Simply connected latin quandles

Petr Vojtěchovský

University of Denver

Noncommutative and Nonassociative Structures Malta March 12–15, 2018

Coauthors

This is joint work with Marco Bonatto.

1 Introduction

Racks and quandles Connected and latin quandles

1 Introduction

Racks and quandles Connected and latin quandles

2 Simply connected quandles Quandle cocycles, constant quandle cocycles and coverings Simply connected latin quandles Another proof using a result of Clauwens

 Introduction Racks and quandles Connected and latin quandles

Simply connected quandles
 Quandle cocycles, constant quandle cocycles and coverings
 Simply connected latin quandles
 Another proof using a result of Clauwens

Racks and guandles

Racks and quandles

Definition

A rack is a groupoid (Q, \cdot) in which

- all left translations $L_x : Q \to Q, y \mapsto xy$ are bijections of Q,
- the left distributive law x(yz) = (xy)(xz) holds.

Racks and quandles

Definition

A rack is a groupoid (Q, \cdot) in which

- all left translations $L_x : Q \to Q$, $y \mapsto xy$ are bijections of Q,
- the left distributive law x(yz) = (xy)(xz) holds.

An idempotent rack is called a **quandle**.

Racks and quandles

Definition

A rack is a groupoid (Q, \cdot) in which

- all left translations $L_x : Q \to Q$, $y \mapsto xy$ are bijections of Q,
- the left distributive law x(yz) = (xy)(xz) holds.

An idempotent rack is called a **quandle**.

Quandles can be used to consistently color arcs of oriented knot diagrams.

Enumeration of racks and quandles - as of two weeks ago

Nelson and McCarron enumerated racks r_n and quandles q_n of order n up to isomorphism for small values of n:

n	1	2	3	4	5	6	7	8	9	10
r _n	1	2	6	19	74	353	2080	16023	?	?
q _n	1	1	3	7	22	73	298	1581	11079	?

Enumeration of racks and quandles - as of two weeks ago

Nelson and McCarron enumerated racks r_n and quandles q_n of order n up to isomorphism for small values of n:

n	1	2	3	4	5	6	7	8	9	10
r _n	1	2	6	19	74	353	2080	16023	?	?
q _n	1	1	3	7	22	73	298	1581	11079	?

Theorem (Blackburn 2013, Ashford + Riordan 2017)

Let $\varepsilon > 0$. Then for all sufficiently large n the number \sharp of racks of order n up to isomorphism satisfies

$$2^{(1/4-\varepsilon)n^2} \leq \sharp \leq 2^{(1/4+\varepsilon)n^2}.$$

Seung Yeop Yang and P.V. can repeat the above enumeration in about 10 seconds, and we now also have:

Seung Yeop Yang and P.V. can repeat the above enumeration in about 10 seconds, and we now also have:

Seung Yeop Yang and P.V. can repeat the above enumeration in about 10 seconds, and we now also have:

The largest cases take about a week to complete. More details will be presented some other time.

Seung Yeop Yang and P.V. can repeat the above enumeration in about 10 seconds, and we now also have:

The largest cases take about a week to complete. More details will be presented some other time.

The moral is: There are very many racks and quandles already for small orders. Specialize!

Connected quandles

Definition

For a rack Q let $Mlt_{\ell}(Q) = \langle L_x : x \in Q \rangle$ be the **left multiplication** group of Q. (This is also denoted in rack literature by Inn(Q) and called the **inner automorphism group**.)

Connected quandles

Definition

For a rack Q let $\operatorname{Mlt}_{\ell}(Q) = \langle L_x : x \in Q \rangle$ be the **left multiplication** group of Q. (This is also denoted in rack literature by $\operatorname{Inn}(Q)$ and called the **inner automorphism group**.)

Definition

A quandle Q is **connected** (or **transitive**) if $\operatorname{Mlt}_{\ell}(Q)$ acts transitively on Q. It is **doubly transitive** if $\operatorname{Mlt}_{\ell}(Q)$ acts doubly transitively on Q.

Connected quandles

Definition

For a rack Q let $\operatorname{Mlt}_{\ell}(Q) = \langle L_x : x \in Q \rangle$ be the **left multiplication** group of Q. (This is also denoted in rack literature by $\operatorname{Inn}(Q)$ and called the **inner automorphism group**.)

Definition

A quandle Q is **connected** (or **transitive**) if $\operatorname{Mlt}_{\ell}(Q)$ acts transitively on Q. It is **doubly transitive** if $\operatorname{Mlt}_{\ell}(Q)$ acts doubly transitively on Q.

Definition

A quandle Q is **latin** if every right translation $R_x : Q \to Q$, $y \mapsto yx$ is a bijection of Q.

Latin quandles are connected.

8 / 20

Affine quandles

Definition

Let (G, +) be an abelian group and $\alpha \in Aut(G, +)$. Then $X = Q(G, \alpha)$ defined by

$$x * y = x + \alpha(y - x)$$

is an affine quandle.

 Introduction Racks and quandles Connected and latin quandles

2 Simply connected quandles Quandle cocycles, constant quandle cocycles and coverings Simply connected latin quandles Another proof using a result of Clauwens

Quandle cocycles

Following Andruskiewitsch and Graña (2003):

Quandle cocycles

Following Andruskiewitsch and Graña (2003):

Let X be a groupoid and S a set. The canonical projection $X \times S \to X$ is a homomorphism if and only if

 $(x,s)(y,t) = (xy,\beta(x,y,s,t))$

for some $\beta : X \times X \times S \times S \to S$. Call it $X \times_{\beta} S$.

Quandle cocycles

Following Andruskiewitsch and Graña (2003):

Let X be a groupoid and S a set. The canonical projection $X \times S \to X$ is a homomorphism if and only if

$$(x,s)(y,t) = (xy,\beta(x,y,s,t))$$

for some $\beta : X \times X \times S \times S \to S$. Call it $X \times_{\beta} S$. Moreover, $X \times_{\beta} S$ is a quandle if and only if $\beta(x, y, s) : S \to S$, $t \mapsto \beta(x, y, s, t)$ is always a bijection and the following conditions hold:

$$\beta(xy, xz, \beta(x, y, s)(t))\beta(x, z, s) = \beta(x, yz, s)\beta(y, z, t),$$

$$\beta(x, x, s)(s) = s.$$

We call β a (dynamical) **quandle cocycle**.

Coverings and constant quandle cocycles

If $\beta(x, y, s) = \beta(x, y, t)$ for all x, y, s, t, we think of β as a mapping $X \times X \to \text{Sym}(S)$ and we call it a **constant quandle cocycle**.

Coverings and constant quandle cocycles

If $\beta(x, y, s) = \beta(x, y, t)$ for all x, y, s, t, we think of β as a mapping $X \times X \to \text{Sym}(S)$ and we call it a **constant quandle cocycle**.

Definition (Eisermann)

A connected quandle Y is a **covering** of a quandle X if there is a surjective quandle homomorphism $f: Y \to X$ such that $L_x = L_y$ holds in Y whenever f(x) = f(y).

Coverings and constant quandle cocycles

If $\beta(x, y, s) = \beta(x, y, t)$ for all x, y, s, t, we think of β as a mapping $X \times X \to \text{Sym}(S)$ and we call it a **constant quandle cocycle**.

Definition (Eisermann)

A connected quandle Y is a **covering** of a quandle X if there is a surjective quandle homomorphism $f: Y \to X$ such that $L_x = L_y$ holds in Y whenever f(x) = f(y).

Proposition

The following conditions are equivalent for connected quandles X, Y:

- Y is a covering of X,
- Y is isomorphic to X ×_β S for some set S and some constant quandle cocycle β.

Cohomologous cocycles

Definition (A+G)

Two quandle cocycles β , $\beta' : X \times X \times S \to \text{Sym}(S)$ are **cohomologous** (write $\beta \sim \beta'$) if there is $\gamma : X \to \text{Sym}(S)$ such that

 $\beta'(x, y, s) = \gamma(xy)\beta(x, y, \gamma(x)^{-1}(s))\gamma(y)^{-1}.$

Let $H_c^2(X, \text{Sym}(S))$ be the second cohomology group of constant quandle cocycles with coefficients in Sym(S).

Cohomologous cocycles

Definition (A+G)

Two quandle cocycles β , $\beta' : X \times X \times S \to \text{Sym}(S)$ are **cohomologous** (write $\beta \sim \beta'$) if there is $\gamma : X \to \text{Sym}(S)$ such that

 $\beta'(x, y, s) = \gamma(xy)\beta(x, y, \gamma(x)^{-1}(s))\gamma(y)^{-1}.$

Let $H_c^2(X, \text{Sym}(S))$ be the **second cohomology group** of constant quandle cocycles with coefficients in Sym(S).

Definition (E)

A quandle Q is **simply connected** if it is connected and $H_c^2(X, \text{Sym}(S)) = 1$ for every set S. (The second condition says that every covering of X is equivalent to the trivial covering of X over some set S.)

Main result

Our goal is to exhibit classes of simply connected latin quandles. We develop a combinatorial approach to constant quandle cocycles and prove:

Theorem (MB+PV)

Let X be a finite connected quandle that is either

- affine over a cyclic group, or
- doubly transitive of order different from 4.

Then X is simply connected (and latin).

Main result

Our goal is to exhibit classes of simply connected latin quandles. We develop a combinatorial approach to constant quandle cocycles and prove:

Theorem (MB+PV)

Let X be a finite connected quandle that is either

- affine over a cyclic group, or
- doubly transitive of order different from 4.

Then X is simply connected (and latin).

Notes:

• The first part is easy and can be proved in a number of ways.

Main result

Our goal is to exhibit classes of simply connected latin quandles. We develop a combinatorial approach to constant quandle cocycles and prove:

Theorem (MB+PV)

Let X be a finite connected quandle that is either

- affine over a cyclic group, or
- doubly transitive of order different from 4.

Then X is simply connected (and latin).

Notes:

- The first part is easy and can be proved in a number of ways.
- The second part is quite delicate when the combinatorial approach is used. There is also a higher-level proof (still somewhat detailed) based on an unpublished observation of Clauwens about the fundamental groups of quandles.

Normalized constant cocycles

Definition

Let X be a connected quandle and $u \in X$ be fixed. A constant quandle cocycle β is *u*-normalized if $\beta(x, u) = 1$ for every $x \in X$.

In a latin quandle, every constant quandle cocycle is cohomologous to a *u*-normalized cocycle.

Think of a constant quandle cocycle β : X × X → Sym(S) as a square array with entries in Sym(S).

- Think of a constant quandle cocycle β : X × X → Sym(S) as a square array with entries in Sym(S).
- Some entries can be assumed to be trivial thanks to normalization, say.

- Think of a constant quandle cocycle β : X × X → Sym(S) as a square array with entries in Sym(S).
- Some entries can be assumed to be trivial thanks to normalization, say.
- Find bijections $f : X \times X \to X \times X$ that preserve cocycle values, i.e., $\beta(x, y) = \beta(f(x, y))$.

- Think of a constant quandle cocycle β : X × X → Sym(S) as a square array with entries in Sym(S).
- Some entries can be assumed to be trivial thanks to normalization, say.
- Find bijections $f : X \times X \to X \times X$ that preserve cocycle values, i.e., $\beta(x, y) = \beta(f(x, y))$.
- Study the orbits of these bijections.

- Think of a constant quandle cocycle β : X × X → Sym(S) as a square array with entries in Sym(S).
- Some entries can be assumed to be trivial thanks to normalization, say.
- Find bijections $f : X \times X \to X \times X$ that preserve cocycle values, i.e., $\beta(x, y) = \beta(f(x, y))$.
- Study the orbits of these bijections.
- To deduce that X is simply connected, show that the orbits union to all of X × X for every S and β.

The following bijections were used in the proof:

f(x, y) = (x(y/u), xu), g(x, y) = (xu, yu), $h(x, y) = ((y/(x \setminus u))x, y),$

and we looked at the orbits of the group $G = \langle f, g, h \rangle$ on $X \times X$.

The following bijections were used in the proof:

f(x, y) = (x(y/u), xu), g(x, y) = (xu, yu), $h(x, y) = ((y/(x \setminus u))x, y),$

and we looked at the orbits of the group $G = \langle f, g, h \rangle$ on $X \times X$. Notes:

• It is possible that there are additional bijections that would simplify the proof.

The following bijections were used in the proof:

f(x, y) = (x(y/u), xu), g(x, y) = (xu, yu), $h(x, y) = ((y/(x \setminus u))x, y),$

and we looked at the orbits of the group $G = \langle f, g, h \rangle$ on $X \times X$. Notes:

- It is possible that there are additional bijections that would simplify the proof.
- Automated deduction was used to find the inverse of *h*.

The following bijections were used in the proof:

f(x, y) = (x(y/u), xu), g(x, y) = (xu, yu), $h(x, y) = ((y/(x \setminus u))x, y),$

and we looked at the orbits of the group $G = \langle f, g, h \rangle$ on $X \times X$. Notes:

- It is possible that there are additional bijections that would simplify the proof.
- Automated deduction was used to find the inverse of *h*.
- About 10 pages of detailed calculations.

The following bijections were used in the proof:

f(x, y) = (x(y/u), xu), g(x, y) = (xu, yu), $h(x, y) = ((y/(x \setminus u))x, y),$

and we looked at the orbits of the group $G = \langle f, g, h \rangle$ on $X \times X$. Notes:

- It is possible that there are additional bijections that would simplify the proof.
- Automated deduction was used to find the inverse of *h*.
- About 10 pages of detailed calculations.
- There is a doubly transitive quandle of order 4 that is not simply connected.

Following Eisermann 2014:

Following Eisermann 2014: $\operatorname{Adj}(X) = \langle \{e_x : x \in X\} \mid \{e_{x \cdot y} = e_x^{-1}e_ye_x : x, y \in G\} \rangle$

Following Eisermann 2014: $\operatorname{Adj}(X) = \langle \{e_x : x \in X\} \mid \{e_{x \cdot y} = e_x^{-1}e_ye_x : x, y \in G\} \rangle$ $\varphi : \operatorname{Adj}(X) \to \mathbb{Z}$ unique homomorphism such that $\varphi(e_x) = 1$

Following Eisermann 2014: $\operatorname{Adj}(X) = \langle \{e_x : x \in X\} \mid \{e_{x \cdot y} = e_x^{-1}e_ye_x : x, y \in G\} \rangle$ $\varphi : \operatorname{Adj}(X) \to \mathbb{Z}$ unique homomorphism such that $\varphi(e_x) = 1$

Definition

Let X be a quandle and $x \in X$. The **fundamental group** of X at x is the group

$$\pi_1(X,x) = \{g \in \operatorname{Ker}(\varphi) : x^g = x\}.$$

Following Eisermann 2014: $\operatorname{Adj}(X) = \langle \{e_x : x \in X\} \mid \{e_{x \cdot y} = e_x^{-1}e_ye_x : x, y \in G\} \rangle$ $\varphi : \operatorname{Adj}(X) \to \mathbb{Z}$ unique homomorphism such that $\varphi(e_x) = 1$

Definition

Let X be a quandle and $x \in X$. The **fundamental group** of X at x is the group

$$\pi_1(X,x) = \{g \in \operatorname{Ker}(\varphi) : x^g = x\}.$$

Proposition

Let X be a connected quandle. Then X is simply connected iff $\pi(X) = 1$.

Let $X = \mathcal{Q}(G, \alpha)$ be an affine quandle.

Let $X = \mathcal{Q}(G, \alpha)$ be an affine quandle. Let $I(X) = \langle x \otimes y - y \otimes \alpha(x) : x, y \in G \rangle$.

Let $X = \mathcal{Q}(G, \alpha)$ be an affine quandle. Let $I(X) = \langle x \otimes y - y \otimes \alpha(x) : x, y \in G \rangle$. Let $S(X) = (G \otimes G)/I(X)$.

Let
$$X = \mathcal{Q}(G, \alpha)$$
 be an affine quandle.
Let $I(X) = \langle x \otimes y - y \otimes \alpha(x) : x, y \in G \rangle$.
Let $S(X) = (G \otimes G)/I(X)$.

Theorem (Clauwens, unpublished)

Let $X = Q(G, \alpha)$ be an affine quandle. Then $\pi_1(X) \cong S(X)$.

Finishing the proof

Proposition (Vendramin $+ \varepsilon$)

Let X be a finite quandle. Then X is doubly transitive iff $X \cong \mathcal{Q}(\mathbb{Z}_p^n, \alpha)$ for some prime p, integer n and $\alpha \in \operatorname{Aut}(\mathbb{Z}_p^n)$ with $|\alpha| = |X| - 1$.

Finishing the proof

Proposition (Vendramin $+ \varepsilon$)

Let X be a finite quandle. Then X is doubly transitive iff $X \cong Q(\mathbb{Z}_p^n, \alpha)$ for some prime p, integer n and $\alpha \in \operatorname{Aut}(\mathbb{Z}_p^n)$ with $|\alpha| = |X| - 1$.

It now suffices to show $I(X) = G \otimes G$. About 2 pages of calculations.