Contraction Algebras and their Properties

Michael Wemyss

www.maths.gla.ac.uk/~mwemyss

The Geometric Setup

Consider C, a single contractible curve in a smooth CY 3-fold X. In cartoons, this means

The Geometric Setup

Consider C, a single contractible curve in a smooth CY 3-fold X. In cartoons, this means

The basic idea of this talk:

$$C \text{ in } X \xrightarrow{\text{associate}} \text{ an algebra } A_{\text{con}}$$

There are four ways of constructing this algebra.

1. Deformation Theory

There are four ways of constructing this algebra.

1. Deformation Theory

There are four ways of constructing this algebra.

1. Deformation Theory

There are four ways of constructing this algebra.

1. Deformation Theory

There are four ways of constructing this algebra.

1. Deformation Theory

Probing how the curve *deforms* is one way to obtain good information about its behaviour.

Noncommutative Deformation Theory (Laudal, Segal, ELO): there is a functor, giving rise to a noncommutative algebra...

...which is very difficult to control.

...which is very difficult to control.

Via various isomorphisms (Donovan–W), it is possible to view A_{con} in the following, explicit, form.

4. Superpotential Algebras

There exists an $f \in \mathbb{C}\langle x, y \rangle$ such that

$$A_{\operatorname{con}} \cong \frac{\mathbb{C}\langle x, y \rangle}{(\delta_x f, \delta_y f)} = J_f$$

where δ_x is the formal derivative with respect to x etc.

...which is very difficult to control.

Via various isomorphisms (Donovan–W), it is possible to view A_{con} in the following, explicit, form.

4. Superpotential Algebras

There exists an $f \in \mathbb{C}\langle x, y \rangle$ such that

$$A_{\operatorname{con}} \cong \frac{\mathbb{C}\langle x, y \rangle}{(\delta_x f, \delta_y f)} = J_f$$

where δ_x is the formal derivative with respect to x etc.

Calibration: if $f = x^4 + xyy + yxy + yyx$, then

$$\delta_x f = x^3 + y^2$$
 and $\delta_y f = xy + yx$.

<ロト < 回 ト < 目 ト < 目 ト < 目 ト 目 の Q () 3/9

The Contraction Theorem

Recall our setup:

The Contraction Theorem

Recall our setup:

Theorem (Donovan–W)

- 1. Situation $\textcircled{1} \iff A_{con}$ is finite dimensional.
- $2.\ A_{\rm con}$ controls the symmetries, in both situations.

The Two Main Conjectures

Rest of talk: situation ① (i.e. flopping contractions).

The Classification Problem (Donovan–W)

Let $X \to \operatorname{Spec} R$ and $Y \to \operatorname{Spec} S$ be two 3-fold flops, with associated contraction algebras A_{con} and B_{con} . Then

$$X \sim Y \iff A_{\rm con} \cong B_{\rm con}$$

The Two Main Conjectures

Rest of talk: situation ① (i.e. flopping contractions).

The Classification Problem (Donovan–W)

Let $X \to \operatorname{Spec} R$ and $Y \to \operatorname{Spec} S$ be two 3-fold flops, with associated contraction algebras A_{con} and B_{con} . Then

$$X \sim Y \iff A_{\operatorname{con}} \cong B_{\operatorname{con}}.$$

The Realisation Problem (Brown–W)

Every finite dimensional superpotential algebra

$$J_f = \frac{\mathbb{C}\langle\!\langle x, y \rangle\!\rangle}{(\delta_x f, \delta_y f)}$$

can be constructed as the contraction algebra of some 3-fold flop.

Strange Behaviour 1

First, consider the following six algebras:

$$\mathbb{C}, \quad \frac{\mathbb{C}\langle x, y, z \rangle}{x + y + z = 0}, \quad \frac{\mathbb{C}\langle x, y, z \rangle}{x + y + z = 0}, \quad \frac{\mathbb{C}\langle x, y, z \rangle}{x + y + z = 0}, \\
x^2 = 0 & x^2 = 0 & x^2 = 0 \\
y^2 = 0 & y^3 = 0 & y^3 = 0 \\
z^2 = 0 & z^3 = 0 & z^4 = 0
\end{array}$$

$$\frac{\mathbb{C}\langle x, y, z \rangle}{x + y + z^2 = 0}, \qquad \frac{\mathbb{C}\langle x, y, z \rangle}{x + y + z = 0}, \\ \max y \qquad x^2 = 0 \\ y^3 = 0 \\ z^5 = 0$$

These have dimensions 1, 4, 12, 24, 40 and 60 respectively.

 Now, consider the centre of $J_f \cong A_{con}$, with basis

$$\{1=c_1,c_2,\ldots,c_n\}.$$

Consider a generic central element $s = \sum_i \lambda_i c_i$, which means that (λ_i) belongs to a Zariski open subset of \mathbb{A}^n .

Now, consider the centre of $J_f \cong A_{con}$, with basis

$$\{1=c_1,c_2,\ldots,c_n\}.$$

Consider a generic central element $s = \sum_i \lambda_i c_i$, which means that (λ_i) belongs to a Zariski open subset of \mathbb{A}^n .

Theorem (Donovan–W)

 $A_{\rm con}/(s)$ is isomorphic to one of the six algebras on the last slide.

Label the cases $\ell = 1, ..., 6$ (where $\ell = 1$ corresponds to the algebra of dimension one, and $\ell = 6$ the algebra of dimension 60).

Strange Behaviour 2

Theorem (Hua–Toda)

There is an equality

$$\dim_{\mathbb{C}} A_{\operatorname{con}} = \underbrace{\dim_{\mathbb{C}} A_{\operatorname{con}}^{ab}}_{n_1} + \sum_{i=2}^{\ell} n_i \cdot i^2,$$

where ℓ is determined by the last slide, such that all $n_i \neq 0$.

The n_i are called the Gopakumar–Vafa (GV) invariants.

The GV invariants are a property of the isomorphism class of A_{con} , but it is still not known how to extract them intrinsically.

Upshot

Given $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$ with dim_{\mathbb{C}} $J_f < \infty$, the conjectures (and numerical evidence!) *predict* the following algebraic statements:

- A generic central cut J_f/(s) is one of six algebras, so there is an ADE-type classification of such J_f.
- The dimension of J_f is a sum of squares,

$$\dim_{\mathbb{C}} J_f = \dim_{\mathbb{C}} J_f^{ab} + n_2 \cdot 2^2 + \ldots + n_\ell \cdot \ell^2$$

with all $n_i \neq 0$.

• J_f is a symmetric algebra $(Hom_{\mathbb{C}}(J_f, \mathbb{C}) \cong J_f$ as bimodules).

Upshot

Given $f \in \mathbb{C}\langle\!\langle x, y \rangle\!\rangle$ with dim_{\mathbb{C}} $J_f < \infty$, the conjectures (and numerical evidence!) *predict* the following algebraic statements:

- ► A generic central cut J_f/(s) is one of six algebras, so there is an ADE-type classification of such J_f.
- The dimension of J_f is a sum of squares,

$$\dim_{\mathbb{C}} J_f = \dim_{\mathbb{C}} J_f^{ab} + n_2 \cdot 2^2 + \ldots + n_\ell \cdot \ell^2$$

with all $n_i \neq 0$.

- J_f is a symmetric algebra $(Hom_{\mathbb{C}}(J_f, \mathbb{C}) \cong J_f$ as bimodules).
- Furthermore, 3-fold flops are classified by certain elements in the free algebra in two variables.