Lie solvability in matrix algebras

Michał Ziembowski

Warsaw University of Technology

Noncommutative and non-associative structures, braces and applications

Malta, March 12, 2018

Based on a joint works with J. van den Berg, J. Szigeti and L. van Wyk

• Problem: Give an example of a subalgebra of $M_n(F)$ which is commutative.

- Problem: Give an example of a subalgebra of $M_n(F)$ which is commutative.
- Take any pair (k_1, k_2) of positive integers satisfying $k_1 + k_2 = n$ and consider

- Problem: Give an example of a subalgebra of $M_n(F)$ which is commutative.
- Take any pair (k_1, k_2) of positive integers satisfying $k_1 + k_2 = n$ and consider

• $R = FI_n + J$

•
$$R = FI_n + J$$

•
$$R = FI_n + J$$

•
$$dim_F(R) = 1 + k_1 k_2$$

- $R = FI_n + J$
- $dim_F(R) = 1 + k_1 k_2$
- (Schur 1905, Jacobson 1944) The dimension over a field F of any commutative subalgebra of $\mathbb{M}_n(F)$ is at most $\left\lfloor \frac{n^2}{4} \right\rfloor + 1$, where $|\cdot|$ is the floor function.

$$R = FI_n + J$$

- $dim_F(R) = 1 + k_1 k_2$
- (Schur 1905, Jacobson 1944) The dimension over a field F of any commutative subalgebra of $\mathbb{M}_n(F)$ is at most $\left\lfloor \frac{n^2}{4} \right\rfloor + 1$, where $\lfloor \ \rfloor$ is the floor function.
- Commutativity:

$$\forall r, s \in R, [r, s] \stackrel{\text{def}}{=} rs - sr.$$

Define inductively the Lie central and Lie derived series of a ring R as follows:

$$\mathfrak{C}^0(R) := R, \ \mathfrak{C}^{q+1}(R) := [\mathfrak{C}^q(R), R] \text{ (central series)},$$
 (1)

and

$$\mathfrak{D}^0(R) := R, \ \mathfrak{D}^{q+1}(R) := [\mathfrak{D}^q(R), \mathfrak{D}^q(R)] \text{ (derived series)}. \tag{2}$$

We say that R is Lie nilpotent (respectively, Lie solvable) of index q (for short, R is Ln_q ; respectively, R is Ls_q) if $\mathfrak{C}^q(R)=0$ (respectively, $\mathfrak{D}^q(R)=0$).

• Let $k_1, k_2, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_1 + k_2 + \cdots + k_{m+1} = n$.

- Let $k_1, k_2, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_1 + k_2 + \cdots + k_{m+1} = n$.
- Let

- Let $k_1, k_2, \ldots, k_{m+1}$ be a sequence of positive integers such that $k_1 + k_2 + \cdots + k_{m+1} = n$.
- Let

• Let $R = FI_n + J$ ("TYPICAL EXAMPLE")

$$\dim_{\mathsf{F}} R = k_1(n-k_1) + k_2(n-k_1-k_2) + \cdots + k_m(n-k_1-k_2-\cdots-k_m) + 1$$
$$= \sum_{i,j=1, i < j}^{m+1} k_i k_j + 1.$$

•

$$M(\ell, n) \stackrel{\mathrm{def}}{=} \max \left\{ \sum_{i,j=1,\,i < j}^{\ell} k_i k_j + 1 : k_1, k_2, \dots, k_\ell \text{ are } \right\}$$

•

nonnegative integers such that
$$\sum_{i=1}^{\ell} k_i = n$$
.

$$M(\ell, n) \stackrel{\mathrm{def}}{=} \max \left\{ \sum_{i,j=1, i < j}^{\ell} k_i k_j + 1 : k_1, k_2, \dots, k_\ell \text{ are } \right\}$$

nonnegative integers such that $\sum_{i=1}^{\ell} k_i = n$.

• If ℓ and n are positive integers with $\ell > n$, then $M(\ell, n) = \frac{1}{2} (n^2 - n) + 1$.

$$M(\ell, n) \stackrel{\text{def}}{=} \max \left\{ \sum_{i,j=1, i < j}^{\ell} k_i k_j + 1 : k_1, k_2, \dots, k_\ell \text{ are } \right\}$$

nonnegative integers such that $\sum_{i=1}^{\ell} k_i = n$.

- If ℓ and n are positive integers with $\ell > n$, then $M(\ell, n) = \frac{1}{2}(n^2 n) + 1$.
- Let $\ell \leqslant n$ and

$$n = \left| \frac{n}{\ell} \right| \ell + r.$$

$$M(\ell, n) \stackrel{\mathrm{def}}{=} \max \left\{ \sum_{i,j=1,\, i < j}^{\ell} k_i k_j + 1 : k_1, k_2, \dots, k_\ell \text{ are }
ight.$$

nonnegative integers such that $\sum_{i=1}^{\ell} k_i = n$.

- If ℓ and n are positive integers with $\ell > n$, then $M(\ell, n) = \frac{1}{2} (n^2 n) + 1$.
- Let $\ell \leqslant n$ and

$$n = \left\lfloor \frac{n}{\ell} \right\rfloor \ell + r.$$

• We get $M(\ell, n)$ for the sequence $(k_1, k_2, \dots, k_\ell) \in \mathbb{N}_0^\ell$ defined in the following way:

$$k_i \stackrel{\mathrm{def}}{=} \left\{ \begin{bmatrix} \left\lfloor \frac{n}{\ell} \right\rfloor, \text{ for } 1 \leqslant i \leqslant \ell - r \\ \left\lfloor \frac{n}{\ell} \right\rfloor + 1, \text{ for } \ell - r < i \leqslant \ell. \end{cases} \right.$$

• Conjecture. (J. Szigeti, L. van Wyk) Let F be any field, m and n positive integers, and R an F-subalgebra of $\mathbb{M}_n(F)$ with Lie nilpotence index m. Then

$$\dim_F R \leqslant M(m+1,n).$$

Theorem 1

Let F be any field, m and n positive integers, and R an F-subalgebra of $\mathbb{M}_n(F)$ with Lie nilpotence index m. Then

$$\dim_F R \leq M(m+1,n).$$

• PROBLEM: Every ring R that is Lie nilpotent of index m, is also Lie solvable of index m. Thus, it is natural to ask about the maximal dimension of Lie solvable of index m subalgebras of $M_n(F)$.

- PROBLEM: Every ring R that is Lie nilpotent of index m, is also Lie solvable of index m. Thus, it is natural to ask about the maximal dimension of Lie solvable of index m subalgebras of $M_n(F)$.
- Unfortunately, we do not have good "typical example".

$$[x_1, y_1][x_2, y_2] \cdots [x_q, y_q] = 0$$
 (3)

Mal'tsev proved that all the polynomial identities of $U_q(F)$ are consequences of the identity in (3).

We denote algebras satisfying (3) by D_{2^q} .

•

$$[x_1, y_1][x_2, y_2] \cdots [x_q, y_q] = 0$$
 (3)

Mal'tsev proved that all the polynomial identities of $U_q(F)$ are consequences of the identity in (3).

We denote algebras satisfying (3) by D_{2^q} .

$$\mathcal{D} = \left\{ \begin{bmatrix} D_1 & D_{(1,2)} & \cdots & D_{(1,q)} \\ 0 & D_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & D_{(q-1,q)} \\ 0 & \cdots & 0 & D_q \end{bmatrix} \right\}$$
(4)

Each D_i is a commutative F-subalgebra of $M_{n_i}(F)$ for every i, and $D_{(j,k)} = M_{n_j \times n_k}(F)$ for all j and k such that $1 \le j < k \le q$. \mathcal{D} satisfies (3).

In general

$$\operatorname{Ln}_2 \not\Rightarrow \operatorname{D}_2, \operatorname{D}_2 \not\Rightarrow \operatorname{Ln}_2$$
 (5)

In general

$$\operatorname{Ln}_2 \not\Rightarrow \operatorname{D}_2, \operatorname{D}_2 \not\Rightarrow \operatorname{Ln}_2$$
 (5)

• The maximum dimension for D₂ F-subalgebra of $M_n(F)$ is $2+\left|\frac{3n^2}{8}\right|$.

In general

$$\operatorname{Ln}_2 \not\Rightarrow \operatorname{D}_2, \operatorname{D}_2 \not\Rightarrow \operatorname{Ln}_2$$
 (5)

- The maximum dimension for D₂ *F*-subalgebra of $M_n(F)$ is $2 + \left\lfloor \frac{3n^2}{8} \right\rfloor$.
- The maximum dimension for Ln_2 F-subalgebra of $M_n(F)$ is $1+\left\lfloor \frac{n^2}{3}\right\rfloor$.

In general

$$\operatorname{Ln}_2 \not\Rightarrow \operatorname{D}_2, \operatorname{D}_2 \not\Rightarrow \operatorname{Ln}_2$$
 (5)

- The maximum dimension for D₂ F-subalgebra of $M_n(F)$ is $2 + \left| \frac{3n^2}{8} \right|$.
- The maximum dimension for Ln_2 F-subalgebra of $M_n(F)$ is $1+\left\lfloor \frac{n^2}{3}\right\rfloor$.
- Also, in general

$$D_{2^m}, Ln_{m+1} \Rightarrow Ls_{m+1} \tag{6}$$

In general

$$\operatorname{Ln}_2 \not\Rightarrow \operatorname{D}_2, \operatorname{D}_2 \not\Rightarrow \operatorname{Ln}_2$$
 (5)

- The maximum dimension for D₂ F-subalgebra of $M_n(F)$ is $2 + \left| \frac{3n^2}{8} \right|$.
- The maximum dimension for Ln_2 F-subalgebra of $M_n(F)$ is $1 + \left| \frac{n^2}{3} \right|$.
- Also, in general

$$D_{2^m}, Ln_{m+1} \Rightarrow Ls_{m+1} \tag{6}$$

• (Meyer, Szigeti, van Wyk) For any commutative ring R, the subring $U_3^{\star}(U_3^{\star}(R))$ of $U_9^{\star}(R)$ is Ls₂, but it is neither Ln₂ nor D₂, and so we have, in general,

$$Ls_2 \Rightarrow Ln_2 \text{ or } D_2.$$
 (7)

Problem 2

Construct an example of Ls₂ subalgebra of $M_n(F)$ with dimension bigger than $2 + \left| \frac{3n^2}{8} \right|$.

Theorem 3

If A is an Ls_{m+1} (for some $m \ge 1$) structural matrix subring of $U_n(R)$, R a commutative ring and $n \ge 1$, then A is D_{2^m} .

Let k be a positive integer and n = 2k + 1. Consider

$$A = \left\{ \left(\begin{array}{c|c} A_1 & B \\ \hline 0 & A_2 \end{array} \right) : A_1 \in M_k(F), A_2 \in M_{k+1}(F), A_i - \text{comm.} \right\}.$$

Let k be a positive integer and n = 2k + 1. Consider

$$A = \left\{ \left(\begin{array}{c|c} A_1 & B \\ \hline 0 & A_2 \end{array} \right) : A_1 \in M_k(F), A_2 \in M_{k+1}(F), A_i - \text{comm.} \right\}.$$

Theorem 4

If A is a D_2 subalgebra of $U_n(F)$ with maximum possible dimension for D_2 , such that A_1 , A_2 and B are independent, then A_1 and A_2 are commutative.

Thank you for your attention!