A Fibonacci Analogue of Pascal's Triangle

Richard P. Stanley U. Miami & M.I.T.

January 10, 2022

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

• There is a unique minimal element 0

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element 0
- Each element is covered by exactly *i* elements.

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element 0
- Each element is covered by exactly *i* elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with 0 at the top).

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element 0
- Each element is covered by exactly *i* elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with 0 at the top).
- Every \wedge extends to a 2*b*-gon (*b* edges on each side)

Let $i, b \ge 2$. Define the poset (partially ordered set) P_{ib} by

- There is a unique minimal element 0
- Each element is covered by exactly i elements.
- The Hasse diagram is planar. We draw the Hasse diagram upside-down (with 0 at the top).
- Every \wedge extends to a 2*b*-gon (*b* edges on each side)

Note. P_{ib} is **upper homogeneous**, i.e., for all $t \in P_{ib}$, we have $\{s \in P_{ib} : s \ge t\} \cong P_{ib}$.

Fibonacci poset

Number of elements of rank *n*

 $p_{ib}(n)$: number of elements of P_{ib} of rank n

Number of elements of rank *n*

 $p_{ib}(n)$: number of elements of P_{ib} of rank n

In P_{ib} , every element of rank n-1 is covered by i elements, giving a first approximation $p_{ib}(n) \stackrel{?}{=} ip_{ib}(n-1)$. Each element of rank n-b is the bottom of i-1 2b-gons, so there are $(i-1)p_{ib}(n-b)$ elements of rank n that cover two elements. The remaining elements of rank n cover one element. Hence

$$p_{ib}(n) = ip_{ib}(n-1) - (i-1)p_{ib}(n-b).$$

Number of elements of rank *n*

 $p_{ib}(n)$: number of elements of P_{ib} of rank n

In P_{ib} , every element of rank n-1 is covered by i elements, giving a first approximation $p_{ib}(n) \stackrel{?}{=} ip_{ib}(n-1)$. Each element of rank n-b is the bottom of i-1 2b-gons, so there are $(i-1)p_{ib}(n-b)$ elements of rank n that cover two elements. The remaining elements of rank n cover one element. Hence

$$p_{ib}(n) = ip_{ib}(n-1) - (i-1)p_{ib}(n-b).$$

Initial conditions: $p_{ib}(n) = i^n$, $0 \le n \le b - 1$

$$\Rightarrow \sum_{n>0} p_{ib}(n)x^n = \frac{1}{1-ix+(i-1)x^b}.$$

The special case i = 2, b = 3

$$\sum_{n\geq 0} p_{23}(n)x^n = \frac{1}{1-2x+x^3}$$

$$= \frac{1}{(1-x)(1-x-x^2)}$$

$$\Rightarrow p_{23}(n) = F_{n+2}-1,$$

where $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for n > 3.

The special case i = 2, b = 3

$$\sum_{n\geq 0} p_{23}(n)x^n = \frac{1}{1-2x+x^3}$$

$$= \frac{1}{(1-x)(1-x-x^2)}$$

$$\Rightarrow p_{23}(n) = F_{n+2} - 1,$$

where $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$.

First connection with **Fibonacci numbers**.

The numbers e(t)

For $t \in P_{ib}$, let e(t) be the number of saturated chains from $\hat{0}$ to t.

The numbers e(t)

For $t \in P_{ib}$, let e(t) be the number of saturated chains from $\hat{0}$ to t.

A familiar example: P_{22}

A familiar example: P_{22}

Pascal's triangle

A generating function for the e(t)'s

Fix i and b.

 t_{nk} : kth element from left in the nth row of P_{ib} , beginning with k=0.

$$\begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix} = e(t_{nk})$$

 q_n : number of elements of P_{ib} of rank n

$$r_n = \frac{q_n - q_{n-1}}{i - 1} \in \mathbb{P} = \{1, 2, \dots\}$$

A generating function for the e(t)'s

Fix i and b.

 t_{nk} : kth element from left in the nth row of P_{ib} , beginning with k=0.

$$\begin{bmatrix} \mathbf{n} \\ \mathbf{k} \end{bmatrix} = e(t_{nk})$$

 q_n : number of elements of P_{ib} of rank n

$$r_n = \frac{q_n - q_{n-1}}{i-1} \in \mathbb{P} = \{1, 2, \dots\}$$

Theorem.
$$\sum_{k} {n \brack k} x^k = \prod_{j=1}^{n} \left(1 + x^{r_j} + x^{2r_j} + \dots + x^{(i-1)r_j} \right)$$

(analogue of binomial theorem, the case i = b = 2)

A Fibonacci product

Recall:
$$F_1 = F_2 = 1$$
, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$

$$I_n(x) = \prod_{i=1}^n (1 + x^{F_{i+1}})$$

A Fibonacci product

Recall: $F_1 = F_2 = 1$, $F_n = F_{n-1} + F_{n-2}$ for $n \ge 3$

$$I_n(x) = \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right)$$

$$I_4(x) = (1+x)(1+x^2)(1+x^3)(1+x^5)$$

= 1+x+x^2+2x^3+x^4+2x^5+2x^6+x^7+2x^8+x^9+x^{10}+x^{11}

When i = 2, b = 3 (so $P_{23} = \mathfrak{F}$), the previous theorem gives:

$$\sum_{k} {n \brack k} x^{k} = I_{n}(x).$$

Sum of rth powers

 $\mathbf{v_r}(\mathbf{n})$: sum of rth powers of coefficients of $I_n(x)$

$$V_r(x) = \sum_{n \geq 0} v_r(n) x^n$$

Recursive structure of \mathfrak{F} leads to a system of linear recurrences from which there follows:

Theorem. For all $r \ge 0$, $V_r(x)$ is a rational function.

Computation automated by Doron Zeilberger.

Sum of rth powers

 $\mathbf{v_r}(\mathbf{n})$: sum of rth powers of coefficients of $I_n(x)$

$$V_r(x) = \sum_{n \geq 0} v_r(n) x^n$$

Recursive structure of \mathfrak{F} leads to a system of linear recurrences from which there follows:

Theorem. For all $r \ge 0$, $V_r(x)$ is a rational function.

Computation automated by Doron Zeilberger.

Compare Pascal's triangle (i = b = 2): $V_2(x)$ is algebraic but not rational, and $V_r(x)$ for $r \ge 3$ is D-finite but not algebraic.

Some small values of $V_r(x)$

Theorem.
$$V_1(x) = \frac{1}{1 - 2x}$$

$$V_2(x) = \frac{1 - 2x^2}{1 - 2x - 2x^2 + 2x^3}$$

$$V_3(x) = \frac{1 - 4x^2}{1 - 2x - 4x^2 + 2x^3}$$

$$V_4(x) = \frac{1 - 7x^2 - 2x^4}{1 - 2x - 7x^2 - 2x^4 + 2x^5}$$

$$V_5(x) = \frac{1 - 11x^2 - 20x^4}{1 - 2x - 11x^2 - 8x^3 - 20x^4 + 10x^5}$$

$$V_6(x) = \frac{1 - 17x^2 - 88x^4 - 4x^6}{1 - 2x - 17x^2 - 28x^3 - 88x^4 + 26x^5 - 4x^6 + 4x^7}$$

Some small values of $V_r(x)$

Theorem.
$$V_1(x) = \frac{1}{1 - 2x}$$

$$V_2(x) = \frac{1 - 2x^2}{1 - 2x - 2x^2 + 2x^3}$$

$$V_3(x) = \frac{1 - 4x^2}{1 - 2x - 4x^2 + 2x^3}$$

$$V_4(x) = \frac{1 - 7x^2 - 2x^4}{1 - 2x - 7x^2 - 2x^4 + 2x^5}$$

$$V_5(x) = \frac{1 - 11x^2 - 20x^4}{1 - 2x - 11x^2 - 8x^3 - 20x^4 + 10x^5}$$

$$V_6(x) = \frac{1 - 17x^2 - 88x^4 - 4x^6}{1 - 2x - 17x^2 - 28x^3 - 88x^4 + 26x^5 - 4x^6 + 4x^7}$$

Note. Numerator is "even part" of denominator. Why?

Structure of two consecutive ranks

Structure of two consecutive ranks

string sizes on last rank: 2, 3, 2, 3, 3, 2, 3, 2

The limiting string size sequence

As $n \to \infty$, we get a "limiting sequence" $2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, \dots$

The limiting string size sequence

As $n \to \infty$, we get a "limiting sequence"

$$2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, \ldots$$

Let $\phi = (1 + \sqrt{5})/2$, the golden mean.

The limiting string size sequence

As $n \to \infty$, we get a "limiting sequence"

$$2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, \ldots$$

Let $\phi = (1 + \sqrt{5})/2$, the golden mean.

Theorem. The limiting sequence $(c_1, c_2,...)$ is given by

$$c_n = 1 + \lfloor n\phi \rfloor - \lfloor (n-1)\phi \rfloor.$$

Properties of $c_n = 1 + \lfloor n\phi \rfloor - \lfloor (n-1)\phi \rfloor$

$$2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, \ldots$$

• $\gamma = (c_2, c_3, ...)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (**Fibonacci word** in the letters 2,3).

Properties of $c_n = 1 + \lfloor n\phi \rfloor - \lfloor (n-1)\phi \rfloor$

$$2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, \ldots$$

- $\gamma = (c_2, c_3, ...)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (**Fibonacci word** in the letters 2,3).
- $\gamma = z_1 z_2 \cdots$ (concatenation), where $z_1 = 3$, $z_2 = 23$, $z_k = z_{k-2} z_{k-1}$

Properties of $c_n = 1 + \lfloor n\phi \rfloor - \lfloor (n-1)\phi \rfloor$

$$2, 3, 2, 3, 3, 2, 3, 2, 3, 3, 2, 3, 2, 3, 2, 3, 3, 2, 3, \ldots$$

- $\gamma = (c_2, c_3, ...)$ characterized by invariance under $2 \rightarrow 3$, $3 \rightarrow 32$ (**Fibonacci word** in the letters 2,3).
- $\gamma = z_1 z_2 \cdots$ (concatenation), where $z_1 = 3$, $z_2 = 23$, $z_k = z_{k-2} z_{k-1}$

 Sequence of number of 3's between consecutive 2's is the original sequence with 1 subtracted from each term.

$$2\underbrace{3}_{1}\underbrace{2}_{2}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{3}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{2}_{3}\underbrace{33}_{2}\underbrace{33}_{$$

Coefficients of $I_n(x)$

$$I_n(x) = \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right)$$

Coefficient of x^m : number of ways to write m as a sum of distinct Fibonacci numbers from $\{F_2, F_3, \dots, F_{n+1}\}$.

Coefficients of $I_n(x)$

$$I_n(x) = \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right)$$

Coefficient of x^m : number of ways to write m as a sum of distinct Fibonacci numbers from $\{F_2, F_3, \dots, F_{n+1}\}$.

Example. Coefficient of x^8 in $(1+x)(1+x^2)(1+x^3)(1+x^5)(1+x^8)$ is 3: 8=5+3=5+2+1.

Coefficients of $I_n(x)$

$$I_n(x) = \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right)$$

Coefficient of x^m : number of ways to write m as a sum of distinct Fibonacci numbers from $\{F_2, F_3, \dots, F_{n+1}\}$.

Example. Coefficient of x^8 in $(1+x)(1+x^2)(1+x^3)(1+x^5)(1+x^8)$ is 3: 8=5+3=5+2+1.

Can we see these sums from \mathfrak{F} ? Each path from the top to a point $t \in \mathfrak{F}$ should correspond to a sum.

An edge labeling of ${\mathfrak F}$

The edges between ranks 2k and 2k + 1 are labelled alternately $0, F_{2k+2}, 0, F_{2k+2}, \ldots$ from left to right.

An edge labeling of \mathfrak{F}

The edges between ranks 2k and 2k + 1 are labelled alternately $0, F_{2k+2}, 0, F_{2k+2}, \ldots$ from left to right.

The edges between ranks 2k-1 and 2k are labelled alternately $F_{2k+1}, 0, F_{2k+1}, 0, \dots$ from left to right.

Diagram of the edge labeling

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

Connection with sums of Fibonacci numbers

Let $t \in \mathfrak{F}$. All paths (saturated chains) from the top to t have the same sum of their elements $\sigma(t)$.

If $\operatorname{rank}(t) = n$, this gives all ways to write $\sigma(t)$ as a sum of distinct Fibonacci numbers from $\{F_2, F_3, \dots, F_{n+1}\}$.

An example

$$2 + 3 = F_3 + F_4$$

An example

$$5 = F_5$$

An ordering of \mathbb{N}

In the limit as rank $\to \infty$, get an interesting (dense) linear ordering \prec of $\mathbb{N}.$

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 .

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 .

Example.
$$45 = 3 + 8 + 34 = F_4 + F_6 + F_9$$

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 .

Example.
$$45 = 3 + 8 + 34 = F_4 + F_6 + F_9$$

Theorem. Let m > 0. Then m > 0 if and only the smallest Fibonacci number in the Zeckendorf representation of m has even index.

Zeckendorf's theorem. Every nonnegative integer has a unique representation as a sum of nonconsecutive Fibonacci numbers, where a summand equal to 1 is always taken to be F_2 .

Example.
$$45 = 3 + 8 + 34 = F_4 + F_6 + F_9$$

Theorem. Let m > 0. Then m > 0 if and only the smallest Fibonacci number in the Zeckendorf representation of m has even index.

Example. $45 \succ 0$ since F_4 has even index 4.

Second proof concerning $\sum {n \brack k}^2$

Recall: for $P_{23} = \mathfrak{F}$, we define

$$\mathbf{v}_{2}(\mathbf{n}) = \sum_{\substack{t \in \mathfrak{F} \\ \mathrm{rk}(t) = n}} e(t)^{2}$$

$$= \sum_{k} {n \brack k}^{2}$$

$$= \sum_{k} c_{k}^{2},$$

where
$$\prod_{i=1}^{n} \left(1 + x^{F_{i+1}}\right) = \sum_{k} c_k x^k$$
.

Second proof concerning $\sum {n \brack k}^2$

Recall: for $P_{23} = \mathfrak{F}$, we define

$$\mathbf{v}_{2}(\mathbf{n}) = \sum_{\substack{t \in \mathfrak{F} \\ \mathrm{rk}(t) = n}} e(t)^{2}$$

$$= \sum_{k} {n \brack k}^{2}$$

$$= \sum_{k} c_{k}^{2},$$

where
$$\prod_{i=1}^{n} \left(1 + x^{F_{i+1}}\right) = \sum_{k} c_k x^k$$
.

Theorem.
$$V_2(x) := \sum_{n \ge 0} v_2(n) x^n = \frac{1 - 2x^2}{1 - 2x - 2x^2 + 2x^3}$$

Tautological interpretation of $v_2(n)$

$$I_n(x) := \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right) = \sum_k {n \brack k} x^k$$

Tautological interpretation of $v_2(n)$

$$I_n(x) := \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right) = \sum_k {n \brack k} x^k$$
$${n \brack k} = \# \left\{ (a_1, \dots, a_n) \in \{0, 1\}^n : \sum_i a_i F_{i+1} = k \right\}$$

Tautological interpretation of $v_2(n)$

$$I_n(x) := \prod_{i=1}^n \left(1 + x^{F_{i+1}}\right) = \sum_k {n \brack k} x^k$$
$${n \brack k} = \# \left\{ (a_1, \dots, a_n) \in \{0, 1\}^n : \sum_i a_i F_{i+1} = k \right\}$$

$$\mathbf{v}_{2}(\mathbf{n}) := \sum_{k} {n \brack k}^{2} \\
= \# \left\{ \begin{pmatrix} a_{1} & a_{2} & \cdots & a_{n} \\ b_{1} & b_{2} & \cdots & b_{n} \end{pmatrix} : \sum_{i} a_{i} F_{i+1} = \sum_{i} b_{i} F_{i+1} \right\},$$

where each a_i and b_i is 0 or 1.

A concatenation product

$$\mathcal{M}_n := \left\{ \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{array} \right) : \sum a_i F_{i+1} = \sum b_i F_{i+1} \right\}$$

A concatenation product

$$\mathcal{M}_n := \left\{ \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{array} \right) : \sum a_i F_{i+1} = \sum b_i F_{i+1} \right\}$$

Let

$$\alpha = \begin{pmatrix}
a_1 & \cdots & a_n \\
b_1 & \cdots & b_n
\end{pmatrix} \in \mathcal{M}_n, \quad \beta = \begin{pmatrix}
c_1 & \cdots & c_m \\
d_1 & \cdots & d_m
\end{pmatrix} \in \mathcal{M}_m.$$

Define

$$\boldsymbol{\alpha\beta} = \left(\begin{array}{cccc} a_1 & \cdots & a_n & c_1 & \cdots & c_m \\ b_1 & \cdots & b_n & d_1 & \cdots & d_m \end{array}\right),\,$$

A concatenation product

$$\mathcal{M}_n := \left\{ \left(\begin{array}{ccc} a_1 & a_2 & \cdots & a_n \\ b_1 & b_2 & \cdots & b_n \end{array} \right) : \sum a_i F_{i+1} = \sum b_i F_{i+1} \right\}$$

Let

$$\alpha = \begin{pmatrix}
a_1 & \cdots & a_n \\
b_1 & \cdots & b_n
\end{pmatrix} \in \mathcal{M}_n, \quad \beta = \begin{pmatrix}
c_1 & \cdots & c_m \\
d_1 & \cdots & d_m
\end{pmatrix} \in \mathcal{M}_m.$$

Define

$$\boldsymbol{\alpha\beta} = \left(\begin{array}{cccc} a_1 & \cdots & a_n & c_1 & \cdots & c_m \\ b_1 & \cdots & b_n & d_1 & \cdots & d_m \end{array}\right),\,$$

Easy to check: $\alpha\beta \in \mathcal{M}_{n+m}$

The monoid \mathcal{M}

$$\mathcal{M} := \mathcal{M}_0 \cup \mathcal{M}_1 \cup \mathcal{M}_2 \cup \cdots,$$

a **monoid** (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_0$.

The monoid \mathcal{M}

$$\mathcal{M} := \mathcal{M}_0 \cup \mathcal{M}_1 \cup \mathcal{M}_2 \cup \cdots,$$

a **monoid** (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_0$.

Definition. A subset $\mathcal{G} \subset \mathcal{M}$ freely generates \mathcal{M} if every $\alpha \in \mathcal{M}$ can be written uniquely as a product of elements of \mathcal{G} . (We then call \mathcal{M} a free monoid.)

The monoid \mathcal{M}

$$\mathcal{M} := \mathcal{M}_0 \cup \mathcal{M}_1 \cup \mathcal{M}_2 \cup \cdots,$$

a **monoid** (semigroup with identity) under concatenation. The identity element is $\emptyset \in \mathcal{M}_0$.

Definition. A subset $\mathcal{G} \subset \mathcal{M}$ freely generates \mathcal{M} if every $\alpha \in \mathcal{M}$ can be written uniquely as a product of elements of \mathcal{G} . (We then call \mathcal{M} a free monoid.)

Suppose ${\mathcal G}$ freely generates ${\mathcal M},$ and let

$$G(x) = \sum_{n \geq 1} \#(\mathcal{M}_n \cap \mathcal{G}) x^n$$
. Then

$$\sum_{n} v_2(n)x^n = \sum_{n} \# \mathcal{M}_n \cdot x^n$$

$$= 1 + G(x) + G(x)^2 + \cdots$$

$$= \frac{1}{1 - G(x)}.$$

Free generators of \mathcal{M}

Theorem. \mathcal{M} is freely generated by the following elements:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\ 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\ 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \end{pmatrix},$$

where each * can be 0 or 1, but two *'s in the same column must be equal.

Free generators of \mathcal{M}

Theorem. \mathcal{M} is freely generated by the following elements:

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$= \begin{pmatrix} 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\ 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\ 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \end{pmatrix},$$

where each \ast can be 0 or 1, but two \ast 's in the same column must be equal.

Example.
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$
: $1+2+3+5=3+8$

G(x)

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\ 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\ 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \end{pmatrix}$$

Two elements of length one: $G(x) = 2x + \cdots$

G(x)

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

$$\begin{pmatrix} 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \\ 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \end{pmatrix}$$

$$\begin{pmatrix} 00 & * & 0 & * & 0 & * & 0 & * & \cdots & * & 0 & 1 \\ 11 & * & 1 & * & 1 & * & 1 & * & \cdots & * & 1 & 0 \end{pmatrix}$$

Two elements of length one: $G(x) = 2x + \cdots$

Let k be the number of columns of *'s. Length is 2k + 3. Thus

$$G(x) = 2x + 2\sum_{k\geq 0} 2^k x^{2k+3}$$
$$= 2x + \frac{2x^3}{1 - 2x^2}.$$

Completion of proof

$$\sum_{n} v_{2}(n)x^{n} = \frac{1}{1 - G(x)}$$

$$= \frac{1}{1 - \left(2x + \frac{2x^{3}}{1 - 2x^{2}}\right)}$$

$$= \frac{1 - 2x^{2}}{1 - 2x - 2x^{2} + 2x^{3}} \square$$

Completion of proof

$$\sum_{n} v_{2}(n)x^{n} = \frac{1}{1 - G(x)}$$

$$= \frac{1}{1 - \left(2x + \frac{2x^{3}}{1 - 2x^{2}}\right)}$$

$$= \frac{1 - 2x^{2}}{1 - 2x - 2x^{2} + 2x^{3}} \square$$

Reference: arXiv:2101.02131

The End

