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Overview

The aim of the talk is to give an overview of

Hopf-Galois structures and their connection to skew braces

Automorphism groups of skew braces and examples

Hopf-Galois structures and skew braces of order p3

Skew braces of semi-direct product type



Hopf-Galois Structures

For simplicity we assume L/K is a Galois extension of fields with
Galois group G.

Definition

A Hopf-Galois structure on L/K consists of a finite dimensional
cocommutative K-Hopf algebra H together with an action on L
which makes L into an H-Galois extension.

The group algebra K[G] endows L/K with the classical
Hopf-Galois structure.



Hopf-Galois Structures: Motivations

Normal Basis Theorem

L is a free K[G]-module of rank one.

Assume L/K is an extension of global or local fields (e.g.,
extensions of Q or Qp).

Denote by OL and OK the rings of integers of L and K,
respectively.

Then OL is also a module over OK [G].

Can OL be free over OK [G]?
... No in general.



Hopf-Galois Structures: Applications

Suppose H endows L/K with a Hopf-Galois structure.

Define the associated order of OL in H by

AH = {α ∈ H | α (OL) ⊆ OL}.

Can OL be free over AH?
... Sometimes, and depends on H.

Need a classification of Hopf-Galois structures.

Hopf-Galois structures are also related to the set-theoretic
solutions of the QYBE via skew braces.



Hopf-Galois Structures:

A Theorem of Greither and Pareigis

Question

How to find all Hopf-Galois structures on L/K?

Theorem (Greither and Pareigis)

Hopf-Galois structures on L/K correspond bijectively to regular
subgroups of Perm(G) which are normalised by the image of G, as
left translations, inside Perm(G).

Every K-Hopf algebra which endows L/K with a Hopf-Galois
structure is of the form L[N ]G for some regular subgroup
N ⊆ Perm(G) normalised by the left translations.

Notation: The isomorphism type of N is known as the type of
the Hopf-Galois structure.



Hopf-Galois Structures: Some Results

� Byott (1996) showed if |G| = n, then L/K admits a unique
Hopf-Galois structure if and only if gcd (n, φ (n)) = 1.

� Kohl (1998) classified Hopf-Galois structures for G = Cpn for
a prime p > 2: there are pn−1, all are of cyclic type. Byott
(2007) studies G = C2n case.

� Byott (1996, 2004) studied the problem for |G| = p2, pq, also
when G is a nonabelian simple group.

� Carnahan and Childs (1999, 2005) studied Hopf-Galois
structures for G = Cn

p and G = Sn.

� Alabadi and Byott (2017) studied the problem for |G| is
squarefree.

� NZ (2017) Hopf-Galois structures for |G| = p3.



Skew Braces I

Definition

A (left) skew brace is a triple (B,⊕,�) which consists of a set B
together with two operations ⊕ and � such that (B,⊕) and
(B,�) are groups, and the two operations are related by the skew
brace property :

a� (b⊕ c) = (a� b)	 a⊕ (a� c) for every a, b, c ∈ B, (1)

where 	a is the inverse of a with respect to the operation ⊕.

Notation: We call a skew brace (B,⊕,�) such that (B,⊕) ∼= N
and (B,�) ∼= G a G-skew brace of type N .



From Skew Braces to Hopf-Galois Structures

Suppose (B,⊕,�) is a G-skew brace of type N .

The map

d : (B,⊕) −→ Perm (B,�)

a 7−→ (da : b 7−→ a⊕ b)

is a regular embedding.

The skew brace property implies that for all a, b, c ∈ B

b�
(
da
(
b−1 � c

))
= d(b�a)	b (c) i.e., bdab

−1 = d(b�a)	b.

Thus L[(B,⊕)](B,�) endows L/K with a Hopf-Galois
structure corresponding to the skew brace (B,⊕,�).



From Hopf-Galois Structures to Skew Braces

Suppose H endows L/K with a Hopf-Galois structure.

Then H = L[N ]G for some N ⊆ Perm(G) which is a regular
subgroup normalised the left translations.

N is a regular subgroup, implies that we have a bijection

φ :N −→ G

n 7−→ n · 1G.

Set (B,⊕) = N and define

n1 � n2 = φ−1 (φ (n1)φ (n2)) for n1, n2 ∈ N.

N is normalised by the left translations implies that
(B,⊕,�) is a G-skew brace of type N corresponding to H.



Skew Braces and Hopf-Galois Structures

Correspondence


isomorphism classes
of G-skew braces,

i.e., with (B,�) ∼= G

!


classes of Hopf-Galois structures
on L/K under L[N1]

G ∼ L[N2]
G

if N2 = αN1α
−1 for some

α ∈ Aut(G)





Skew Braces II

Problem

The group Perm(G) can be large.

Solution: working with holomorphs

For a skew brace (B,⊕,�) the map

m : (B,�) −→ Hol (B,⊕)

a 7−→ (ma : b 7−→ a� b)

is a regular embedding, where Hol (B,⊕) = (B,⊕) o Aut (B,⊕).
For f : (B,⊕,�1) −→ (B,⊕,�2) an isomorphism, we have

(B,�1) Hol (B,⊕)

(B,�2) Hol (B,⊕) Cf is conjugation by f .

m1

fo Cfo
m2



Skew Braces and Regular Subgroups of

Holomorph Correspondence

Bachiller, Byott, Vendramin:


isomorphism classes

of skew braces of
type N , i.e., with

(B,⊕) ∼= N

!


classes of regular subgroup of
Hol(N) under H1 ∼ H2 if
H2 = αH1α

−1 for some
α ∈ Aut(N)





Upshot: Automorphism Groups of Skew Braces

In particular, if f : (B,⊕,�) −→ (B,⊕,�) is an automorphism,
then we have

(B,�) Hol (B,⊕)

(B,�) Hol (B,⊕) ;

m

fo Cfo

m

using this observation we find

AutBr (B,⊕,�) ∼=
{
α ∈ Aut (B,⊕) | α (Imm)α−1 ⊆ Imm

}
.



Skew Braces of Cpn type

Example

Let p > 2, n > 1, and Cpn =
〈
σ | σpn = 1

〉
. Then

Hol (Cpn) = 〈σ〉o 〈β, γ〉

with β (σ) = σp+1. Then the trivial (skew) brace is 〈σ〉, and the
nontrivial (skew) braces are given by〈

σβp
m〉 ∼= Cpn for m = 0, ..., n− 2.

We also have

AutBr
(〈
σβp

m〉)
=
〈
βp

n−m−1
〉

for m = 0, ..., n− 2.



Classifying Skew Braces and Hopf-Galois

Structures

Skew braces

To find the non-isomorphic G-skew braces of type N for a fixed
N , classify elements of the set

S(G,N) = {H ⊆ Hol (N) | H is regular, H ∼= G},

and extract a maximal subset whose elements are not conjugate
by any element of Aut (N).



Classifying Skew Braces and Hopf-Galois

Structures

Hopf-Galois structures

Denote by BN
G the isomorphism class of a G-skew brace of type

N given by (B,⊕,�). Then the number of Hopf-Galois
structures on L/K of type N is given by

e(G,N) =
∑
BN

G

|Aut (G)|
|AutBr (BN

G )|
. (2)



Skew Braces of Order p3 for p > 3

The number of G-skew braces of type N , ẽ(G,N), is given by

ẽ(G,N) Cp3 Cp2 × Cp C3
p C2

p o Cp Cp2 o Cp
Cp3 3 - - - -

Cp2 × Cp - 9 - - 4p+ 1

C3
p - - 5 2p+ 1 -

C2
p o Cp - - 2p+ 1 2p2 − p− 3 -

Cp2 o Cp - 4p+ 1 - - 4p2 − 3p− 1

Remark

Note
ẽ(G,N) = ẽ(N,G).



Hopf-Galois Structures of Order p3 for p > 3

The number of Hopf-Galois structures on L/K of type N ,
e(G,N), is given by

e(G,N) C
p3

C
p2

× Cp C3
p C2

p o Cp C
p2

o Cp

C
p3

p2 - - - -

C
p2

× Cp - (2p − 1)p2 - - (2p − 1)(p − 1)p2

C3
p - - (p4 + p3 − 1)p2 (p3 − 1)(p2 + p − 1)p2 -

C2
p o Cp - - (p2 + p − 1)p2 (2p3 − 3p2 + 1)p2 -

C
p2

o Cp - (2p − 1)p2 - - (2p − 1)(p − 1)p2

Remark

Note p2 | e(G,N) and

e(G,N) =
|Aut(G)|
|Aut(N)|

e(N,G).



Skew Braces of Semi-direct Product Type

Question

How general is the pattern?

Partial Explanation

Let P and Q be groups. Suppose α, β : Q −→ Aut(P ) are
group homomorphisms such that Im β is an abelian group
and [Imα, Im β] = 1.

We can form an (P oα Q)-skew brace of type P oβ Q.

We also find an (P oβ Q
op)-skew brace of type P oα Q.

What is the relationship between ẽ(G,N) and ẽ(N,G)
for N which is a general extensions of two groups?



Thank you for your attention!
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