Marco

Indecomposab left cycle sets

characterization of the indecomposable

ъ.

Indecomposable left cycle sets

Marco Castelli University of Salento

Noncommutative and non-associative structures, braces and applications

11-15 March, Malta

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Lxampics

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- (3) $r_1r_2r_1 = r_2r_1r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Indecomposable left cycle sets

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Examples

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- (3) $r_1 r_2 r_1 = r_2 r_1 r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Poforonco

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- $(3) r_1 r_2 r_1 = r_2 r_1 r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

D-f----

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- (3) $r_1r_2r_1 = r_2r_1r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Examples

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- (3) $r_1r_2r_1 = r_2r_1r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

References

Definition

Let X be a non-empty set, $r: X \times X \to X \times X$ a map and write

$$r(x,y) = (\lambda_x(y), \rho_y(x))$$

for all $x, y \in X$.

Then (X, r) is said to be a non-degenerate involutive set-theoretic solution of the Yang-Baxter equation if and only if the following properties hold:

- (1) $r^2 = id_{X^2}$; (r is involutive)
- (2) $\lambda_x, \rho_x \in Sym_X$ for all $x \in X$; (r is non degenerate)
- (3) $r_1r_2r_1 = r_2r_1r_2$

where $r_1 = r \times id_X$ and $r_2 = id_X \times r$.

Indecomposable left cycle sets

In the study of all the solutions, the indecomposable solutions play a key-role.

Definition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A solution (X, r) is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$ with $r(Y \times Y) \subseteq Y \times Y$ and $r(Z \times Z) \subseteq Z \times Z$, such that the restrictions of r to $Y \times Y$ and $Z \times Z$ are again non-degenerate.

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Definition (Rump, 2005)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x: X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$;
- 3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

We will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$.

Indecomposable left cycle sets

Definition (Rump, 2005)

A pair (X, \cdot) is said a non-degenerate left cycle set if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Definition (Rump, 2005)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x: X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$;
- 3) $q: X \longrightarrow X, x \longmapsto x \cdot x$ is bijective.

We will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be decomposable if there exists a non trivial partition $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Zxampic

Definition (Rump, 2005)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x: X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$;
- 3) $\mathfrak{q}: X \longrightarrow X, \ x \longmapsto x \cdot x$ is bijective.

We will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be decomposable if there exists a non trivial partition $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$.

Marco Castel

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Definition (Rump, 2005)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x: X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$;
- 3) $q: X \longrightarrow X$, $x \longmapsto x \cdot x$ is bijective.

We will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$, such that $\sigma_X(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_X(Z) \subseteq (Z)$, for all $x \in Z$.

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Lxample:

Definition (Rump, 2005)

A pair (X, \cdot) is said a *non-degenerate left cycle set* if X is a non-empty set, and \cdot a binary operation on X such that

- 1) $(x \cdot y) \cdot (x \cdot z) = (y \cdot x) \cdot (y \cdot z)$ for all $x, y, z \in X$;
- 2) the left multiplication $\sigma_x: X \longrightarrow X$, $y \longmapsto x \cdot y$ is bijective for every $x \in X$;
- 3) $\mathfrak{q}: X \longrightarrow X, \ x \longmapsto x \cdot x$ is bijective.

We will call (X, \cdot) square-free if $\mathfrak{q} = id_X$.

Definition (Rump, 2005)

A non-degenerate left cycle set X is said to be *decomposable* if there exists a non trivial partition $X = Y \cup Z$, such that $\sigma_x(Y) \subseteq Y$ for all $x \in Y$ and $\sigma_x(Z) \subseteq (Z)$, for all $x \in Z$. Otherwise it is called *indecomposable*.

Indecomposable left cycle sets

characterization of the

Evamol

Theorem (Rump, 2005)

If (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then (X, \cdot) is its **left cycle set associated** defined by

$$\sigma_{\mathsf{x}} := \lambda_{\mathsf{x}}^{-1}$$

for every $x \in X$.

Vice versa if (X, \cdot) is a left non-degenerate cycle set and σ_X its left multiplication then, for all $x, y \in X$

$$r(x,y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$$

is its associated solution

Furthermore, a solution (X, r) is indecomposable if and only if the associated left cycle set is indecomposable.

Indecomposable left cycle sets

characterization of the indecomposable

Example

Reference

Theorem (Rump, 2005)

If (X, r) is a solution, where $r(x, y) := (\lambda_x(y), \rho_y(x))$ then (X, \cdot) is its **left cycle set associated** defined by

$$\sigma_{\mathsf{x}} := \lambda_{\mathsf{x}}^{-1}$$

for every $x \in X$.

Vice versa if (X, \cdot) is a left non-degenerate cycle set and σ_x its left multiplication then, for all $x, y \in X$

$$r(x, y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$$

is its associated solution.

Furthermore, a solution (X, r) is indecomposable if and only if the associated left cycle set is indecomposable.

Indecomposable left cycle sets

characterization of the indecomposable dynamical

Example

Reference

Theorem (Rump, 2005)

If (X,r) is a solution, where $r(x,y) := (\lambda_x(y), \rho_y(x))$ then (X,\cdot) is its **left cycle set associated** defined by

$$\sigma_{\mathsf{x}} := \lambda_{\mathsf{x}}^{-1}$$

for every $x \in X$.

Vice versa if (X, \cdot) is a left non-degenerate cycle set and σ_X its left multiplication then, for all $x, y \in X$

$$r(x, y) := (\sigma_x^{-1}(y), \sigma_x^{-1}(y) \cdot x)$$

is its associated solution.

Furthermore, a solution (X, r) is indecomposable if and only if the associated left cycle set is indecomposable.

Indecomposable left cycle sets

Definition

Let X be a non-degenerate left cycle set, and $\sigma: X \to Sym_X$, $x \mapsto \sigma_x$. We denote by $\mathcal{G}(X)$ the subgroup of Sym_X generated by the image $\sigma(X)$ of σ and we call it the **associated permutation group**.

	1	2		4
1	2	1	4	
2	4		2	1
	2	1	4	
4	4		2	1

Indecomposable left cycle sets

Definition

Let X be a non-degenerate left cycle set, and $\sigma: X \to Sym_X$, $x \mapsto \sigma_x$. We denote by $\mathcal{G}(X)$ the subgroup of Sym_X generated by the image $\sigma(X)$ of σ and we call it the **associated permutation group**.

Example

Let X be the cycle set given by

•	1	2	3	4
1	2	1	4	3
2	4	3	2	1
1 2 3	2	3 1 3	4	3
4	2 4 2 4	3	2	1

Then X is an indecomposable left cycle set and the group $\mathcal{G}(X)$ is the Klein group.

Marce Castel

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Referenc

Theorem (Rump, 2005)

Every indecomposable finite left cycle set is not square-free.

Recall that a non-degenerate left cycle set is *square-free* if $\mathfrak{q}: X \to X$, $x \mapsto x \cdot x$ is such that $\mathfrak{q} = id_X$.

Theorem (P. Etingof, T.Schedler, A.Soloviev, 1999)

Let X be an indecomposable left cycle set of cardinality a prime number p. Then X is isomorphic to the left cycle set $(\mathbb{Z}/p\mathbb{Z},\cdot)$ given by $x\cdot y:=y+1$ for every $x,y\in\mathbb{Z}/p\mathbb{Z}$.

Indecomposable left cycle sets

A characterization of the indecomposable dynamical

Example

. . .

Theorem (Rump, 2005)

Every indecomposable finite left cycle set is not square-free.

Recall that a non-degenerate left cycle set is *square-free* if $\mathfrak{q}: X \to X$, $x \mapsto x \cdot x$ is such that $\mathfrak{q} = id_X$.

Theorem (P. Etingof, T.Schedler, A.Soloviev, 1999)

Let X be an indecomposable left cycle set of cardinality a prime number p. Then X is isomorphic to the left cycle set $(\mathbb{Z}/p\mathbb{Z},\cdot)$ given by $x\cdot y:=y+1$ for every $x,y\in\mathbb{Z}/p\mathbb{Z}$.

> Marco Castell

Indecomposable left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Reference

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Example

Let $X := \{1, 2, 3, 4, 5, 6, 7, 8\}$ be the left cycle set given by

$$\sigma_1 := (46) \quad \sigma_2 := (35)$$

$$\sigma_3 := (28) \quad \sigma_4 := (17)$$

$$\sigma_5 := (13427568) \quad \sigma_6 := (18657243)$$

$$\sigma_7 := (12457863)$$
 $\sigma_8 := (13687542)$

X is an indecomposable left cycle set: indeed, $\mathcal{G}(X)$ contains the 8-cycle σ_5 .

Indecomposable left cycle sets

characterization of the indecomposable dynamical extensions

Lampic

Reference

Proposition (P. Etingof, T.Schedler, A.Soloviev, 1999)

A non-degenerate left cycle set X is indecomposable if and only if the associated permutation group $\mathcal{G}(X)$ is transitive on X.

Example

Let $X := \{1, 2, 3, 4, 5, 6, 7, 8\}$ be the left cycle set given by

$$\sigma_1 := (46) \quad \sigma_2 := (35)$$

$$\sigma_3 := (28) \quad \sigma_4 := (17)$$

$$\sigma_5 := (13427568) \quad \sigma_6 := (18657243)$$

$$\sigma_7 := (12457863)$$
 $\sigma_8 := (13687542)$

X is an indecomposable left cycle set: indeed, $\mathcal{G}(X)$ contains the 8-cycle σ_5 .

> Marco Castel

Indecomposab

A characterization of the indecomposable dynamical extensions

Example

Reference

Definition (Vendramin, 2015)

Let X be a left cycle set, S a non-empty set and $\alpha: X \times X \times S \longrightarrow Sym(S)$, $(i,j,s) \mapsto \alpha_{i,j}(s,-)$. Then α is said **dynamical cocycle** of X if and only if

$$\alpha_{i,j,i,k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j,i,j,k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

$$(s,i)\cdot(t,j):=(\alpha_{i,j}(s,t),i\cdot j),$$

and we will call $S \times_{\alpha} X$ dynamical extension of X by α . Moreover, $S \times_{\alpha} X$ is said trivial if |X| = 1 or |S| = 1.

> Marco Castel

Indecomposab left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Reference

Definition (Vendramin, 2015)

Let X be a left cycle set, S a non-empty set and $\alpha: X \times X \times S \longrightarrow Sym(S)$, $(i,j,s) \mapsto \alpha_{i,j}(s,-)$. Then α is said **dynamical cocycle** of X if and only if

$$\alpha_{i,j,i,k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j,i,j,k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

$$(s,i)\cdot(t,j):=(\alpha_{i,j}(s,t),i\cdot j),$$

and we will call $S \times_{\alpha} X$ dynamical extension of X by α . Moreover, $S \times_{\alpha} X$ is said trivial if |X| = 1 or |S| = 1.

> Marco Castell

Indecomposab left cycle sets

A characterization of the indecomposable dynamical extensions

Example

Reference

Definition (Vendramin, 2015)

Let X be a left cycle set, S a non-empty set and $\alpha: X \times X \times S \longrightarrow Sym(S)$, $(i,j,s) \mapsto \alpha_{i,j}(s,-)$. Then α is said **dynamical cocycle** of X if and only if

$$\alpha_{i,j,i,k}(\alpha_{i,j}(r,s),\alpha_{i,k}(r,t)) = \alpha_{j,i,j,k}(\alpha_{j,i}(s,r),\alpha_{j,k}(s,t)).$$

for every $i, j, k \in X$, $s, t \in S$.

Proposition (Vendramin, 2015)

If α is a dynamical cocycle then $S \times_{\alpha} X := (S \times X, \cdot)$ is a left cycle set, where

$$(s,i)\cdot(t,j):=(\alpha_{i,j}(s,t),i\cdot j),$$

and we will call $S \times_{\alpha} X$ dynamical extension of X by α . Moreover, $S \times_{\alpha} X$ is said trivial if |X| = 1 or |S| = 1.

> Marco Castel

Indecomposal left cycle sets

characterization of the indecomposable dynamical extensions

Example

References

Let $S \times_{\alpha} X$ be a dynamical extension of X by α .

Proposition (M. C., F. Catino, G. Pinto, submitted)

For every $i \in X$ let H_i be the subgroup of $\mathcal{G}(S \times_{\alpha} X)$ given by

$$H_i := \{ h \in \mathcal{G}(S \times_{\alpha} X) \mid \forall s \in S \mid h(s, i) \in S \times \{i\} \}.$$

Then $S \times_{\alpha} X$ is indecomposable if and only if X is indecomposable and H_i is transitive on $S \times \{i\}$ for some $i \in X$.

Marce Castel

Indecomposal left cycle sets

characterization of the indecomposable dynamical extensions

Examples

Reference

A large family of dynamical extensions is obtained by M. C., Francesco Catino and Giuseppina Pinto.

Let I be a left non-degenerate cycle set, A, B non-empty sets, $\gamma: B \longrightarrow Sym(A), \ \beta: A \times A \times I \longrightarrow Sym(B)$ and $S:= A \times B$. Let $\alpha: I \times I \times S \longrightarrow Sym(S)$ be the function given by

$$\alpha_{i,j}((a,b),(c,d)) := \begin{cases} (c,\beta_{(a,c,i)}(d)), & \text{if } i=j\\ (\gamma_b(c),d), & \text{if } i\neq j \end{cases}.$$

for all $(i, j, (a, b)) \in I \times I \times S$ and $(c, d) \in S$.

> Marco Castel

Indecomposab left cycle sets

characterization of the indecomposable dynamical extensions

Examples

Reference

Theorem (M. C., F. Catino, G. Pinto, 2017)

If $\gamma: B \longrightarrow \mathit{Sym}(A)$ and $\beta: A \times A \times I \longrightarrow \mathit{Sym}(B)$ are such that

- $1) \gamma_b \gamma_d = \gamma_d \gamma_b,$
- 2) $\beta_{(a,c,i)} = \beta_{(\gamma_b(a),\gamma_b(c),j\cdot i)}$,
- 3) $\gamma_{\beta(a,c,i)}(d)\gamma_b = \gamma_{\beta(c,a,i)}(b)\gamma_d$,
- 4) $\beta_{(a,c,i\cdot i)}\beta_{(a',c,i)}=\beta_{(a',c,i\cdot i)}\beta_{(a,c,i)}$

hold for all $a, a', c \in A$, $b, d \in B$ and $i, j \in I$, $i \neq j$, then α is a dynamical cocycle and hence $S \times_{\alpha} I$ is a non-degenerate left cycle set.

Indecomposab left cycle sets

characterization of the indecomposable dynamical extensions

Examples

Reference

Example

Let $A=B:=\mathbb{Z}/2\mathbb{Z}$, $I:=\{1,2\}$ the left cycle set given by $\sigma_1=\sigma_2:=(12),\ \gamma:B\longrightarrow \mathit{Sym}(A)$ and $\beta:A\times A\times I\longrightarrow \mathit{Sym}(B)$ given by

$$\gamma_c := t_{-c-1}$$
 $\beta_{(a,a,i)} := id_B$ $\beta_{(a,b,i)} := (1 2)$

for all $a, b \in A$, $a \neq b$, $c \in B$, $i \in I$, where $t_c(x) := x + c$ for all $x, c \in \mathbb{Z}/2\mathbb{Z}$.

Then $(A \times B) \times_{\alpha} I$ is indecomposable: indeed H_1 is isomorphic to $Sym(A \times B \times \{1\}) \cong Sym(4)$ and I is indecomposable.

Marce Castel

Indecomposat left cycle sets

characterization of the indecomposable dynamical

Examples

Reference

Example

Let I be an indecomposable left cycle set and $A = B := \mathbb{Z}/k\mathbb{Z}$. Put

$$\beta_{(a,a,i)} := id_A$$
 $\beta_{(a,b,i)} := t_1$ $\gamma_a := t_{-a-1}$

for all $i \in I$ and $a \in A$, $b \in B$, $a \neq b$ where $t_a(x) := x + a$ for all $x, a \in \mathbb{Z}/k\mathbb{Z}$.

Then $(A \times B) \times_{\alpha} I$ is an indecomposable left cycle set of cardinality $|I|k^2$.

Marco

Indecomposab left cycle sets

characterization of the indecomposable dynamical extensions

References

- D. Bachiller, F. Cedó, E. Jespers, J. Okniński, *A family of irretractable square-free solutions of Yang-Baxter equation*, Forum Math., **29**(2017), 1291-1306.
- M. Castelli, F. Catino, G. Pinto, A new family of irretractable set-theoretic solutions of the Yang-Baxter equation, Comm. in Algebra (accepted).
- M. Castelli, F. Catino, G. Pinto, *Indecomposable set-theoretic solutions of the Yang-Baxter equation*, submitted.
- P. Etingof, T. Schedler, A. Soloviev, *Set-theoretic solutions to the quantum Yang-Baxter equation*, Duke Math. J. **100** (1999), 169-209.
- W. Rump, A decomposition theorem for square-free unitary solutions of the quantum Yang-Baxter equation, Adv. Math. 193 (2005), 40-55
- L. Vendramin, Extensions of set-theoretic solutions of the Yang-Baxter equation and a conjecture of Gateva-Ivanova, J. Pure Appl. Algebra **220** (2016), 2064–2072.

> Marco Castel

Indecomposab

left cycle sets

characterization of the

dynamical extensions

Example

References

THANKS FOR YOUR ATTENTION!