Proposition 2. Let (A;+) and G be groups with
a left action of G on the set A. The unit group of
TA(QG) is the free product G* x (A +1+ A), where
A+14+A=Z AT x (AT)P,

As trees, the units in T'4(G) look as follows:

9o
?@“
g2 b2
gn—l
o hoeb,
For the trivial group G, the near-ring Ty(1) is the
initial object Z in the category of unital near-rings.
For the 2-element group G' = Cy, the group G= is the
infinite dihedral group D, the adjoint group of the

infinite cyclic brace. Hence Ty(C5) consists of integer-
labelled trees. Example for multlphcatlon in To Cs):

The rightmost tree gives the normalized form where
only the leaves may be negative.
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5. The initial near-ring of a skew-brace.
For a skew-brace A, the adjoint group A° acts on A
by b — a o b. So we can form the near-ring T'4(A°).
The identity map 14 induces a bijection ¢: A — A°
between the submodule A = T4(A°). and the sub-
group A° of T4(A°)*. Let I be the ideal of T4(A°)
generated by the elements 1 — e(a) + e(a + b) — €(b)
with a,b € A. We define the associated near-ring
of A to be N(A) :=T4(A°)/I. So there is a natural
epimorphism 7: Ty(A°) - N(A).

Theorem 3. Let A be a skew-brace. Then N(A). =
A. The map e: A — N(A) with e(a) .= we(a) — 1
is an exponential of N(A), and N(A) is the initial
object of Exp(A).

The relation e(a) — e(a + b) + €(b) = 1 carries the
additive structure of A into A°. As the unit element
1 of A° is £(0), the equation should actually read

g(a) —e(a+b)+e(b) =0.

The elements of N(A) are (A°)*-labelled ordered trees

whose leaves can also be labelled by elements of A, so
that adjacent leaves a,b in A can be contracted to
a single leat @ + b. — Note that the skew-brace A is
determined by the bijective 1-cocycle e™1: 4° — A
from the adjoint group A° to the right A°-module A.
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6. Can a skew-brace A be recovered from
an associated near-ring? For the terminal object
M (A) this is impossible: Only the additive group can
be recovered. What about the initial near-ring N (A)?

Proposition 3. The defining bijective 1-cocycle of
a skew-brace A is given by the restriction c|so of
the canonical map c: N(A) - N(A). = A.

Alas, how to distinguish A° within the unit group of
N(A)? So we should remove A from N(A) to reduce

the unit group (A°)* * (A+ 1+ A) by the free factor
A+ 1+ A. (Then we are left with the problem to
distinguish A° within the free product A° * {#1}.)
Consider the commutative diagram
Ta(A”) —> N(A)
| |

¥ ¥
T()(Ao) —— N()(A)

where Ny(A) is obtained from Tp(A°) by factoring
out the same relation as in the passage from T'4(A°)
to N(A). Both problems are solved:

Proposition 4. Let A be a skew-brace. The unit
group of N(A) is No(A)* = A° x {£1}, and

A° = {z € No(A)* |1 —z+1 € Ny(A)*).
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Solving the two problems, a new problem occurs:
We saved the adjoint group by throwing the additive
group overboard. But remember:

“The relation €(a) — e(a + b) + &(b) = 1 carries
the additive structure of A into A°.”

So we should search for the additive group in A°

where it has not been destroyed by the passage from
N(A) to Ny(A). The solution is again found by the

concept of skew-ring. Namely, every unital near-
ring NV can be viewed as a unital skew-ring in two
ways:

1. The above mentioned skew-ring S, /N with the
same additive group and multiplication a’ := a(b+1).

2. 'The skew-ring S« N with the adjoint monoid
a o b := ab taken from the multiplication in N and
the modified additive group

a®b:=a—1+0b.
The unit element in S, N is 1 + 1.

Theorem 4. Let A be a skew-brace. Then A° is a
sub-skew-ring of Sx Ny(A) which is isomorphic to
the skew-brace A.

Together with Proposition 4, this recovers A from
No(A). Since Ny(A) is derived from N (A), we obtain:
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Corollary. For any skew-brace A, the initial near-
ring N(A) in Exp(A) is a complete invariant of A.

The ubiquity of skew-braces thus implies that near-
rings are even more universal. For the various types
of skew-braces, the associated near-ring could be used
for obtaining new invariants, e. g., for knots and links.

7. Local near-rings and K-linear braces.
A skew-brace with abelian additive group is said to
be a brace. A K-brace over a field K is a brace
A with a K-vector space as additive group such that
the exponentiation maps are K-linear. Accordingly,
we define & K-linear near-ring to be a near-ring
N with a K-vector space as additive group such that

A(rs) = (Ar)s = r(As) holdsforr,s € Nand A € K.

A near-ring N is said to be local (Maxson 1968) if
N is unital and the elements r € N with Nr # N
form a submodule J(N) of NV, the radical of N.
Then N* = N \ J(N). . In particular, r + 5 = 1
implies that r or s is a unit. If J(IN) = 0, then IV is
said to be a near-field.

The radical J(N) of a local near-ring N is a sub-
skew-ring on which the exponentiation is bijective.
Hence J(N) is a skew-brace. So it is natural to ask:

Question: Which skew-braces arise as J(IV)?
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For a near-field, the additive group is always abelian
(B. H. Neumann 1940). For a local near-ring, this is
almost true: It holds unless the centre of the additive
group is contained in the radical (easy exercise!).

We say that a local near-ring IV splits if there is a
sub-near-field K with N = K @ J(N). If K can be

chosen in the centre
Z(N)={re N|Vse N:rs=sr}

we say that NV totally splits. In this case, J(IV) is
an ideal. (In general, this is still open!) If N totally
splits, K is commutative, hence a field.

Now comes the counterpart to skew-rings which have
passed the test of their usefulness: We define a near-
ring brace to be a brace A with a near-ring structure
satistying

a(b®) = (ab)° (a®)c = a(bc+ c)

forall a,b,c € A. If A is K-linear as a brace and as a
near-ring, we speak of a near-ring K-brace. The
concept gives a common specialization of near-
rings and braces: Every brace is a near-ring brace
with a trivial near-ring structure (ab = 0), while every
near-ring with abelian additive group is a near-ring
brace with trivial brace structure (a’ = a).
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We depict this as a diagram, where an abelian near-
ring means a near-ring with abelian additive group.

skew ring
near-ring skew-brace
abelian near-ring brace

P

near-ring brace

Here is our motivating example: The radical of an
abelian local near-ring NV is a near-ring brace!

Theorem 5. Let K be a field. Up to isomorphism,
N — J(N) gives a bijection between totally split

local near-rings N with N/J(N) = K and near-
ring K-braces.

Corollary. Under the bijection of Theorem 5, K -

braces correspond to totally split near-rings N with
N/J(N)= K and J(N)? = 0.

12



Skew-braces and Near-rings

Wolfgang Rump

In this talk, I will show that the connection between
skew-braces and near-rings is much closer than
expected: Skew-braces can be described as near-rings.

1. Skew-braces. Skew-braces arise in connection
with the Yang-Baxter equation:

(SxDAXxS)Sx1)=(1xNSx1)(1x28)

The structure group of any solution .S is a skew-brace,
and every skew-brace gives rise to a solution. Every
tame knot is characterized by a special type of skew-
brace. Hopf-Galois field extensions are described by
skew-braces, and every skew-brace is equivalent to a
triply factorized group, a group G with subgroups
A, B and a normal subgroup N satisfying

' G=AB = AN = BN, ANB= AnN = BNN = 1.



2. Near-rings are additive groups with a right
distributive associative multiplication. Near-fields
are Important in geometry. They determine a class of
translation planes. Finite sharply 2-transitive groups
can be viewed as affine transformations of a near-field
(Carmichael 1931). Finite near-fields (Dickson 1905)
are obtained by changing the multiplication in a finite
field. Zassenhaus (1936) found seven exceptional finite
near-fields. Some aspects carry over to Near-rings.

Examples: 1. A polynomial ring K|[z]| has two
multiplications. With composition, it is a near-ring.

2. The self-maps A — A of a group (A; +) form a
near-ring M (A).

In a near-ring N, the equation a0 = 0 need not
hold. Elements of N, := {a0|a € N} are called

constants. The constant maps in M(A) identify A
with M (A)..

3. A broader term. Recall that a skew-brace
(Guarnieri-Vendramin 2017) is a group (A; +) with a
second group structure (A; o) satisfying

(@a+b)oc=aoc—c+boc. (1)

Defining a® by the equation aob = a’+b, Eq. (1) can
be replaced by the exponential rules

(a+b)¢ = a‘+ b a’¢ = (ab)°
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As a common generalisation, we define a skew-ring
to be a group A" := (A;+) such that ¢’ = @ and
the exponential rules hold with a o b := a®+ b. Thus,
a skew-brace is just a skew-ring for which (A;o) is a
group. So a skew-ring is a bit nearer to a ring than to
a skew-brace. But they are even nearer to near-rings:

Proposition 1. A unital near-ring is the same as
a unital skew-ring.

We have to add what a unital skew-ring is. A unit
of a skew-ring A is an element 1 € A which satisfies
1“=a+11orall a e A A unit is unique modulo
constants, that is, elements of the subgroup

Fix(A) :={a€ A|Vbe A: a’=a},

the fizator of A. If a unit 1 exists, the set of units is
1 + Fix(A). The corresponding near-ring A has the
same unit element 1 and multiplication ab = o’ L.
Its subgroup of constants is Fix(A).

Every skew-ring A has an exponential embedding
into a near-ring

e: A= M(A),

given by e(a)(b) := a’. The map e is a morphism of
skew-rings. In particular, any skew-brace A embeds
into a near-ring and is determined by M(A) and e.
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The near-ring M (A) is just an extremal one among
a class of near-rings associated to a skew-brace A. For
any near-ring IV, there is a split short exact sequence

? C
q J

with Ny := {r € N |r0 = 0}, the zero-symmetric
part. If M(A) isreplaced by an arbitrary near-ring IV,
then A = N,, and the exponential map becomes
e: N, — N which extends (2) to a recollement

Z p Z e
Noj ) >N; = > N (3)
q I

Note that recollements occur in several branches of
mathematics. The standard example is a ringed space
(X, ©) with an open subset j: U — X. Then N in
(3) corresponds to the category of &-modules on X,
and the maps in (3) to Grothendieck’s “six functors”

Theorem 1. Let N be a unital near-ring. Every
exponential map e: N, — N makes N, into a skew-
brace. Every skew-brace arises in this way.

Thus any skew-brace A is given in several ways by
a near-ring N with an exponential map e, hence a
recollement (3). The exponentals e: A — N form a
category Exp(A). Terminal object is A — M (A).
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4. Near-ring of a group action. For a deeper
analysis of the near-rings associated with a skew-brace,
we have to introduce a special type of near-ring. Let
(A;+) be a group, and let G be a (multiplicative)
group acting on A as a set. With (=1)a = —a,
the action extends to an action of the free product
G* := G x {£1} of G and the two-element group
{£1}. We construct a near-ring T4(G) of ordered
trees, labelled by elements of G* or non-zero elements
of A (for leaves only). For example, the tree

stands for the element a(b(e+ f)+c+d(g(i+7)+h)).

Theorem 2. T4(G) is a unital near-ring with G*
as a multiplicative subgroup and A = T4(G)..

The construction of T4 (G) is functorial in A. So the
map A — 0 gives a morphism 74(G) — Ty(G) onto
a near-ring T(G) which merely depends on the group
(. The morphism is obtained by cancelling the leaves
in A. So the complexity of T4(G) comes mainly from
the group.



