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Commutative Algebra, 88-813

Prof. U. Vishne
Exam A, 2019

(This version is identical to the Hebrew version).
Answer four Questions. Clearly mark at the top of each page what questions

is being solved there. Do not answer items from distinct questions on the same

page.

Duration of the exam. 180 minutes. Allowed material: none.

1.

D.

L

Consider the abelian group Z[1;

| = U,>0 107"Z as a module over the ring

a) Show that every finitely generated submodule of Z[Tlo] is cyclic.

b) Show that the module Z[55] is not Artinian.

(c) Show that the quotient module M = Z[]/Z[3] is Artinian

(a) Define the radical v/T of an ideal I in a commutative ring, and (briefly)
explain why is this an ideal.

(b) Show that if I C P, where P is a prime ideal, then v/I C P as well.

(c) Show that the radical of I is equal to the intersection of the primes
containing /.

. Consider the subring A = Clzy,zz,yz] C Clz,y,z]. Find a subring of A

which is isomorphic to a ring of polynomials, and such that A is integral
over it. Prove the latter claim.

. We are given a polynomial f € C[z,y| for which f(a,a?) = 0 for every

a € C. Show that in the polynomial ring, f is a multiple of x — y? (hint:
Hilbert’s Nullstellensatz).

(a) State Krull’s Principal Ideal Theorem (PIT), avoiding the word ”min-
imal”.
(b) Let R be a commutative Noetherian ring. Let P, C P, C P, be a

chain of prime ideals, and let b € F,. Then there is a chain of primes
Q2 C Q1 C Py= P, such that b € Q.

(c) Give an example of a commutative Noetherian ring R, with prime
ideals P, C P, C Py and an element b € F,, such that there is no
chain of primes () C @)1 C F, for which b € Q.



