic solutions can be obtained assuming M is a
closed subset of a group G
[R.M. Kashaev, S.M. Sergeev, On Pentagon, Ten-Term and Tetrahedrom
Relations, Commun. Math. Phys. 1995 (1998), 309–319 ].

Proposition

Let M be a closed subset of a group (G , ·), and let λ, µ : M → G be maps such
that

x ∗ y = µ(x)−1µ(xy) ∈ M, µ(x ∗ y) = λ(x)µ(y),

for all x , y ∈ M. Then the pair of operations · and ∗ satisfies the conditions
(1)-(4) of Lemma. If furthemore 1 ∈ M, then x ∗ y = y is the only possibility
for the operation ∗.
Consequently, the map s : M ×M → M ×M given by

s(x , y) = (xy , µ(x)−1µ(xy))

for all x , y ∈ M, is a set-theoretic solution of the pentagon equation.
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Example

Let M =]0, 1[⊆ R∗ be the open unit interval with the dot-mapping · given by
the multiplication in R. Set

µ(x) =
x

1− x
and λ(x) = 1− x ,

for all x ∈ M. Then

s(x , y) = (xy ,
(1− x)y

1− xy
)

is a solution on M.
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Examples of Zakrzewski

S. Zakrzewski, Poisson Lie Groups and Pentagonal Transformations, Lett.
Math. Phys. 24 (1992), 13–19.

Example

Let G be a group and A,B its subgroups such that G = AB and A ∩ B = {1}.
Then for every x ∈ G there exists a unique couple (a, b) ∈ A× B such that
x = ab.
Let p1 : G → A and p2 : G → B be maps such that x = p1(x)p2(x), for every
x ∈ G .
Then the map s : G × G −→ G × G defined by

s(x , y) = (p2(yp1(x)−1)x , yp1(x)−1)

for all x , y ∈ G , is a solution of the pentagon equation.

Francesco Catino - Set-theoretic solution of the pentagon equation 17/29



Pentagon equation
Related structures

Affine solutions
Semisymmetric solutions

Opposite solutions
Commutativity

Examples of Zakrzewski

S. Zakrzewski, Poisson Lie Groups and Pentagonal Transformations, Lett.
Math. Phys. 24 (1992), 13–19.

Example

Let G be a group and A,B its subgroups such that G = AB and A ∩ B = {1}.
Then for every x ∈ G there exists a unique couple (a, b) ∈ A× B such that
x = ab.
Let p1 : G → A and p2 : G → B be maps such that x = p1(x)p2(x), for every
x ∈ G .

Then the map s : G × G −→ G × G defined by

s(x , y) = (p2(yp1(x)−1)x , yp1(x)−1)

for all x , y ∈ G , is a solution of the pentagon equation.

Francesco Catino - Set-theoretic solution of the pentagon equation 17/29



Pentagon equation
Related structures

Affine solutions
Semisymmetric solutions

Opposite solutions
Commutativity

Examples of Zakrzewski

S. Zakrzewski, Poisson Lie Groups and Pentagonal Transformations, Lett.
Math. Phys. 24 (1992), 13–19.

Example

Let G be a group and A,B its subgroups such that G = AB and A ∩ B = {1}.
Then for every x ∈ G there exists a unique couple (a, b) ∈ A× B such that
x = ab.
Let p1 : G → A and p2 : G → B be maps such that x = p1(x)p2(x), for every
x ∈ G .
Then the map s : G × G −→ G × G defined by

s(x , y) = (p2(yp1(x)−1)x , yp1(x)−1)

for all x , y ∈ G , is a solution of the pentagon equation.

Francesco Catino - Set-theoretic solution of the pentagon equation 17/29



Pentagon equation
Related structures

Affine solutions
Semisymmetric solutions

Opposite solutions
Commutativity

Examples of Baaj and Skandalis

The following example is slightly different from Zakrzewski’s one.

S. Baaj, G. Skandalis, Unitaries multiplicatifs et dualité pour le produits croisés
de C*-algèbres, Ann. Sci. Éc. Norm. Sup. (4) 26 (1993), 425–488
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Opposite operators

Following T. Timmerman, An invitation to Quantum Groups and Duality.
Europan Math. Soc. (2008) we give the

Definition

Let V be a vector space over a field F and, Σ be the flip map on V ⊗ V .
If S : V ⊗ V → V ⊗ V is an invertible operator, then

Sop := ΣS−1Σ

is the opposite operator of S .

Example (Kac-Takesaki operators)

If M is a group and (Sϕ)(x , y) = ϕ(xy , y), for all ϕ ∈ CM×M and x , y ∈ M, is
the Kac-Takesaki operator, then

(Sopϕ)(x , y) = ϕ(x , yx−1)

is the opposite operator of S .
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Opposite solutions

Definition

Let M be a set and s be an invertible solution on M. Then

sop := τs−1τ

is the opposite solution of s.

Example

Let G be a group. The following maps s, r : G × G −→ G × G defined by

1) s(x , y) = (xy , y), r(x , y) = (x , yx−1),

2) s(x , y) = (yx , y), r(x , y) = (x , x−1y)

are opposite solutions of the pentagon equation on G .
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Commutative and cocommutative solutions

Following Baaj and Skandalis [Unitaries multiplicatifs et dualité pour le produits
croisés de C*-algèbres, Ann. Sci. Éc. Norm. Sup. (4) 26 (1993), 425–488 ]

Definition

Let M be a set and s : M ×M → M ×M be a solution. Then

(1) s is called commutative if s13s23 = s23s13;

(2) s is called cocommutative if s13s12 = s12s13.

Example

Let G be a group.
Then the solution given by s(x , y) = (xy , y), for all x , y ∈ G , is commutative.
Instead, the solution given by sop(x , y) = (x , yx−1), for all x , y ∈ G , is
cocommutative.
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Remark

If s is an invertible solution on a set M, then s is commutative (respectively
cocommutative) if and only if sop is cocommutative (respectively commutative).

Example

Let M be a set and f , g : M → M be two maps such that f 2 = f , g 2 = g and
fg = gf . Then the map

s : M ×M → M ×M, (x , y) 7→ (f (x), g(y))

is a solution both commutative and cocommutative.
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Quasi-linear solutions

L. Jiang, M. Liu, On set-theoretical solution of the pentagon equation, Adv.
Math. (China) 34 (2005), 331–337

Definition

Let G be a (additive) group. A map s : G ×G → G ×G is called quasi-linear if

s(x , y) = (A(x) + B(y), C(x) + D(y))

where A,B,C ,D ∈ End(G). If G is abelian, s is called linear.

Proposition

Let G be a group. Then a quasi-linear map s is a solution of the pentagon
equation if and only if

(1) A = A2 (2) B = B2 (3) D2 = D

(4) [A,B] = 0 (5) BCB = [−D,A] (6) [B,D] = 0

(7) C 2 = −DCA (8) AC = C − BCA (9) CD = C − DCB.
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Quasi-affine solutions

Definition

Let G be a group. A map s : G × G → G × G is called quasi-affine if

s(x , y) = (A(x) + B(y) + u, C(x) + D(y) + v)

where A,B,C ,D ∈ End(G) and u, v ∈ G . If G is abelian, s is called affine.

Proposition

Let G be a group. Then a quasi-affine map s is a solution of the pentagon
equation if and only if conditions (1)-(9) of above Proposition are satisfied, C
and D are invertible and u = C−1D−1(−C − D)(v).
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P-involutive solutions

L. Jiang, M. Liu also characterized all P-involutive solutions.

Definition

Let G be a (additive) finite group and P ∈ End(G). A function
s : G × G −→ G × G is called P-involutive if

(σs)2 = P × P.

where σ : G × G −→ G × G , (x , y) 7→ (−x , y).
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Semisymmetric solutions

R. Kashaev in Full noncommutative discrete Liouville equation, RIMS (2011),
89–98 considers this type of solutions.

Definition

Let M be a set. A solution s : M ×M −→ M ×M is called semisymmetric if
there exists a map α : M −→ M such that

α3 = idM , sτ(α× idM)s = α× α

where τ is the flip map.

He gives solutions using groups with addition.
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Definition

A group G is called group with addition if it is provided with an associative and
commutative binary operation, called addition, with respect to which the group
multiplication is distributive.

The set of positive real numbers is naturally a group with addition as well
as its subgroup of positive rationals.

The group of integers Z is also a group with addition where the addition is
the maximum operation max(m, n).

An example of a non Abelian group with addition is given by the group of
upper-triangular real two-by-two matrices with positive reals on the
diagonal. The addition here is given by the usual matrix addition.
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Proposition

Let G be a group with addition and c ∈ G a central element. Then there exists
a set-theoretic semisymmetric solution s(x , y) = (x · y , x ∗ y) on G × G where

x · y = (x1, x2)(y1, y2) = (x1y1, x1y2 + x2)

and
x ∗ y = ((1 + y2x

−1
2 x1)−1y1, (1 + y2x

−1
2 x1)−1y2x

−1
2 ),

with α(x1, x2) = (cx−1
1 x2, x

−1
1 ).
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THANK YOU!
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