The aim of this poster is to give a short introduction to
1. Hopf-Galois Structures
2. Skew Braces and 3, 4 their Relationship
5. Skew Braces and 7 Hopf-Galois Structures Classification
6. Automorphism Groups of Skew Braces and Examples
8. Skew Braces of Semi-direct Product Type

For simplicity we assume L/K is a Galois extension of fields with Galois group G.

1. Hopf-Galois Structures

A Hopf-Galois structure on L/K consists of a finite dimensional cocommutative K-Hopf algebra H together with an action on L which makes L into an H-Galois extension.

2. Skew Braces

a (left) skew brace is a triple (B, \oplus, \circ) which consists of a set B together with two operations \oplus and \circ such that (B, \oplus) and (B, \circ) are groups (neither necessarily abelian), and the two operations are related by the skew brace property:

$$a \circ (b \oplus c) = (a \circ b) \oplus (a \circ c)$$
for every $a, b, c \in B$, where \oplus is the inverse of a with respect to the operation \oplus. Braces were introduced by Rump in 2007. Many properties of braces were investigated by Bachiller, Cedó, Jespers, Okniński et al.

Skew braces, as a generalisation of braces, and their connections to other areas, were studied by Byott, Guarrini, Smoktunowicz, and Vendramin.

Notation: We call a G-skew brace of type N a skew brace (B, \oplus, \circ) such that $(B, \oplus) \cong N$ and $(B, \circ) \cong G$.

Skew Braces of Order p^3 for $p \geq 3$
The number of G-skew braces of type N, $e(G, N)$, is given by

<table>
<thead>
<tr>
<th>$e(G, N)$</th>
<th>C_p</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>5</td>
<td>$2p + 1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>$2p + 1$</td>
<td>$2p^2 - p - 1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>$4p + 1$</td>
<td>-</td>
<td>$4p^2 - 3p - 1$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note $e(G, N) = e(N, G)$.

3. From Hopf-Galois Structures to Skew Braces

- Suppose H endows L/K with a Hopf-Galois structure.
- Then $H = L[N]^G$ for some $N \subseteq \text{Perm}(G)$ which is a regular subgroup normalised by the left translations.
- The subgroup N is a regular implies that we have a bijection $\phi : N \to G$.
- $n \mapsto n \cdot 1_G$.
- Set $(B, \oplus) = N$ and define a new group operation by $n_1 \circ n_2 = \phi^{-1}(\phi(n_1) \phi(n_2))$ for $n_1, n_2 \in N$.
- The subgroup N is normalised by the left translations implies that (B, \oplus, \circ) is a G-skew brace of type N corresponding to H.

4. From Skew Braces to Hopf-Galois Structures

- Suppose (B, \oplus, \circ) is a G-skew brace of type N.
- The map $d : (B, \oplus) \to \text{Perm}(B, \circ)$ defined by $a \to (da : b \to a \circ b)$ is a regular embedding.
- The skew brace property implies that for all $a, b, c \in B$ $b \circ (da \circ b^{-1} c) = d(a \circ b^{-1}) c$, i.e., $bd_b b^{-1} = d(b \circ a) b^{-1}$.
- Thus $L[(B, \oplus)]^{(B, \circ)}$ endows L/K with a Hopf-Galois structure corresponding to the skew brace (B, \oplus, \circ).

Problem

The group Perm(G) can be large.

5. Classifying Skew Braces: working with holomorphs

For a skew brace (B, \oplus, \circ) the map $m : (B, \oplus) \to \text{Hol}(B, \oplus)$ defined by $a \to (ma : b \to a \circ b)$ is a regular embedding, where $\text{Hol}(B, \oplus) = (B, \oplus) \rtimes \text{Aut}(B, \circ)$. For $f : (B, \oplus, \circ_1) \to (B, \oplus, \circ_2)$ an isomorphism of skew braces, we have $(B, \circ_1) \cong (B, \circ_2)$ and f is the conjugation by f.

Classifying Skew Braces

To find the non-isomorphic G-skew braces of type N for a fixed N, classify elements of the set $\{H \subseteq \text{Hol}(N) \mid H \text{ is regular, } H \cong G\}$, and extract a maximal subset whose elements are not conjugate by any element of Aut(N).

6. Upshot: Automorphism Groups of Skew Braces

We find $\text{Aut}_{B_0}(B, \oplus, \circ) \cong \{a \in \text{Aut}(B, \oplus) \mid a | \text{Im} m \alpha \cong \text{Im} m \}$.

Example (Skew Braces of $C_p = \langle \sigma \mid \sigma^{p+1} = 1 \rangle$ type for $p \geq 3$ and $n > 1$)

$\text{Hol}(C_p) = \langle \sigma \mid \text{Im} m \rangle$ with $\text{Aut}_{B_0}(C_p)$ is given by $\langle \sigma^m \rangle$.

7. Finding Hopf-Galois Structures

Denote by B_0^G the isomorphism class of a G-skew brace of type N given by (B, \oplus, \circ). Then the number of Hopf-Galois structures on L/K of type N is given by

$$\sum_{B_0^G} \left| \frac{\text{Aut}(G)}{\text{Aut}_{B_0}(B_0^G)} \right|$$

Hopf-Galois Structures of Order p^3 for $p > 3$
The number of Hopf-Galois structures on L/K of type N, $e(G, N)$, is given by

<table>
<thead>
<tr>
<th>$e(G, N)$</th>
<th>C_p</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
<th>$C_p \times C_p$</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_p</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>9</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>5</td>
<td>$2p + 1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>$2p + 1$</td>
<td>$2p^2 - p - 1$</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>$C_p \times C_p$</td>
<td>$4p + 1$</td>
<td>-</td>
<td>$4p^2 - 3p - 1$</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Note $e(G, N) = e(N, G)$.