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The posets Py,

Let i, b > 2. Define the poset (partially ordered set)P;;, by
e There is a unique minimal element 0
e Each element is covered by exactly i elements.

e The Hasse diagram is planar. We draw the Hasse diagram
upside-down (with 0 at the top).

e Every .\ extends to a 2b-gon (b edges on each side)

Py is upper homogeneous, i.e., for all t € Pj,, we have
{SEP,‘b : SZt}%Pib.



Construction of § := Py

N



Construction of § := Py



Construction of § := Px;



Construction of § := Px;



Number of elements of rank n

pip(n): number of elements of P, of rank n



Number of elements of rank n

pip(n): number of elements of P, of rank n

In Pjy, every element of rank n— 1 is covered by / elements, giving

a first approximation pjp(n) L ipip(n — 1). Each element of rank

n — b is the bottom of i — 1 2b-gons, so there are (i — 1)p;p(n — b)
elements of rank n that cover two elements. The remaining
elements of rank n cover one element. Hence

p,-b(n) = ip,-b(n — 1) — (I — l)p,-b(n — b)
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pip(n): number of elements of P, of rank n

In Pjy, every element of rank n— 1 is covered by / elements, giving

a first approximation pjp(n) L ipip(n — 1). Each element of rank

n — b is the bottom of i — 1 2b-gons, so there are (i — 1)p;p(n — b)
elements of rank n that cover two elements. The remaining
elements of rank n cover one element. Hence

p,-b(n) = ip,-b(n — 1) — (I — l)p,-b(n — b)
Initial conditions: pjp(n) =i", 0<n<b-1
1

= ; "= .
;p’b(”)x 1 ix+ (i — 1)xb




The special case i =2, b=3

DY () A ——

n>0

= p3(n) = Fppo—1,

where L = F, =1, F,=F,_1+ F,_» for n > 3.



The special case i =2, b=3

D ——

n>0

= p23(n) = Fpp2—1,
where L = F, =1, F,=F,_1+ F,_» for n > 3.

First connection with Fibonacci numbers.
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A generating function for the e(t)’s

Fix i and b.

tak: kth element from left in the nth row of Pj,, beginning with
k=0.

] = eten

gn: number of elements of Pj, of rank n

dn — 4dn-1

P={1,2,...
1 Pz

rn =



A generating function for the e(t)’s

Fix i and b.

tak: kth element from left in the nth row of Pj,, beginning with
k=0.

] = eten

gn: number of elements of P;, of rank n

=391 cp_ 12}
i—1
— r r; i—1)r:
Theorem.zk:[k]x _jl:[l<1_|_xf+x i dx J>
(analogue of binomial theorem, the case i = b = 2)



A Fibonacci product
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A Fibonacci product

Recal: RF=F =1, F,=F,_1+ F,_>forn>3

In(x) = H (1 + foH)

i=1

la(x) = (1+x)(1+x*)(1+x°)(1+x°)
= 14+x+xX2+23+x*+2x5 +2x0 + x7 +2x8 + x% + x10 4 x1!

When i =2,b =3 (so P,3 = §), the previous theorem gives:



Sum of rth powers

v,(n): sum of rth powers of coefficients of /,(x)

V,(x) = Z v (n)x"

n>0

Recursive structure of § leads to a system of linear recurrences
from which there follows:

For all r > 0, V,(x) is a rational function.

Computation automated by Doron Zeilberger.



Sum of rth powers

v,(n): sum of rth powers of coefficients of /,(x)

V,(x) = Z ve(n)x"

n>0

Recursive structure of § leads to a system of linear recurrences
from which there follows:

For all r > 0, V,(x) is a rational function.
Computation automated by Doron Zeilberger.

Compare Pascal's triangle (i = b = 2): V,(x) is algebraic but not
rational, and V,(x) for r > 3 is D-finite but not algebraic.



Some small values of V,(x)

1
i) =15
1—2x2
V- =
2(x) 1— 2x — 2x2 + 2x3
1 — 4x2
V- e
3(x) 1 —2x — 4x2 + 2x3
1 —7x%2 —2x*
V, =
4(x) 1 —2x — 7x2% — 2x% + 2x5
Vo(x) = 1—11x% — 20x*
5 T 1 2x— 11x2 — 8x3 — 20x* + 10x5
1—17x% — 88x* — 4x5
Ve(x) =

1 —2x — 17x2 — 28x3 — 88x* + 26x°> — 4x5 4 4x7



Some small values of V,(x)

1
Vil = 15,
1—2x2
V i
2(x) 1— 2x — 2x2 + 2x3
1 — 4x2
V —
3(x) 1 —2x — 4x2 + 2x3
1 —7x%2 —2x*
V i
4(x) 1 —2x — 7x2% — 2x% + 2x5
Va(x) 1—11x% — 20x*
X =
5 1— 2x — 11x2 — 8x3 — 20x% + 10x°
1—17x% — 88x* — 4x5
Ve(x) =

1 —2x — 17x2 — 28x3 — 88x* + 26x°> — 4x5 4 4x7

Numerator is “even part” of denominator. Why?
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Structure of two consecutive ranks

1112122 1322312212111
string sizes on last rank: 2,3,2,3,3,2,3,2
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The limiting string size sequence

As n — oo, we get a “limiting sequence”
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Let ¢ = (1 +/5)/2, the

Theorem. The limiting sequence (c1, ¢, ... ) is given by

¢ =1+ [n¢] = [(n—1)¢].
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2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, ...

e v=(cp,cs,...) characterized by invariance under 2 — 3,
3 — 32 (Fibonacci word in the letters 2,3).



Properties of ¢, = 1+ |n¢p| — [(n — 1)¢]

2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, ...

e v = (c,c3,...) characterized by invariance under 2 — 3,
3—32 (Flbonacci word in the letters 2,3).

e v =2z1zp--- (concatenation), where z; = 3, zp = 23,
Zk = Zk—2Zk—1

3-23-323-23323 - 32323323 - - -



Properties of ¢, = 1+ |n¢p| — [(n — 1)¢]

2,3,2,3,3,2,3,2,3,3,2,3,3,2,3,2,3,3,2,3, ...

e v = (c,c3,...) characterized by invariance under 2 — 3,
3—32 (Flbonacci word in the letters 2,3).

e v =2z1zp--- (concatenation), where z; = 3, zp = 23,
Zk = Zk—2Zk—1

3-23-323-23323 - 32323323 - - -

e Sequence of number of 3's between consecutive 2's is the
original sequence with 1 subtracted from each term.
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Coefficients of /,(x)

In(x) = ﬁ (1 - fo+1)

i=1
Coefficient of x™: number of ways to write m as a sum of distinct
Fibonacci numbers from {Fp, F3,..., Fot1}.

Coefficient of x® in
(14 x)(1 + x?)(1 +x3)(1 +x°) (1 + xB) is 3:

8=5+3=5+2+1.

Can we see these sums from §7 Each path from the top to a point
t € § should correspond to a sum.
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An edge labeling of §

The edges between ranks 2k and 2k + 1 are labelled alternately
0, Fok+2,0, Fokyo, ... from left to right.

The edges between ranks 2k — 1 and 2k are labelled alternately
Fok+1,0, Fokt1,0,... from left to right.



Diagram of the edge labeling
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Connection with sums of Fibonacci numbers

Let t € §. All paths (saturated chains) from the top to t have the
same sum of their elements o (t).

If rank(t) = n, this gives all ways to write o(t) as a sum of distinct
Fibonacci numbers from {Fp, F3,..., For1}.



An example

24+3=F+F,



An example

5=Fs



An ordering of N

° {
/72 105 0 83 1161 94

In the limit as rank — oo, get an interesting (dense) linear ordering
< of N.
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When is m > 07

Every nonnegative integer has a unique
representation as a sum of nonconsecutive Fibonacci numbers,
where a summand equal to 1 is always taken to be F».

45 =3+8+34=F4+ Fg+ Fo

Let m > 0. Then m > 0 if and only the smallest
Fibonacci number in the Zeckendorf representation of m has even
index.

45 > 0 since F4 has even index 4.
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Second proof concerning > [Z]z

Recall: for P,z = §, we define

k
= Z CI%’
k
where ﬁ (1 + XF"+1> = Z ckxk.
k

i=1
1—2x2

Theorem. V5(x) := Z va(n)x" = 1— 2x — 2x2 1 2x3

n>0
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n

() =TT (1+x7) = ; [k] N

i=1

m S {(al,...,an) € {0,1}" : zf:a,-FH_l - k}



Tautological interpretation of v,(n)

n

A0 = [ (1+xF0) = ; [k] N

i=1

—

1
= >
| I
I
I
——

(a1,...,an) €{0,1}" : ZaiFi-i—l = k}

vw(n) = Zmz
- #{(B R D) Tama- Tkl

where each a; and b; is 0 or 1.
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A concatenation product

L al a2 DR a . ) ' . ) '
Mn-—{<b1 by --- b:) -ZalFH-l—Zb/F/—i-l}

Let

_ ai an . C1 Cm
a_<b1 b,,>€M"’ B—<d1 dm>e/\/lm.
Define
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The monoid M

M =MgUM{UMU---,

a monoid (semigroup with identity) under concatenation. The
identity element is ) € M.

A subset G C M freely generates M if every o € M
can be written uniquely as a product of elements of G. (We then
call M a free monoid.)

Suppose G freely generates M, and let

sz(n)x” = Z#M,,-x”

= 1+ G(x)+G(x)?+---
1
1-G(x)



Free generators of M

. M is freely generated by the following elements:
0 1
0 1

(11 = 1 x 1 % 1

~\L00 x 0 % 0 % O

_(00*0*0*

o =

0

1

1

O )

where each * can be 0 or 1, but two *'s in the same column must
be equal.

o
o

11 « 1 *x 1 % 1

[y



Free generators of M

. M is freely generated by the following elements:

(s) ()

(11 x 1 x 1 x 1 % .-~ % 10

“\L00 x 0 x 0 x 0 % --- x 0 1

(00 * 0 x 0 x 0 % -+ *x 01

W11 o+« 1 ox 1 %1 ox -+~ x 1 0)°
where each * can be 0 or 1, but two *'s in the same column must
be equal.

11110
<0 01 0 1>.l+2+3—|—5—3+8



o -

- O

1 *
0 =*

* * *
* 0 x 0 =%

11
00

- O

0 = 0 x 0 =«
1

*
*

00
1

Two elements of length one: G(x) =2x+ ---



—_
* ¥

11
00 x O

00 x O
11 % 1

*
*
Two elements of length one: G(x) =2x+ ---

)
)

Let k be the number of columns of *'s. Length is 2k + 3. Thus
G(x) = 2x+2 Z 2k x2k+3
k>0
2x3
1—2x2°

* %
O =
= O

1
0

(@]
—_

0 = 0
1 1

* %

—_
o

= 2x+



Completion of proof

Z vo(n)x" = %G(x)
1
1- (2x+ 125)
1—2x2

1—2x —2x242x3



Completion of proof

Z va(n)x" = 1%6()0
1
1- (2x+ 125)
1—2x2

1—2x —2x242x3

Reference: arXiv:2101.02131



The End

INNY AT2N o
Happy birthday!



