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Solutions of the YBE

Definition 1.1

Let X be a non-empty set. A set-theoretic solution of the
Yang-Baxter equation on X is a bijective map r : X × X → X × X
such that

r1r2r1 = r2r1r2,

where r1 = r × idX and r2 = idX × r are maps from X × X × X to
itself.

We write r(x , y) = (σx(y), γy (x)), for all x , y ∈ X .
The map r is involutive if r2 = idX 2 .
We say that r is non-degenerate if the maps σx , γx : X → X are
bijective, for all x ∈ X .
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Solutions of the YBE

Convention 1.2

By a solution of the YBE we mean an involutive non-degenerate
set-theoretic solution of the Yang-Baxter equation.

Let (X , r) be a solution of the YBE. Etingof, Schedler and Soloviev
[3] introduced the structure group associated to (X , r),

G (X , r) = 〈X | xy = σx(y)γy (x), ∀x , y ∈ X 〉,

where r(x , y) = (σx(y), γy (x)).
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Braces and the Yang-Baxter equation

In 2007 Rump [4] introduced braces as a generalization of radical
rings to study solutions of the YBE. The following definition is
equivalent to the original definition of Rump.

Definition 1.3

A left brace is a set B with two binary operations, + and ·, such
that (B ,+) is an abelian group, (B , ·) is a group, and for every
a, b, c ∈ B,

a · (b + c) + a = a · b + a · c .

Note that in a left brace B , 1 = 0 (taking a = 1 and b = c = 0 in
the above formula).
In any left brace B there is an action λ : (B , ·) → Aut(B ,+)
defined by λ(a) = λa and λa(b) = ab − a, for a, b ∈ B .
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Braces and the Yang-Baxter equation

Rump proved that each left brace B produces a solution of the
YBE: rB : B × B → B × B , rB(a, b) = (λa(b), λ

−1
λa(b)

(a)).

Definition 1.4

An ideal I of a left brace B is a normal subgroup I of the
multiplicative group of B such that λa(y) ∈ I for all a ∈ B and
y ∈ I .

It is easy to check that every ideal I of a left brace B also is a
subgroup of the additive group of B . Note that

a − b = bb−1a − b = λb(b
−1a),

thus a − b ∈ I if and only if b−1a ∈ I . Therefore the natural sum
and multiplication on B/I define a natural structure of left brace,
the quotient left brace of B modulo I .
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Braces and the Yang-Baxter equation

The socle of a left brace B is defined as the set

Soc(B) = {a ∈ B : λa = id} = {a ∈ B : a + b = ab for all b ∈ B}.

The socle of B is an ideal of B .
Let (X , r) be a solution of the YBE.
It is known that there exists a unique left brace structure over the
structure group G (X , r) such that the additive group of G (X , r) is
isomorphic to Z

(X ), and λx(y) = σx(y), for all x , y ∈ X .
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Garside monoid

Definition 2.1

A Garside monoid is a pair (M,∆) where M is a cancellative
monoid such that:

(1) there exists d : M −→ N satisfying d(ab) ≥ d(a) + d(b) and
a 6= 1 implies d(a) 6= 0,

(2) any two elements of M have a left- and a right-lcm and a left-
and a right-gcd,

(3) ∆ is a Garside element of M, this meaning that the left- and
right-divisors of ∆ coincide and generate M,

(4) the family of all divisors of ∆ in M is finite.
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Garside group

It is known that if (M,∆) is a Garside monoid, then M satisfies
the left and right Ore conditions. Thus it has left and right group
of fractions G = M−1M = MM−1.

Definition 2.2

A group G is said to be a Garside group if it is the (left) group of
fractions of a submonoid M and there exists ∆ ∈ M such that
(M,∆) is a Garside monoid.

In [1, Theoremm 3.3], Chouraqui proved that the structure group
of a finite solution of the YBE is a Garside group. We shall prove
this result using the natural structure of left brace of the structure
group of a solution of the YBE.
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Lemma 2.3

Let (X , r) be a finite solution of the YBE. Let
n = [G (X , r) : Soc(G (X , r))]. Let z be an integer. Let
∆z =

∑
x∈X zx. Then g∆z = g +∆z , for all g ∈ G (X , r). In

particular, ∆m
z = m∆z , for all integer m, and n∆z is a central

element of the structure group G (X , r).

Proof. Let g ∈ G (X , r). We have

g∆z = λg (∆z)+ g = λg (
∑

x∈X

zx)+ g =
∑

x∈X

zλg (x)+ g = ∆z + g .

The second part is a consequence of the first and the fact that
n∆z ∈ Soc(G (X , r)).
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Let (X , r) be a finite solution of the YBE. Let M(X , r) be the
submonoid of G (X , r) generated by X .

Lemma 2.4

M(X , r) = {
∑

x∈X zxx | zx ∈ N} and M(X , r)−1 = −M(X , r).

Proof. Let M = {
∑

x∈X zxx | zx ∈ N}. Note that λg (a) ∈ M, for
all g ∈ G (X , r) and all a ∈ M.
Every element of M(X , r) is of the form x1 · · · xm, with
x1, . . . , xm ∈ X . We shall prove that x1 · · · xm ∈ M by induction on
m. For m = 1 it is clear. Suppose that m > 1 and that
y1 · · · ym−1 ∈ M for all y1, . . . , ym−1 ∈ X . By the induction
hypothesis, x2 · · · xm ∈ M, and thus

x1 · · · xm = x1 + λx1(x2 · · · xm) ∈ M.

Hence M(X , r) ⊆ M.
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Let
∑

x∈X zxx ∈ M. We shall prove that
∑

x∈X zxx ∈ M(X , r) by
induction on t =

∑
x∈X zx . For t = 1 it is clear. Suppose that

t > 1 and that
∑

x∈X axx ∈ M(X , r) for all
∑

x∈X axx ∈ M with∑
x∈X ax < t. Since t > 1 there exists x0 ∈ X such that zx0 > 0.

Let a = −λ−1
x0

(x0) +
∑

x∈X zxλ
−1
x0

(x). Now we have that a ∈ M
and, by the induction hypothesis, a ∈ M(X , r). Thus

∑

x∈X

zxx = x0−x0+
∑

x∈X

zxx = x0λ
−1
x0

(−x0+
∑

x∈X

zxx) = x0a ∈ M(X , r).

Hence M = M(X , r).
Note that g−1 = −λg−1(g) and −g = λ(−g)−1(g)−1 for all

g ∈ G (X , r). Therefore M−1 = −M, and the result follows.
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Note that M(X , r) has a degree function

deg : M(X , r) −→ N

defined by deg(x1 · · · xm) = m, for all x1, . . . , xm ∈ X .

Lemma 2.5

Let a ∈ M(X , r). By Lemma 2.4, a =
∑

x∈X axx, for some ax ∈ N.
Then deg(a) =

∑
x∈X ax .

Proof. We will prove the result by induction on deg(a). If
deg(a) = 1, then a = x for some x ∈ X , and the result is clear.
Suppose that deg(a) = m > 1 and that the result is true for all
b ∈ M(X , r) with deg(b) < m. We have that a = x1 · · · xm, for
some x1, . . . , xm ∈ X .
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By the induction hypothesis,

x2 · · · xm =
∑

x∈X

bxx ,

for some bx ∈ N such that
∑

x∈X bx = m − 1. We have

a = x1 + λx1(x2 · · · xm)

= x1 + λx1(
∑

x∈X

bxx)

= x1 +
∑

x∈X

bxλx1(x).

Since λx1(x) ∈ X , for all x1, x ∈ X , the result follows.
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Lemma 2.6

Let a, b ∈ M(X , r) and c , d ∈ M(X , r)−1. By Lemma 2.4,

a =
∑

x∈X

axx , b =
∑

x∈X

bxx , c =
∑

x∈X

cxx and d =
∑

x∈X

dxx ,

for some ax , bx ,−cx ,−dx ∈ N. Then

(i) b−1a ∈ M(X , r) if and only if bx ≤ ax for all x ∈ X.

(i) c−1d ∈ M(X , r)−1 if and only if cx ≥ dx for all x ∈ X.
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Proof. (i) Note that

b−1a = b−1 + λb−1(a) = −λb−1(b) + λb−1(a) = λb−1(a − b).

Therefore b−1a ∈ M(X , r) if and only if a − b ∈ M(X , r) and the
result follows easily by Lemma 2.4.
(ii) As above c−1d = λc−1(d − c). Therefore c−1d ∈ M(X , r)−1 if
and only if d − c ∈ M(X , r)−1 and the result follows easily by
Lemma 2.4.
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Lemma 2.7

Any two elements of M(X , r) have a left- and a right-lcm and a
left- and a right-gcd.

Proof. Let a, b ∈ M(X , r). By Lemma 2.4

a =
∑

x∈X

axx and b =
∑

x∈X

bxx ,

for some ax , bx ∈ N. By Lemma 2.6 it is clear that the left-gcd of
a and b is

l-gcd(a, b) =
∑

x∈X

min(ax , bx)x ,

and that its right-lcm is

r-lcm(a, b) =
∑

x∈X

max(ax , bx)x .
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Now consider the monoid M(X , r)−1. Since
a−1, b−1 ∈ M(X , r)−1, by Lemma 2.4

a−1 =
∑

x∈X

a′xx and b−1 =
∑

x∈X

b′xx ,

for some non-positive integers a′x , b
′

x . By Lemma 2.6 it is clear
that the left-gcd of a−1 and b−1 in M(X , r)−1 is

l-gcd(a−1, b−1) =
∑

x∈X

max(a′x , b
′

x)x ,

and that its right-lcm is

r-lcm(a−1, b−1) =
∑

x∈X

min(a′x , b
′

x)x .
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Note that if d−1 = l-gcd(a−1, b−1), then d is the right-gcd of a
and b in M(X , r), and if m−1 = r-lcm(a−1, b−1), then m is the
left-lcm of a and b in M(X , r). Thus the result follows.

Theorem 2.8 (Chouraqui [1, Theorem 3.3])

Let (X , r) be a finite solution of the YBE. Let m be a positive
integer. Then (M(X , r),∆m) is a Garside monoid and thus
G (X , r) is a Garside group.

Proof. It is clear that the submonoid M(X , r) of G (X , r) is
cancellative. We have seen that M(X , r) has a degree function
deg. In particular condition (1) in the definition of Garside monoid
is satisfied.
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By Lemma 2.7, condition (2) in the definition of Garside monoid is
satisfied by M(X , r).
By Lemma 2.4, ∆m ∈ M(X , r) and, by Lemma 2.3, ∆−1

m = −∆m.
By Lemma 2.6, the set of left-divisors of ∆m in M(X , r) is

D1 = {
∑

x∈X

zxx | zx ∈ Z, 0 ≤ zx ≤ m, for all x ∈ X},

and the set of left-divisors of ∆−1
m in the monoid M(X , r)−1 is

D2 = {−
∑

x∈X

zxx | zx ∈ Z, 0 ≤ zx ≤ m, for all x ∈ X}.

Note that

(
∑

x∈X

zxx)
−1 = −λ(

∑
x∈X zxx)−1(

∑

x∈X

zxx) = −
∑

x∈X

zxλ(
∑

x∈X zxx)−1(x),

for all zx ∈ Z.
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Hence D−1
2 = D1. Thus the set of right-divisors of ∆m in M(X , r)

also is D1, which is finite and contains X . Therefore ∆m is a
Garside element of M(X , r). Hence (M(X , r),∆m) is a Garside
monoid, and clearly G (X , r) is its group of left (right) group of
fractions.

In [2] Dehornoy describes finite quotients of G (X , r) that play a
role similar to the role that Coxeter groups play for Artin-Tits
groups. This can be also done using the left brace structure of
G (X , r).
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Thank you for your attention!
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