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Abstract. The maximal isotropic subspaces in split Cayley algebras were classified by van
der Blij and Springer in Nieuw Archief voor Wiskunde VIII(3):158–169, 1960. Here we
translate this classification to arbitrary composition algebras. We study intersection prop-
erties of such spaces in a symmetric composition algebra, and prove two triality results:
one for two-D isotropic spaces, and another for isotropic vectors and maximal isotropic
spaces. We bound the distance between isotropic spaces of various dimensions, and study
the strong orthogonality relation on isotropic vectors, with its own bound on the distance.
The results are used to classify maximal p-central subspaces in central simple algebras of
degree p = 3. We prove various linkage properties of maximal p-central spaces and p-cen-
tral elements. Analogous results are obtained for symmetric p-central elements with respect
to an involution of the second kind inverting a third root of unity.

1. Introduction

A composition algebra is a (non-associative) algebra (C, � ) over a field F , endowed
with a non-degenerate quadratic “norm form” N : C→F , such that N(a � b) =
N(a)N(b).

Two special classes of composition algebras, which are of particular interest,
have been fully classified. A composition algebra with unit is one of the following:
the field itself, an étale quadratic extension, a quaternion algebra, or a Cayley alge-
bra over F . In particular, the norm form is a Pfister form, so if there are isotropic
elements, the form is hyperbolic.

A composition algebra is symmetric if the bilinar form associated to the norm
is associative. One class of examples are the Okubo algebras, constructed from
central simple algebras of degree 3 over the base field.

The maximal isotropic spaces in the split Cayley algebra were described by
van der Blij and Springer [12], where the authors also explain the connection to
geometric triality of points and two kinds of maximal spaces.

Kaplansky has shown that any composition algebra can be twisted into a unital
one (see [6, Proposition 33.27]). We apply this technique to the classification of
van der Blij and Springer, and obtain a complete classification of maximal isotropic
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spaces in a symmetric composition algebra. Similar results were obtained by the
first named author in [7], using self-contained arguments which are similar to [12].

In the first part of this article (Sects. 2–8) we study isotropic subspaces in
composition algebras. In Sect. 2 we give the essential background on composition
algebras, mostly relying on [6, Sect. 33]. Section 3 describes the maximal isotro-
pic spaces in an arbitrary composition algebra, and their intersections in case the
algebra is symmetric. This section follows [12].

From Sect. 4 and on we assume C is a symmetric composition algebra. Any
isotropic subspace of C is the intersection of two maximal subspaces, and we apply
this fact to give a concrete classification of isotropic spaces of any possible dimen-
sion. In Sect. 5 we continue this line of research, by introducing the operators L
and R, defined as intersections of (left or right) maximal isotropic subspaces along
a parameter space. It turns out that L acts on the space of isotropic 2-D spaces.

In Sect. 6 we show that L ◦ L ◦ L is the identity on 2-D isotropic spaces. This
provides an analog to the geometric triality studied in [12]. The relation with triality
of automorphisms of spin groups for symmetric composition algebras, as described
in [2], is yet to be investigated.

In Sect. 7 we study distances between various types of isotropic spaces. For
example, we show that for every isotropic vector x and every maximal isotropic
subspace V , there are a maximal isotropic subspace V ′ ∈x and an isotropic vector
x ′ ∈ V ∩ V ′.

Section 8 is devoted to the ‘strong orthogonality’ relation—we prove that every
two isotropic elements are connected by a chain of length 4, in which every two
elements are strongly orthogonal. This statement has many variations, and in par-
ticular it allows us to deduce a common slot lemma for central simple algebras of
degree 3, which was discovered by Rost [10].

The second part (Sects. 9–15) is devoted to applications to central simple alge-
bras. Let A be a central simple algebra of prime degree p over a field F . An
non-central element x ∈ A is ‘p-central’ if x p ∈ F .

Following the recent work of Raczek ([8]; see also [9]), who studied 3-D spaces
of 3-central elements in cyclic algebras of degree 3, we consider in this part the
maximal linear subspaces of 3-central elements in a symbol algebra of degree 3
(when there are roots of unity), which are 4-D, and the interaction between them.

The classification is based on the following idea of J.-P. Tignol: under the Ok-
ubo product, the space of zero-trace elements in an algebra A of degree 3 becomes
a (non-unital, symmetric) composition algebra. We can thus translate the analysis
of maximal isotropic subspaces in symmetric composition algebras from the first
part, to 3-central spaces in symbol algebras of degree 3.

Section 9 introduces the ‘standard’ p-central spaces, those of the form Fx +
F[x]y where yxy−1 = ρx . In Sect. 10 we describe the Okubo product, and show
(in Theorem 10.2) that for p = 3, every maximal p-central subspace is standard.

In Sect. 11 we study the Okubo product further, showing for example that the
operation defined via Kaplansky’s unital shift has a canonical multiplication table,
which is monomial and independent of the algebra A as well as of the choice of a
standard pair of generators.
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The main purpose of Sect. 12 is to study standard pairs of generators in a
given 3-central subspace: if the space is maximal, the variety of standard pairs of
generators inside it is (geometrically) a blowup of P

3F at a point. A 3-D subspace
can be presented uniquely in the form Fy + Fxy2 + Fz where yxy−1 = ρx and
Fz ⊆ Fx + Fx2 y. These spaces come in three flavors, depending on the amount
of standard pairs of generators they contain. Finally in Sect. 13 we show that max-
imal 3-central spaces are linked by chains, where the intersection of every two
neighbors has dimension 2 or 3. We also show how the slot lemma of M. Rost for
cyclic algebras of degree 3 follows from a more general result on symmetric com-
position algebras. This was done, directly for Okubo algebras and with an explicit
description of the chains, in [5].

In the final sections we assume F does not have third roots of unity. Then one
can construct a composition algebra from an algebra of degree 3 over K = F[ρ],
endowed with an involution of the second kind whose fixed subfield is F . We show
(Theorem 14.1) that such algebras have symmetric standard pair of generators; in
particular, they all have the form (α, β)K for α, β ∈ F . We are then able to classify
in Sect. 15 the maximal 3-central symmetric subspaces, and prove a slot lemma for
standard pairs of symmetric generators.

2. Background on composition algebras

In the first part, Sects. 2–8, F is an arbitrary field.

2.1. Composition algebras

A composition algebra is a (non-unital, non-associative) algebra (C, � )over a field
F , with a non-singular quadratic form N : C→F such that N(a � b) = N(a)N(b).
The composition is symmetric if the associated bilinear form B(a, b) = N(a +
b)− N(a)− N(b) is associative, namely

B(a � b, c) = B(a, b � c). (2.1)

This is the case iff

(a � b) � a = a � (b � a) = N(a)b (2.2)

for every a, b ∈ C [6, Lemma 34.1] (the equality at the left-hand side is the
“flexible” identity). The opposite of a composition algebra is again a composition
algebra (with the same N and B), which justifies taking the mirror image of various
statements, when needed.

Remark 2.1. Multilinearization of (2.2) yields the identities

(a � b) � c + (c � b) � a = B(a, c)b (2.3)

a � (b � c)+ c � (b � a) = B(a, c)b. (2.4)
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Remark 2.2. The subalgebra generated by an element a in a symmetric composition
algebra is Fa + F(a � a). Indeed (a � a) � a = a � (a � a) = N(a)a by (2.2) and

(a � a) � (a � a) = B(a, a � a)a − N(a)(a � a) (2.5)

by (2.3). This shows that Fa + F(a � a) is closed under multiplication.

2.2. Unital composition algebras

A composition algebra (C,�,N) with unit e is endowed with a standard involution

a 	→ a, (2.6)

defined by

a + a = B(a, e)e (2.7)

(Thus e = e).
Such algebras have dimension 1, 2, 4 or 8. In the case of dimension 8 the algebra

is necessarily a Cayley algebra [6, Theorem 33.17] (i.e. constructed from a qua-
ternion algebra via the Cayley-Dickson construction). Unital composition algebras
(of dimension > 2) are never symmetric.

2.3. Unital translation

Let (C, � , N ) be any composition algebra. Let u be any element with N(u) = 1
(for example take u = N(v)−1(v � v) where v is any element with N(v) 
= 0).
Since the multiplication maps Ru : a 	→ a � u and Lu : a 	→ u � a are isometries of
(C,N), they are invertible, and one can define a new operation

a � b = (R−1
u a) � (L−1

u b), (2.8)

for which the following diagram commutes:

C × C

Ru×Lu

��

� �� C

id
��

C × C
� �� C

Then (C,�) is a composition algebra with e = u � u as a unit (the construction
is due to Kaplansky; see [6, Proposition 33.27]), retaining the same norm form. In
particular the associated bilinear form remains the same.

When (C, � ) is symmetric we have (2.2) at our disposal, and then Ru and Lu

are inverse to each other. In this case (2.8) can be rewritten in the form

a � b = (u � a) � (b � u). (2.9)
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3. Isotropic subspaces

The norm form of a Cayley algebra is a Pfister form, so it is either anisotropic or
hyperbolic. When the form is hyperbolic, the maximal hyperbolic subspaces are
of dimension four. Since the unital translation of Sect. 2.3 preserves the form, the
same is true for any composition algebra.

The purpose of this section is to describe the main results of [12] concern-
ing isotropic subspaces of the split Cayley algebra, and translate them to arbitrary
composition algebras, in particular symmetric ones. We minimize the amount of
independent computation, and rely on [12] whenever possible. As mentioned in the
introduction, the results of this section can also be obtained by direct computation,
as in [7].

3.1. Isotropic subspaces of a Cayley algebra

In any composition algebra (C, � ), if x is isotropic then C � x and x �C are isotro-
pic spaces. The maximal isotropic subspaces of the split Cayley algebra (C,�,N, e)
were classified by van der Blij and Springer in [12, Theorem 3], with a pleasantly
simple formulation: they are precisely the subspaces of the form C � x or x � C ,
ranging over isotropic vectors x .

Theorem 3.1. Let (C, � ,N) be an arbitrary composition algebra. Then every max-
imal isotropic subspace of C is of the form x �C or C � x for x isotropic; these
spaces have dimension 4.

Proof. Let u ∈ C be an element with N(u) = 1, and define the operation � by
(2.8). Then (C,�,N) is a Cayley algebra. Therefore, every maximal isotropic sub-
space V has the form x � C or C � x for some x with N(x) = 0. The dimension is
4 = 1

2 dim(C) since the norm form is hyperbolic.
However, since L−1

u C = R−1
u C = C , and since L−1

u x and R−1
u x range over

all isotropic elements when x does, V must have the form x ′ �C or C � x ′ for a
suitable isotropic x ′ ∈ C . ��

A maximal isotropic subspace has a unique (projective) generator:

Proposition 3.2. Let x, x ′ be isotropic vectors. Then x �C = x ′ �C iff Fx = Fx ′;
likewise for left spaces.

Proof. By (2.8), Ru(a) � Lu(b) = a � b, so x �C = Ru(x) � Lu(C) = Ru(x) � C .
If x �C = x ′ �C we get Ru(x) � C = Ru(x ′) � C , which by [12, Theorem 4]
implies F · Ru(x) = F · Ru(x ′), hence Fx = Fx ′. ��

It is possible to translate the results of [12] on intersection of maximal iso-
tropic spaces to arbitrary composition algebras. However the outcome is not very
enlightening, so we restrict the rest of the discussion to symmetric composition
algebras.
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3.2. Multiplication operators in the symmetric case

Throughout the rest of this section we assume (C, � ) is a symmetric composition
algebra, u ∈ C is a fixed element with N(u) = 1, and � is defined by (2.9). Let
Lx and Rx denote the multiplication from left or right by x in C . In particular
C � x = Im(Rx ) and x �C = Im(Lx ). Although x �C and C � x are not one-sided
ideals (the algebra is not associative), we say that x �C is a space of the right kind,
and C � x a space of the left kind.

Remark 3.3. If a, b ∈ C satisfy a � b = 0 where a, b 
= 0, then a and b are both
isotropic. Indeed N(a)b = (a � b) � a = 0 implies N(a) = 0, and similarly for b.

Proposition 3.4. Let x 
= 0 be an isotropic element in a symmetric composition
algebra (C, � ). Then Ker(Lx ) = Im(Rx ) and Ker(Rx ) = Im(Lx ).

Proof. By (2.2) the composition Lx Rx = Rx Lx is multiplication by N(x) = 0, so
Im(Rx )⊆ Ker(Lx ); but if x � a = 0 then a is isotropic by Remark 3.3, showing that
Ker(Lx ) is an isotropic space, hence dim(Ker(Lx )) ≤ 4 and Ker(Lx ) = Im(Rx ).
The argument for Ker(Rx ) = Im(Lx ) is the same. ��
Corollary 3.5. For any isotropic vectors x and y, x ∈ C � y iff y ∈ x �C.

Proof. Indeed, x ∈ Im(Ry) iff x ∈ Ker(L y) iff y � x = 0 iff y ∈ Ker(Rx ) iff
y ∈ Im(Lx ). ��

3.3. Intersection of maximal isotropic spaces

We now consider various intersections of the maximal isotropic subspaces appear-
ing in Theorem 3.1, again following [12].

Let us record several easy observations which will be used frequently. Notice
that by (2.2), we have

u � (a � u) = (u � a) � u = a. (3.1)

Remark 3.6. For any isotropic x, x ′ ∈ C :

(1) By (2.9) we have that

C � x = C � (x � u), x � C = (u � x) �C

and

C � x = C � (u � x), x �C = (x � u) � C.

(2) F · (x � u) = F · (x ′ � u) iff F · (u � x) = F · (u � x ′) iff Fx = Fx ′. (Left and
right multiplication by u are invertible linear maps).

(3) B(x � u, x ′ � u) = B(u � x, u � x ′) = B(x, x ′) (by (2.1) and (3.1)).

The intersection of maximal isotropic spaces of the same kind has even dimen-
sion:
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Proposition 3.7. Let x, x ′ be linearly independent isotropic vectors.

(1) If B(x, x ′) = 0 then V = x �C ∩ x ′ �C is equal to x � (C � x ′) = x ′ � (C � x),
which has dimension 2; otherwise, V = 0.

(2) If B(x, x ′) = 0 then V = C � x ∩ C � x ′ is equal to (x ′ �C) � x = (x �C) � x ′,
which has dimension 2; otherwise, V = 0.

Proof. It suffices to prove (1). Since x �C = (x � u) � C and likewise for x ′, we
apply [12, Theorem 4] to the intersection (x � u) � C ∩ (x ′ � u) � C ; thus, the inter-
section has dimension 2 iff B(x, x ′) = B(x � u, x ′ � u) = 0, by Remark 3.6.(3),
and otherwise the intersection is zero.

We now compute V when B(x, x ′) = 0. First note that by (2.4) (with a = x
and c = x ′), x � (C � x ′) = x ′ � (C � x), and in particular x � (C � x ′)⊆ V .

Now suppose v ∈ V , then v = x � a = x ′ � b for suitable a, b ∈ C . Tak-
ing into account the non-degeneracy of B and the fact that x and x ′ are linearly
independent, we may find c ∈ C such that B(x, c) = 1 and B(x ′, c) = 0. From
(2.4) we have a = B(x, c)a = (x � a) � c + (c � a) � x , but x � (C � x) = 0, so
v = x � a = x � ((x � a) � c + (c � a) � x) = x � ((x � a) � c) = x � (v � c). On the
other hand, from (2.3) we get (x ′ � b) � c = −(c � b) � x ′, so that v = x � (v � c) =
x � ((x ′ � b) � c) = −x � ((c � b) � x ′) ∈ x � (C � x ′). Thus V = x � (C � x ′) =
x ′ � (C � x).

The formula in [12] is x � C ∩ x ′ � C = x � (x ′ � C) = x ′ � (x � C), where
the involution is defined in (2.7). Direct substitution in this gives the somewhat
disappointing formula (x �C) ∩ (x ′ �C) = x � (((u � x ′ � u) �C) � u), from which
we conclude that

x � (((u � x ′ � u) �C) � u) = x � (C � x ′)

whenever B(x, x ′) = 0; note that the involution in the left-hand side depends on
the choice of u. ��

We will denote by P⊥ the space orthogonal to P with respect to B. In particu-
lar x⊥ denotes the 7-D subspace {a ∈ C : B(a, x) = 0}. As usual, x ∈ x⊥ iff x is
isotropic.

The intersection of maximal isotropic spaces of opposing kinds has dimension
1 or 3:

Proposition 3.8. Let x, x ′ be isotropic vectors. The intersection of x �C and C � x ′
is:

(1) the 1-D space F · (x � x ′) if x � x ′ 
= 0; and
(2) the 3-D space x � x ′⊥ = x⊥ � x ′ if x � x ′ = 0.

Proof. Let us quote [12, Theorem 5]:

(1) If x � x ′ 
= 0 then (x � C) ∩ (C � x ′) = F · (x � x ′);
(2) If x � x ′ = 0, x � C ∩ C � x ′ is the 3-D space x � x ′⊥.

The identification of (x �C) ∩ (C � x ′) as F · (x � x ′) or x � x ′⊥ follows by taking
x � u for x and u � x ′ for x ′. Applying this to the opposite algebra (and replacing x
and x ′), when x � x ′ = 0, we obtain the equality x � x ′⊥ = x⊥ � x ′. ��
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Summarizing, the intersection of spaces of the same kind is even dimensional,
and the intersection of spaces of different kinds is odd dimensional.

Corollary 3.9. A maximal isotropic subspace has a well defined kind.

4. Prescribed intersection of maximal subspaces

We now study the ways in which a given isotropic subspace in a symmetric com-
position algebra C can be presented as the intersection of maximal subspaces. First
note that such a presentation always exist:

Proposition 4.1. In any hyperbolic space, every isotropic subspace U is the inter-
section of two maximal isotropic spaces, one of which may be chosen arbitrarily.

Proof. Let V1 be any maximal isotropic space containing U , and write A = V1⊕W
where W is a maximal isotropic space, using the fact that the form is non-degener-
ate.

Let W0 = W ∩ U⊥ and take V2 = U ⊕ W0, which is an orthogonal sum of
isotropic spaces, and so isotropic. Since A = W + V1 ⊆ W + U⊥, dim(W0) =
dim(U⊥)+ dim(W )− dim(A) = dim(W )− dim(U ), so dim(V2) = dim(W ) and
V2 is maximal. Clearly U ⊆ V1∩V2, and by modularity V1∩V2 = V1∩(W0+U ) =
(V1 ∩ W0)+ U ⊆ (V1 ∩ W )+ U = U . ��

The first application is a unique presentation for 3-D spaces. The presentations
of 2-D spaces are classified, to some extent, in Proposition 5.4.

Proposition 4.2. A 3-D isotropic subspace U ⊆ C is contained in a unique maximal
isotropic space of each kind.

In particular, every such U can be presented as x � x ′⊥ = x⊥ � x ′ for x, x ′
isotropic with x � x ′ = 0, in a (projectively) unique way.

Proof. Write U = V1 ∩ V2 where V1 and V2 are maximal. They must be of dif-
ferent kinds, and U cannot be contained in any other maximal space, since the
intersection of two maximal spaces of the same kind is of dimension at most 2
by Proposition 3.7. Writing V1 = x �C and V2 = C � x ′, the space has the form
x � x ′⊥ by Proposition 3.8, so the uniqueness follows from Proposition 3.2. ��
Remark 4.3. If x � x ′ 
= 0 then x � x ′⊥ = x �C , and x⊥ � x ′ = C � x ′. Indeed,
for some a ∈ C,B(a � x, x ′) = B(a, x � x ′) 
= 0, which shows that Ker(Lx ) =
Im(Rx ) is not contained in x ′⊥. Therefore dim(Ker(Lx )∩ x ′⊥) = 3, and x � x ′⊥ =
Lx (x ′⊥) has dimension 7−3 = 4; but clearly x � x ′⊥ ⊆ x �C . Likewise for x⊥ � x ′.

5. Parameterized intersections

We turn to the intersection of an arbitrary number of maximal isotropic spaces. Our
point of departure is the following observation.
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Proposition 5.1. Let P0 be any set of isotropic elements. The intersections
∩x∈P0(C � x) and ∩x∈P0(x �C) depend only on the linear span of P0.

Proof. Indeed, every maximal isotropic space is self-orthogonal, and ∩x∈P0(C � x)
is the space orthogonal to

(∩x∈P0(C � x))⊥ =
∑

x∈P0

(C � x)⊥ =
∑

x∈P0

(C � x) = C � spanP0.

Similarly for ∩x∈P0(x �C). ��
By Proposition 3.7, all generators participating in a non-zero intersection of

spaces of the same kind are mutually orthogonal. Therefore, the most general inter-
sections to consider are

L(P) = ∩x∈P (C � x) (5.1)

and

R(P) = ∩x∈P (x �C),

when P is an isotropic space. As seen in Proposition 5.1,

L(P) = (C � P)⊥

= {z ∈ C : B(C � P, z) = 0}
= {z : B(C, P � z) = 0} (5.2)

= {z : P � z = 0}
= Annr (P),

and likewise R(P) = Ann�(P).

Proposition 5.2. For every isotropic subspace P,

(1) w ∈ L(P) iff P ⊆w �C,
(2) w ∈ R(P) iff P ⊆ C �w;

and also, for every isotropic P and P ′,

(3) P ′ ⊆ L(P) iff P ⊆ R(P ′).

Proof. By Corollary 3.5, w ∈ L(P) iff w ∈ C � x for every x ∈ P , iff x ∈ w �C
for every x in P , iff P ⊆w �C . Likewise for R(P). As for (3), P ′ ⊆ L(P) iff
P ⊆w �C for every w ∈ P ′, iff P ⊆R(P ′). ��

Let Pk, k = 1, 2, 3, denote the classes of k-dimensional isotropic spaces in C ,
and likewise let P4 and P4′ denote the classes of left and right maximal isotropic
spaces, respectively.

Proposition 5.3. The action of the operators L and R on isotropic spaces is as
follows.
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(1) For any isotropic vector x,L(Fx) = C � x and R(Fx) = x �C;
(2) For P ∈ P2,L(P) = (x �C) � x ′ and R(P) = x � (C � x ′), which are 2-D,

for any basis
{

x, x ′} of P.
(3) If x � x ′ = 0 then L(x � x ′⊥) = Fx and R(x � x ′⊥) = Fx ′.
(4) For an isotropic vector x,L(C � x) = 0 and R(C � x) = Fx; likewise

L(x �C) = Fx and R(x �C) = 0.

In particular, for P of dimension 1, 2, or 3,L(P) and R(P) have dimensions 4, 2
and 1, respectively.

Proof. For P = Fx only one space participates in the intersection. The case
dim P = 2 is in Proposition 3.7. For dim P = 3 (where we apply Proposition 4.2),
note that Fw⊆ L(P) iff P ⊆w �C by Proposition 5.2, and by Proposition 4.2 this
Fw is unique; moreover when P = x � x ′⊥, necessarily Fw = Fx . Likewise for
R(P).

Finally, consider the space P = C � x . As in the previous case, Fw⊆ L(C � x)
iff C � x ⊆w �C , which implies w = 0; and Fw⊆ R(C � x) iff C � x ⊆ C �w,
which is the case iff Fw = Fx by Proposition 3.2. The same argument takes care
of R(P). ��
Corollary 5.4. For any 2-D isotropic space P,LR(P) = RL(P) = P. Moreover
P = x � (C � x ′) iff

{
x, x ′} span L(P), and P = (y �C) � y′ iff

{
y, y′} span R(P).

Proof. By Proposition 5.2.(3), for any 2-D isotropic spaces P ′ and P ′′, P ′ = L(P ′′)
iff P ′′ = R(P ′), so in particular LR(P) = RL(P) = P . It follows that P can
be expressed in the forms P = L(P ′) and P = R(P ′′) in a unique way. The rest
follows from Proposition 5.3.(2). ��

It follows from Proposition 5.3 and Corollary 5.4 that any isotropic space of
dimension different than 3 is of the form L(P) and R(P ′) for suitable spaces P
and P ′. For dimension 3 we have:

Corollary 5.5. Let U be a 3-D isotropic space. Then LR(U ) and RL(U ) are the
unique left and right maximal isotropic spaces containing U, respectively. Thus

U = RL(U ) ∩ LR(U ).
Proof. Write U = x � x ′⊥. Then L(U ) = Fx , so RL(U ) = x �C ; and R(U ) =
Fx ′, so LR(U ) = C � x ′. ��

6. Triality

6.1. Triality of 2-D spaces

Concerning the interaction between isotropic spaces, one may ask: When is a given
2-D isotropic space contained in a given 3-D space?

What are the 3-D spaces containing a given 2-D isotropic space P? Recall from
Proposition 4.2 that a 3-D space has a unique presentation in the form x � x ′⊥.
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Proposition 6.1. Let P be a 2-D isotropic space. Then P ⊆ x � x ′⊥ iff x ∈ L(P)
and x ′ ∈ R(P).
Proof. Writing x � x ′⊥=x �C ∩ C � x ′, this is immediate from Proposition 5.2. ��
Theorem 6.2. For any 2-D space P,L(L(L(P))) = P.

Proof. Let x ∈ L(P) and x ′ ∈ R(P). By Proposition 6.1 the dimension of x �C ∩
C � x ′ is at least 2, so by Proposition 3.8, x � x ′ = 0. Thus L(P) �R(P) = 0,
and R(P) is contained in the right annihilator of L(P). By (5.2), it follows that
R(P)⊆ L(L(P)), but the dimensions are equal by Proposition 5.3.(2), so R(P) =
L(L(P)), and the result follows from Corollary 5.4. ��

By Corollary 5.4, we also have R(R(R(P))) = P .

6.2. Geometric triality

Following the section on geometric triality in [12], we now define the following
graph structure on the vertices P1 ∪ P4 ∪ P4′ :

• K , K ′ ∈ P1 are connected by an edge if K + K ′ ∈ P2;
• U,U ′ ∈ P4 are connected by an edge if U ∩ U ′ ∈ P2;
• U,U ′ ∈ P4′ are connected by an edge if U ∩ U ′ ∈ P2;
• U ∈ P4 is connected by an edge with U ′ ∈ P4′ if U ∩ U ′ ∈ P3;
• K ∈ P1 is connected by an edge with U ∈ P4 or U ∈ P4′ if K ⊆ U .

Evidently in the first three cases, every edge connecting vertices of the same class
has a unique label from P2.

Equivalently (following Propositions 3.4, 3.7 and 3.8), the graph can also be
described as follows.

(Fx, Fx ′), (C � x,C � x ′), (x �C, x ′ �C) are edges if B(x, x ′) = 0;
(C � x, x ′ �C), (x �C, Fx ′), (Fx,C � x ′) are edges if x ′ � x = 0.

Let us consider the triality map ρ defined by the diagram below.

P1

L
����

��
��

��

P4 R◦R
�� P4′

L
����������

By Remark 5.3, ρ maps Fx 	→ C � x 	→ x �C 	→ Fx , and thus has order
three.

Proposition 6.3. If two vertices t, t ′ of the same class are connected, then so are
ρ(t) and ρ(t ′). Moreover when the vertices at the left-hand side of the equalities
below are connected, we have:

ρ(Fx) ∩ ρ(Fx ′) = L(Fx + Fx ′),
ρ(C � x) ∩ ρ(C � x ′) = L(C � x ∩ C � x ′),
ρ(x �C)+ ρ(x ′ �C) = L(x �C ∩ x ′ �C).
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Proof. Fx and Fx ′ are connected when P = Fx + Fx ′ is in P2, and then L(Fx)∩
L(Fx ′) ⊇ L(P) since L inverts inclusion, so L(Fx) = C � x and L(Fx ′) = C � x ′
are connected. The equality follows from Proposition 5.3.(2).

The left spaces C � x and C � x ′ are connected when C � x ∩ C � x ′ = P ∈
P2, and then RR(C � x) ∩ RR(C � x ′) ⊇ RR(P) = L(P) ∈ P2, so x �C =
RR(C � x) and x ′ �C = RR(C � x ′) are connected.

The right spaces x �C and x ′ �C are connected when x �C ∩x ′ �C = P ∈ P2,
and then L(x �C) + L(x ′ �C) ⊆ L(P) ∈ P2, so Fx = L(x �C) and Fx ′ =
L(x ′ �C) are connected. ��
Remark 6.4. Theorem 6.2 follows immediately from Proposition 6.3 and the fact
that ρρρ is the identity. Indeed, if P ∈ P2 is written as P = Fx + Fx ′, then
LLL(P) = LL(ρ(Fx) + ρ(Fx ′)) = L(ρρ(Fx) ∩ ρρ(Fx ′)) = ρρρ(Fx) +
ρρρ(Fx ′) = Fx + Fx ′ = P .

Theorem 6.5. The triality map ρ is an automorphism of the graph defined on P1 ∪
P4 ∪ P4′ .

Proof. There are six statements to verify, one for every pair of classes from P1,P4
and P4′ . The cases where the vertices belong to the same class, are in Proposi-
tion 6.3.

(1) Fx is incident with C � x ′ when Fx ⊆ C � x ′ = Ker(Lx ′). Then x ′ � x = 0 so
L(Fx) ∩ RR(C � x ′) = C � x ∩ x ′ �C ⊇ x ′ � x⊥ ∈ P3.

(2) C � x and x ′ �C are incident when x ′ � x = 0, so x ′ ∈ Ker(Rx ) = Im(Lx );
thus L(x ′ �C) = Fx ′ ⊆ x �C = RR(C � x).

(3) Fx is incident with x ′ �C when Fx ⊆ x ′ �C , in which case C � x = L(Fx) ⊇
L(x ′ �C) = Fx ′. ��

7. Linkage

We prove that the diameter of the graph defined in Sect. 6.2 is at most three. First
we show that the graph can be reconstructed from its natural 3-partite subgraph:

Proposition 7.1. The following are equivalent for two left maximal isotropic spaces
U,U ′ ∈ P4:

(1) U and U ′ are connected by an edge in P2;
(2) there is some W ∈ P4′ connected to both U and U ′;
(3) there is some K ∈ P1 connected to both U and U ′.

Proof. (1) ⇐⇒ (3): U and U ′ are connected iff U ∩ U ′ 
= 0 iff there is some
K ∈ P1 such that K ⊆ U ∩ U ′.

(1) �⇒ (2): Write U = C � x and U ′ = C � x ′. By definition U and U ′ are
connected iff B(x, x ′) = 0, in which case P = Fx + Fx ′ ∈ P2, and for every y ∈
R(P), y �C is connected to U and U ′ by Proposition 3.8 since y � x = y � x ′ = 0.

(2) �⇒ (1): If dim(U ∩W ), dim(U ′ ∩W ) = 3, then dim(U ∩U ′) ≥ dim((U ∩
W ) ∩ (U ′ ∩ W )) = 2 so U and U ′ are connected. ��
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Proposition 7.2. The distance between any U ∈ P4 and any U ′ ∈ P4′ is at most 3.
In other words, for some W ∈ P4 and W ′ ∈ P4′ , the intersections U ∩ W ′,W ′ ∩ W
and W ∩ U ′ are all 3-D.

Proof. If dim(U ∩ U ′) = 3 then take W = U and W ′ = U ′. Otherwise, by Prop-
osition 3.8, U ∩ U ′ is 1-D. Let P be any 2-D subspace of U containing U ∩ U ′.
Let P ′ ⊆ P⊥ ∩ U ′ be a 2-D space. Then S = P + P ′ ∈ P3, so by Proposition 4.2
there are unique spaces W ∈ P4 and W ′ ∈ P4′ such that W ∩ W ′ = S. But then
P ⊆ U ∩ W ′ and P ′ ⊆ W ∩U ′, where in each case the spaces are of different kinds.
Therefore dim(U ∩ W ′), dim(W ∩ U ′) = 3. ��
Proposition 7.3. The diameter of the graph P4 is 2. In other words, for every
U,W ∈ P4, there is some V ∈ P4 for which dim(U ∩V ) = 2 and dim(W ∩V ) = 2.

Proof. Writing U = C � x and W = C � y, the condition on V = C � z′ is that z be
orthogonal to x and y, so take any 0 
= z′ ∈ C � x ∩ (Fx + Fy)⊥. One could also
take an arbitrary U ′ ∈ P4′ connected to W , and apply Propositions 7.2 and 7.1. ��

The analog of Proposition 7.3 for P1, namely that for every K , K ′ ∈ P1 there
is some K ′′ ∈ P1 such that K + K ′′ and K ′ + K ′′ are in P2, can be proved directly
by a similar argument: intersect (K + K ′)⊥, which is 6-D, with any 4-D isotropic
subspace.

Theorem 7.4. The distance between two vertices in a class is at most 2, and between
vertices in different classes is at most 3. In particular the diameter of the graph on
P1 ∪ P4 ∪ P4′ is 3.

Proof. Apply a suitable power of ρ to Propositions 7.2 and 7.3. ��

8. strongly orthogonal pairs

We say that non-zero isotropic elements x, y ∈ C are strongly orthogonal if
B(x, y) = 0 and x � y = 0. Recall that by Remark 3.3, the second condition alone
implies that x and y are isotropic. When this is the case, we denote x�y, or y �x ;
the relation is not symmetric. Note that x and y are connected in P1 via the graph
defined in Sect. 6 iff B(x, y) = 0, so the new relation is a finer one. Since the
conditions are independent of scalars, we may write Fx�Fy instead of x�y.

8.1. The square of an isotropic element

Remark 8.1. If x � y = 0 then (C � y) � x = Fy and y � (x �C) = Fx by Equa-
tions (2.3)–(2.4).

Proposition 8.2. Let x, x ′ be isotropic vectors.

(1) z = x ′ � x solves the equation x � z = z � x ′ = 0.
(2) If x ′ � x 
= 0, then z = x ′ � x is the only solution to x � z = z � x ′ = 0, up to

scalar multiple.
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(3) If x � x 
= 0 then the only solution to x � z = z � x = 0 is, up to scalar multiples,
z = x � x.

Proof. (1) By (2.2), x � (x ′ � x) = (x ′ � x) � x ′ = 0.
(2) If x � z = z � x ′ = 0 then z ∈ Ker(Lx ) ∩ Ker(Rx ′) = Im(Rx ) ∩ Im(Lx ′) =

F · (x ′ � x) by Proposition 3.8.(1).
(3) This is a special case of (2).

��
Symmetric composition algebras in general are not power-associative. How-

ever since x � (x � x) = (x � x) � x = 0 for any isotropic element, x3 = 0 in any
interpretation of the left-hand side. We let x4 denote the only product in which x
participates four times which is not identically zero, namely x4 = (x � x) � (x � x).

Remark 8.3. x � x = 0 iff C � x ⊆ x⊥ iff x �C ⊆ x⊥, since B(C � x, x) =
B(C, x � x).

Notice that by (2.5), x4 = B(x � x, x)x ∈ Fx for every isotropic element x .
By Proposition 8.2.(3), if x � x 
= 0, the only potential completion of the chain
x� ∗ �x is by plugging x � x in the middle. Indeed x�x � x�x iff x4 = 0, since
this is when B(x, x � x) = 0.

8.2. Chains of strongly orthogonal elements

Proposition 8.4. (1) If x�y and x � x 
= 0, then y�x � x.
(2) Assuming x4 
= 0 and y4 
= 0, each of the following implies the others:

x�y, y�x � x, x � x�y � y, y � y�x.

Proof. (1) B(y, x � x) = B(x � x, y) = B(x, x � y) = 0, and y � (x � x) =
−x � (x � y) = 0 by the relation (2.4).

(2) Each relation implies the one following it by (1), and from y � y�x we get
x�y4 ≡ y.

��
We say that C is reduced if x � x 
= 0 for every x 
= 0.

Proposition 8.5. Suppose C is reduced. If the chain of length n, x1� ∗ � · · · � ∗
�xn, can be completed for every x1, xn ∈ P1, then the same holds for every chain
of the same length, regardless of the direction of the arrows.

Proof. By Proposition 8.4.(2), u�v�w iff u �v � v �w, so replacing an entry by
its square changes the order of all the arrows incoming to or outgoing from this
entry. We may also change x1 to x1 � x1 or xn to xn � xn , so there are sufficiently
many inversions to make all the chains of a given length equivalent. ��

We now prove that the diameter of P1, as a directed graph with respect to the
strong orthogonality relation �, is at most 4. We need one preparatory remark.
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Proposition 8.6. (1) For any w,w′, w�w′ iff w ∈ (w′ �C) ∩ w′⊥, iff w′ ∈
(C �w) ∩ w⊥.

(2) If y′ � x ′ = 0 then the chain x ′� ∗ �y′ can be completed.

Proof. (1) This is because Ker(Lw) = Im(Rw) and Ker(Rw) = Im(Lw).
(2) The condition for x ′�z�y′ is that z ∈ (C � x ′)∩ (y′ �C)∩ x ′⊥ ∩ y′⊥, and by

assumption this is non-zero since (C � x ′)∩(y′ �C) is 3-D by Proposition 3.8.
��

Remark 8.7. From Proposition 8.6.(2) it follows that every arrow y′�x ′ can be
completed to a triangle z′�y′�x ′�z′.

Since the graph is directed, we have several variants of the main result. Of
course when C is reduced they are all equivalent by Proposition 8.5.

Theorem 8.8. Let x, y be non-zero isotropic elements. Then one can complete each
of the chains

x � ∗ � ∗ � ∗ � y,

x �∗ � ∗ � ∗ � y,

and

x � ∗ � ∗ � ∗ �y,

with isotropic non-zero elements.

Proof. We repeatedly use Proposition 8.6.(1). The proof in each case begins with
(2) of that Proposition: we find x ′ and y′ with y′ � x ′ = 0, which will guarantee the
chain can be completed.

1. For x�x ′ and y′�y: Choose x ′ ∈ (C � x) ∩ x⊥ satisfying B(y, x ′) = 0
as well; then (y �C) ∩ (x ′ �C) has dimension 2 by Proposition 3.7, so there is a
non-zero y′ ∈ (y �C) ∩ y⊥ ∩ (x ′ �C). Thus y′�y and y′ � x ′ = 0.

2. For x �x ′ and y′�y: Choose x ′ ∈ (x �C) ∩ x⊥ with B(y, x ′) = 0; then
(y �C)∩(x ′ �C) has dimension 2, so there is a non-zero y′ ∈ (y �C)∩y⊥∩(x ′ �C),
and then y′�y and y′ � x ′ = 0 as above.

3. For x�x ′ and y′ �y: Choosing x ′ orthogonal to y will not insure that
dim((C � y) ∩ (x ′ �C)) > 1, so instead we choose y′ ∈ C � y ∩ y⊥, which is
also orthogonal to x . Then dim((C � y′)∩ (C � x)) = 2, and we can find a non-zero
x ′ such that x�x ′ and y′ � x ′ = 0, as required. ��
Remark 8.9. The arguments in Theorem 8.8 do not apply if the direction of the
arrows in the chain is not one of the above. For example, when C is not reduced, it
is not clear if every chain of the form

x �∗ � ∗ � ∗ �y

or

x � ∗ �∗ � ∗ �y

can be completed.
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Theorem 8.8, in particular in the form x� ∗ �∗ � ∗ �y, which follows in
C is reduced, generalizes the common slot lemma for Kummer elements in central
simple algebras of degree 3 due to Rost [10]; see Theorem 13.2 below.

9. p-central spaces

The rest of this article is devoted to applications to central simple algebras of
degree p = 3. A non-central element of a central simple algebra is called p-central
if α = x p ∈ F . When the base field contains a p-root of unity ρ ∈ F , every
p-central element can be complemented by an element y satisfying yxy−1 = ρx ;
then y is necessarily p-central, and A = F[x, y] is fully characterized by α = x p

and β = y p. Such an algebra is called a symbol algebra, denoted by (α, β)p . The
generators x and y form a standard pair of generators for A. In order to understand
the various presentations of A in these terms, we must understand the p-central ele-
ments. Here we are mostly concerned with p-central subspaces, which are linear
subspaces all of whose elements are p-central.

In an algebra of degree 3, every element a satisfies the characteristic polynomial

Pa(λ) = λ3 − s1(a)λ
2 + s2(a)λ− s3(a),

where si : A→F are the reduced coefficients: s1 is the reduced trace, and s3 is the
reduced norm. Thus, the 3-central elements in A are the isotropic vectors of the
quadratic form s2 restricted to the space of zero-trace elements. In particular, a
p-central space is an isotropic subspace.

Let x be a 3-central element, so conjugation by x induces an automorphism of
order p of A. Let Vj be the eigenspace of the eigenvalue ρ− j . Thus V0(x) = F[x],
and that every Vj (x) is an F[x]-module. In fact Vj (x) = F[x]y j , where y ∈ A×
is any element such that yxy−1 = ρx . Note that V2(x) = V1(x2).

Proposition 9.1. Let x be a p-central element, and let k be prime to p. Then

V = Fx + Vk(x)

is a p-central space of A, maximal with respect to inclusion.

Proof. It suffices to prove the claim for k = 1. Taking y ∈ A such that yxy−1 = ρx ,
we have that x+y is p-central, and since x andwy form a standard pair of generators
for everyw ∈ F[x], the elements x +wy are all p-central. The maximality follows
since the dimension of an isotropic subspace is at most half the dimension of the
space of zero-trace elements, which is 8.

(The claim is true, with a different proof, for any prime p). ��
As for the uniqueness of presentation, we have:

Proposition 9.2. Assume p 
= 2, and let x, y be a standard pair of generators.

(1) Let x̂, ŷ ∈ V = Fx + F[x]y be non-zero elements satisfying ŷx̂ = ρ x̂ ŷ. Then
x̂ ∈ Fx + Fx ŷ and F[x]ŷ = F[x]y.
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(2) If, furthermore, x̂ ŷ ∈ V , then F x̂ = Fx.

Proof. Write x̂ = αx + wy and ŷ = βx + w′y for α, β ∈ F and w,w′ ∈ F[x].
Let σ be the automorphism of F[x] induced by conjugation by y. The condition
ŷ x̂ = ρ x̂ ŷ gives

αβx2 + (βxw + ραxw′)y + w′σ(w)y2

= ραβx2 + (ρ2βxw + ραxw′)y + ρwσ(w′)y2,

which implies αβ = 0. If β 
= 0 then α = 0 implies w = 0, which is impossible.
Therefore β = 0, and the remaining equation is w′σ(w) = ρwσ(w′), from which
it follows that w ∈ Fxw′ and F[x]ŷ = F[x]y.

The condition x̂ ŷ ∈ V then implies w = 0 or w′ = 0, but w′ 
= 0, so x̂ =αx .
��

Corollary 9.3. Fx + Vj (x) = Fx̂ + Vj (x̂) iff F x̂ = Fx.

Indeed, the proposition covers j = 1, and replacing ρ by ρ j gives the general case.

10. The Okubo algebra

Let A be a cyclic central simple algebra of degree 3 over F . We assume from here
on that charF 
= 3, and that F contains a 3-root of unity, ρ. Since 3-central elements
have trace zero, we focus on the space C = {a ∈ A : Trd(a) = 0} of elements with
trace zero in A; as vector spaces, A = F ⊕ C .

But C is not a subalgebra of A, so one defines an operation on C , called the
Okubo product [6, Sect. 34.C], by setting

a � b = 1 − ρ

3
ab + 1 − ρ2

3
ba − 1

3
Trd(ab), (10.1)

where ab is the usual product in A. Under this action, C is a symmetric composition
algebra with norm

N(a) = −1

3
s2(a), (10.2)

where s2 is the second characteristic coefficient [6, Proposition 34.19]. (Operations
of the form a ∗ b = λab + (1 −λ)ba for a fixed λ ∈ F are called quasi-associative,
see [11, Sect. V.3]).

Note that when A is a division algebra, (C, � ) has no idempotents: a � a =
a2 − 1

3 Trd(a2) cannot be equal to a since A has no quadratic subfields. For the
same reason (C, � ) is reduced, namely a � a 
= 0 unless a = 0. We use a2 to
denote the usual product aa in A; the square in C will always be written explicitly,
as a � a. Likewise a−1 will always denote the inverse in A.

As noted above, N(a) = 0 if and only if the characteristic polynomial is Pa(λ) =
λ3 − s3(a), which is the case exactly when a is 3-central.

We can now compute the left and right maximal isotropic spaces.
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Remark 10.1. Let x be a 3-central element. Then

x �C = Fx2 + V2(x),

and

C � x = Fx2 + V1(x).

Proof. Let y be an element such that yxy−1 = ρx . Since 1−ρ
3 ρ2 + 1−ρ2

3 = 0,
we have that x � F[x]y = F[x]y2 � x = 0. Likewise computation shows that
x � F[x]y2 = F[x]y2 and F[x]y � x = F[x]y. We also have that x � (Fx+Fx2) =
(Fx + Fx2) � x = Fx2 (notice that x � F is not defined, as F 
⊆ C). ��

Recall that every central simple algebra of degree 3 is cyclic [1, Theorem XI.5].
Our main result in this section complements Theorem 9.1 as follows.

Theorem 10.2. Let A be a cyclic algebra of degree 3 over a field F containing
primitive 3-roots of unity. Then every maximal 3-central subspace of A has the
form Fx + V1(x) or Fx + V2(x) for some 3-central element x.

Proof. Let V ⊆ A be a maximal 3-central subspace. Then V ⊆ C where C = A0
is the space of elements with trace zero, which is a composition algebra under
the Okubo product (10.1), with respect to the norm (10.2). By Theorem 3.1 and
Proposition 3.2, V has the form V = x �C or V = C � x for a 3-central x . Now let
y ∈ A be an element such that yxy−1 = ρx . By Remark 10.1, x �C = Fx2+V2(x)
and C � x = Fx2 + V1(x), as claimed. ��

As for the intersections of such spaces, we have:

Proposition 10.3. Let x and x ′ be 3-central elements, and k = 1, 2.

(1) (Fx +Vk(x))∩(Fx ′+Vk(x ′)) is 2-D if Trd((xx ′)−1) = 0, and zero otherwise.
(2) (Fx + V1(x))∩ (Fx ′ + V2(x ′)) is 3-D if x2 � x ′2 = 0, and equals F · (x2 � x ′2)

otherwise.

This is immediate from Propositions 3.7 and 3.8, using C � x2 = Fx + V2(x) and
x2 �C = Fx + V1(x).

11. Explicit presentation

Fix a standard pair of generators x, y for the algebra A, and let α = x3 and
β = y3 be the defining scalars. We record, for later use, some basic computations
in the Okubo algebra C associated to A. Note that C is spanned by

{
xi y j

}
where

(i, j) ∈ {0, 1, 2}2 range over the non-zero vectors. If the product of distinct basis
elements is not a scalar, then their (multiplicative) commutator is ρ or ρ2.
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11.1. The operation �

Directly from the definition (10.1) we obtain

x � x = x2;
x � x−1 = 0;
x � y = 0;
y � x = −ρ2xy.

(11.1)

These four cases encode every product of the form xi y j � xi ′ y j ′ ; for conve-
nience, here is the complete multiplication table (with column element acting from
the left).

� x x2 y xy x2 y y2 xy2 x2 y2

x x2 0 0 0 0 −ρxy2 −ρx2 y2 −ραy2

x2 0 αx −ρx2 y −ραy −ραxy 0 0 0
y −ρ2xy 0 y2 −ρ2xy2 0 0 −ρ2βx 0

xy −ρ2x2 y 0 0 ρx2 y2 −αy2 −ρβx 0 0
x2 y −ρ2αy 0 −ρx2 y2 0 ρ2αxy2 0 0 −αβx
y2 0 −ρ2x2 y2 0 0 −ρ2βx2 βy 0 −ρ2βx2 y

xy2 0 −ρ2αy2 0 −βx2 0 −ρβxy ρ2βx2 y 0
x2 y2 0 −ρ2αxy2 −ρβx2 0 0 0 −αβy ραβxy

11.2. The bilinear form

The (symmetric) bilinear form associated to N is defined by B(a, b) = N(a + b)−
N(a)− N(b). Linearization of B(a, a) = 1

3 Trd(a2) gives

B(a, b) = 1

3
Trd(ab). (11.2)

It follows that

B(x, x) = 0;
B(x, x−1) = 1;
B(x, y) = 0;

(11.3)

This can be verified directly, as N(x + x−1) = 1 and N(x + y) = 0.
Using the Okubo product (10.1), we can easily identify standard pairs of gen-

erators. Indeed, the product can be rewritten as

a � b = 1 − ρ2

3
(ba − ρab)− 1

3
Trd(ab),

which emphasizes its connection to the relation ba = ρab.
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11.3. Unital translation

Since y is 3-central, we have that (y + y−1)3 − 3(y + y−1) = (y3 + y−3) ∈ F ,
so s2(y + y−1) = −3 and N(y + y−1) = 1. Thus we may choose u = y + y−1

in (2.9), and then e = (y + y−1) � (y + y−1) = y2 + y−2 is the unit element of
(C,�).

11.4. The involution

A unital composition algebra (C,�, e) has an involution

a 	→ ā (11.4)

defined by a + ā = B(a, e)e.
Since e = y2 + y−2, one computes directly using (11.3) that

x = −x

and

y = β2 y−1.

11.5. The operation �
With u = y + y−1 in (2.9), we have

a � b = ((y + y−1) � a) � (b � (y + y−1)). (11.5)

Since (C,N) has isotropic vectors, it is known, a-priori, that (C,�) is the split
octonion algebra. However it turns out that for any standard pair of generators x, y,
one can scale the standard monomial basis

{
xi y j

}
of C , so that the multiplication

table of � is fixed monomial table, independent of the original algebra A, or of the
choice of x and y. Indeed, with respect to the basis

B =
{

y2, y−2, x,−x−1, v1 = xy−2, v2 = −ρ2x2 y−2,

v3 = x−2 y2, v4 = −ρx−1 y2
}
,

the multiplication table is (with the row entry acting from the left, and zero entries
omitted):

� y2 y−2 x −x−1 v1 v2 v3 v4

y2 y2 x v1 v3

y−2 y−2 −x−1 v2 v4

x x y2 v2 −v4

−x−1 −x−1 y−2 v1 −v3

v1 v1 −v2 −x−1 y2

v2 v2 −v1 y−2 x
v3 v3 v4 −x−1 y2

v4 v4 v3 y−2 x
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Evidently, e11 = y2, e22 = y−2, e12 = x and e21 = −x−1 form a system of
matrix units, and i = y2 − y−2 and j = x − x−1 give the quaternionic presentation

i � i = j � j = e, j � i = −i � j

of a 2 × 2 matrix subalgebra of C .
Since the vectors x, x−1 and the vi are all orthogonal to y2 + y−2 with respect

to B, the involution described in Sect. 11.4 satisfies

y2 = y−2, y−2 = y2, x = −x, x−1 = −x−1, vi = −vi .

In particular i = −i and j = − j , so (11.4) is the symplectic involution on the
subalgebra F[i, j] = Fe + Fi + F j + F(i � j).

Let k = v1 + v4. Then k � k = e, k = −k, and for every a, b ∈ F[i, j] we have

a � (k � b) = k � (a � b),
(k � b) � a = k � (a � b),

(k � a) � (k � b) = b � a.
(11.6)

This completes the description of (C,�) as a split Cayley-Dickson extension
(M2(F), 1).

12. Standard pairs of generators in isotropic spaces

Again let A be cyclic central simple algebra of degree 3 over F . Consider the vari-
ety XYA ⊆ PA × PA of pairs (x, y) for which yx = ρxy. Every point in XYA

corresponds to a standard pair of generators.
In fact XYA ⊆ PC × PC . The projection on each entry covers the variety of

3-central elements, and the fibers are all 3-D subspaces: the fiber over x is V1(x) =
F[x]y where yxy−1 = ρx . In this section we consider standard pairs of generators
inside a given 3-central space U ⊆ C , by computing the intersection of XYA with
PU × PU .

Now we have:

Proposition 12.1. (1) For a 3-central element z, z �w = 0 iff w ∈ Fz2 + V1(z).
(2) Two 3-central elements z, w ∈ A form a standard pair of generators iff

B(z, w) = 0 and z �w = 0.

Proof. (1) Follows from Ker(Lz) = Im(Rz) (Proposition 3.4), where Lz : x 	→
z � x and Rz : x 	→ x � z are the multiplication operators. A computational veri-
fication runs as follows. From (11.4) we see that z �w = 0 implieswz−ρzw ∈
F , and for a suitable θ ∈ F, y = w − θ z−1 satisfies yz = ρzy. The other
direction follows from (11.1) and (11.3).

(2) Immediate from the first statement, and the fact that when u = w+ θ z−1 and
wzw−1 = ρz, θ = B(z, u). ��

We write a�b (‘a is strongly orthogonal to b’), if a � b = 0 and B(a, b) = 0
(this is not symmetric). Thus a�b iff a and b form a standard pair of generators.
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12.1. Maximal subspaces

From Theorem 10.2 it is clear that every maximal isotropic subspace contains a
standard pair of generators.

Moreover, by Corollary 9.3, a maximal subspace uniquely determines its gen-
erator x (up to multiplication by scalars), which provides an inner characterization
of the kind: in a right maximal 3-central space there is an element y′ such that
y′xy′−1 = ρx , and in a left space there is an element such that y′xy′−1 = ρ−1x
(but it is impossible to have both).

Following Proposition 9.2.(1), the standard pairs of generators in a maximal
3-central space can be described as follows:

Proposition 12.2. Let V be a maximal 3-central space. Then XYA ∩ (PV × PV )
is a blowup of PV at a point. More precisely:

(1) Suppose V is of the right kind, namely V = Fx ⊕ W for W = V1(x), where
x is a 3-central element. Then

XYA ∩ (PV × PV ) = ∪y∈PW (P(Fx + Fxy)× {y}).
(2) Suppose V is of the left kind, namely V = Fx ⊕ W for W = V2(x). Then

XYA ∩ (PV × PV ) = ∪y∈PW ({y} × P(Fx + Fxy)).

12.2. 3-D spaces

We now describe the 3-D spaces of 3-central elements. As mentioned in the intro-
duction, Raczek [9] obtained a similar classification by more direct means.

Theorem 12.3. Every 3-D isotropic space in A is of the form

U = Fy + Fxy + Fz (12.1)

for a (projectively) unique standard pair of generators x, y and a unique non-zero
Fz ⊆ Fx + Fx2 y.

Proof. By Proposition 4.2, every such space can be (projectively) uniquely pre-
sented in the form U = x ′′ � x ′⊥ = x ′′ �C ∩ C � x ′, where x ′′, x ′ are isotropic
vectors satisfying x ′′ � x ′ = 0. Since Fx ′′ = Fx ′′4, by changing x ′′ up to scalars
we may assume x ′′ = x2 for some isotropic element x . By Proposition 12.1, the
condition x2 � x ′ = 0 implies either x ′ ∈ Fx or x ′ = y−1 + ρ−1θx for some
element y satisfying yxy−1 = ρx and some θ ∈ F .

For the first case we have x2 �C = Fx + F[x]y and C � x = Fx2 + F[x]y,
so the intersection is F[x]y, in which case z = x2 y.

In the second case, let y′ = xy, which together with x ′ = y−1 + ρ−1θx forms
a standard pair of generators. Then

x2 �C ∩ C � x ′ = (x2 �C) ∩ Ker(Lx ′)

is equal to Fy + Fxy + F(x +θx2 y) since x ′ � y = x ′ � xy = x ′ � (x +θx2 y) = 0.
So take z = x + θx2 y (then x ′ = zx−1 y−1). ��
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We can now compute XYA ∩ (PU × PU ).

Proposition 12.4. Let U be a 3-D 3-central space, presented as in (12.1), with z =
ϕx +ψx2 y for some ϕ,ψ ∈ F, and let α = x3. The intersection XYA ∩(PU ×PU )
is equal to:

(1) The plane
{
(x ŷ, ŷ) : ŷ ∈ PU

}
if Fz = Fx2 y;

(2) The union of intersecting lines

{[x]} × P(Fy + Fxy) ∪ P(Fx + Fxy)× {[y]}
if Fz = Fx;

(3) Otherwise, the intersection is the line
{
([αψλxy + μz], [λy + μxy]) : (λ, μ) ∈ F2 − {(0, 0)}

}
.

Proof. Suppose x̂, ŷ ∈ U satisfy ŷ x̂ = ρ x̂ ŷ. By Proposition 12.2, ŷ ∈ F[x]y∩U =
Fy + Fxy, and x̂ ∈ U ∩ (Fx + Fx ŷ). Write ŷ = λy + μxy for some λ,μ ∈ F .
If ϕ = 0 (this is Case (1)) then U = F[x]y and the claim follows by direct
computation. So we may assume ϕ 
= 0.

The intersection U ∩ (Fx + Fx ŷ) is the 1-D space spanned by μϕx +ψx ŷ =
ψλxy + μz, unless Fz = Fx and F ŷ = Fy, where the intersection is the 2-D
space Fx + Fxy. ��

Having classified the arrows x�y in PU , we classify all chains x̂�ŷ�ẑ.

Proposition 12.5. Let U be a 3-D 3-central space, presented as in (12.1).

(1) When Fz = Fx2 y,U is the eigenspace V1(x), and the triplets x̂�ŷ�ẑ all
have the form ŷ�x2 ŷ�x ŷ for ŷ ∈ U. Every such triplet closes into a triangle:
x ŷ�ŷ.

(2) Otherwise, the (projectively) unique triplet in U is

z�xy�y;
Proof. The relations x̂�ŷ and ŷ�ẑ in U are classified in Proposition 12.4, so it
remains to compare left terms to right terms, checking the case Fz = Fx sepa-
rately. ��

12.3. 2-D 3-central spaces

Following the definition of the operator L in (5.1), we define for a 3-central space
U

L(U ) = ∩x∈U (Fx2 + V1(x));
namely, the intersection of the left maximal 3-central subspaces associated to ele-
ments of U .
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Theorem 12.6. For any 2-D 3-central space P, we have the following:

(1) L(P) is also 2-D.
(2) LLL(P) = P.

Proof. Proposition 5.3.(2) and Theorem 6.2. ��
Most 2-D 3-central spaces do not contain standard pairs of generators. When

P does contain such a pair, we may write P = Fx + Fy where x�y, and
then L(P) = (Fx2 + V1(x)) ∩ (Fy2 + V1(y)) = span

{
x2, y, xy, x2 y

} ∩
span

{
y2, x2, x2 y, x2 y2

} = span
{

x2, x2 y
}

by Proposition 5.3.(2). So from the
pair x�y we get the pair x2 y�x2. Applying L again gives the pair y2�xy2, and
applying it once more brings us back to x�y, as the theorem predicts.

13. Linkage

Specializing Theorem 7.4 to the composition algebra (C, � ) associated to A, we
obtain the following chain of spaces:

Theorem 13.1. Let V, V ′ be two maximal 3-central spaces in A.

(1) If V and V ′ have the same kind, then there is a maximal 3-central space U (of
the same kind) such that V ∩ U and U ∩ V ′ are 2-D.

(2) If V and V ′ have opposite kinds, then there are maximal 3-central spaces U
and U ′ such that V ∩ U ′,U ′ ∩ U and U ∩ V ′ are 3-D.

As a final application, we deduce from Theorem 8.8 a chain for elements:

Theorem 13.2. If x0 and x4 are 3-central elements of A, then there are x1, x2, x3
such that xi , xi+1 form a standard pair of generators for i = 0, 1, 2, 3.

This was shown by Rost in [10]. In light of Proposition 12.1, this result general-
izes to Theorem 8.8 and Proposition 8.5. See [5] for another treatment of chains
of 3-central elements, using the Okubo product in a direct manner. An analog in
characteristic 3, with somewhat longer chains, was given in [13].

14. Cyclic algebras with involution of the second kind

Fix a quadratic extension K/F , and let A be a central simple K -algebra. An involu-
tion of A is of the second kind over K/F , if the subfield of symmetric elements in K
is equal to F . The existence of such an involution is equivalent to the corestriction
corK/F A being trivial.

A classical result of Albert characterizes quaternion K -algebras with an invo-
lution of the second kind over K/F , as those defined over F , namely those of the
form K⊗F Q0 where Q0 = (α, β)2,F for α, β ∈ F .

We begin by noting that when K = F[ρ], an analogous result holds for algebras
of degree 3. Clearly, an algebra of odd degree with trivial corestriction cannot be
the restriction of a central simple algebra over F , as in the case of quaternions,
unless itself trivial. However we prove the following:
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Theorem 14.1. Let A be a cyclic algebra of degree 3 over K = F[ρ], with trivial
corestriction along the extension K/F. Then, for a suitable involution of the second
kind over K/F, A has a standard pair of symmetric generators. In particular, A
can be presented in the form (α, β)K , where α, β ∈ F.

Proof. The first step is to show that the algebra has a 3-central element x with
x3 ∈ F . This is proved in [4], for any quadratic field extension K/F ; for conve-
nience we briefly sketch the proof here. The argument of [3] constructs elements x
with Trd(x) = Trd(x−1) = 0. By starting this construction with a subfield which is
symmetric with respect to some involution of the second kind, τ , one may assume
the resulting element x is a product of two τ -symmetric elements. But conjugation
of the involution by a symmetric element induces again an involution (of the second
kind over K/F), so x is symmetric with respect to some involution, with respect
to which x3 ∈ K is symmetric; hence x3 ∈ F .

By Skolem-Noether we may write A = K [x, y] where yxy−1 = ρx . Apply-
ing τ to the conjugation relation, we get y−τ xyτ = ρ−1x , so yτ = uy for some
u ∈ K [x]×. Letting σ denote the automorphism of K [x] induced by conjugation
by y, we have that y = yττ = yτuτ = uστ(u), and since (στ)2 = 1, Hilbert’s
theorem 90 provides us with an element v ∈ K [x]× for which u = v−1στ(v).

Let y′ = yvτ : conjugation by y′ induces σ on K [x], and (y′)τ = vyτ = vuy =
σ(vτ )y = yvτ = y′. Thus x, y′ are a standard pair of symmetric generators, and
(y′3)τ = y′3 is in F . ��
Remark 14.2. The argument in the first paragraph of the proof of Theorem 14.1
shows that for any involution τ of the second kind, and for any 3-central element
x ∈ A, x3 ∈ F if and only if x is a product of two τ -symmetric elements.

15. The corresponding composition algebra

Again assume K = F[ρ], and let A be a central simple algebra of degree 3 over K ,
with an involution of the second kind (∗) fixing F . The space C∗ = Sym(A, ∗)0, of
zero trace symmetric elements in A, is closed under the operation 10.1, and indeed
(C∗, � ) is a symmetric composition algebra of dimension 8 over F .

Since (∗) switches ρ and ρ2 and inverts the order of the standard product, it
readily follows that (∗) is an automorphism of (C, � ). The fixed subalgebra is C∗,
and in fact K⊗F C∗ = C , with τ⊗F 1 = (∗).

It follows that the restriction of the quadratic norm form from C to C∗ is a
3-fold Pfister form over F . An algebra A may have two involutions (∗) and (∗′) of
the second kind, such that (C∗′ , N ) is anisotropic while (C∗′ ,N) is hyperbolic; this
is demonstrated for M3(C) in [6, Example 34.40].

However, by Theorem 14.1 there is always an involution ∗ for which A is gen-
erated by symmetric elements x and y such that yx = ρxy. For such an involution,
the form is hyperbolic, and

C∗ = spanF

{
x, x2, y, y2, ρ2xy, ρ2x2 y2, ρxy2, ρx2 y

}
.
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The symmetric monomials have the form ρ−i j x i y j , so it is easy to verify that
Vj (x) = F[ρ− j x]y j . Using the multiplication table in Sect. 11.1, it follows that
analogously to Remark 10.1,

C∗ � x = Fx2 + F[ρ2x]y

and

x �C∗ = Fx2 + F[ρx]y2.

Applying the results of the first part to (C∗, � ), we obtain analogs to what was
proved above, for symmetric 3-central elements in A with respect to an involution
of the second kind over K/F (assuming that symmetric 3-central elements exist).

In particular we can classify maximal 3-central spaces in Sym(A, ∗), and prove
Rost’s Theorem 13.2 for symmetric elements:

Theorem 15.1. Let A be a cyclic algebra of degree 3 over a field K , such that
K = F[ρ] is a quadratic extension of F, and let ∗ be an involution with respect to
which A has symmetric 3-central elements.

Then every maximal 3-central subspace of Sym(A, ∗) has the form Fx +V1(x)
or Fx + V2(x) for some symmetric 3-central element x.

Theorem 15.2. If x0 and x4 are symmetric 3-central elements of A as above, then
there are symmetric x1, x2, x3 such that xi , xi+1 form a standard pair of generators
for i = 0, 1, 2, 3.
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