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Abstract. We study the generalized Clifford algebras associated

to homogeneous binary forms of prime degree p, focusing on expo-

nentiation forms of p-central spaces in division algebra.

For a two-dimensional p-central space, we make the simplifying

assumption that one basis element is a sum of two eigenvectors

with respect to conjugation by the other. If the product of the

eigenvalues is 1 then the Clifford algebra is a symbol Azumaya

algebra of degree p, generalizing the theory developed for p = 3.

Furthermore, when p = 5 and the product is not 1, we show that

any quotient division algebra of the Clifford algebra is a cyclic al-

gebra or a tensor product of two cyclic algebras, and every product

of two cyclic algebras can be obtained as a quotient. Explicit pre-

sentation is given to the Clifford algebra when the form is diagonal.

1. Introduction

An element y in an (associative) algebra A is called n-central if yn

is in the center. One way to study such elements is through n-central

subspaces, which are linear spaces all of whose elements are n-central.

The n-central elements are of special importance in the theory of

central simple algebras, through their connection with cyclic field ex-

tensions and cyclic algebras. Let F be a field. The degree of a central

simple algebra over F is, by definition, the square root of the dimen-

sion. Every maximal subfield of a division algebra has dimension equal

to the degree. The algebra is cyclic if it has a maximal subfield which

is cyclic Galois over the center.
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Hamilton’s quaternion algebra is the classical example of a cyclic al-

gebra of degree 2 over the real numbers. The first examples of arbitrary

degree were constructed by Dickson [1], as follows: Let L/F be an n-

dimensional cyclic Galois extension with σ a generator of Gal(L/F ),

and let β ∈ F×. Then ⊕n−1
i=0 Ly

i, subject to the relations yu = σ(u)y

(for u ∈ L) and yn = β, is a cyclic algebra of degree n, denoted by

(L/F, σ, β); every cyclic algebra has this form. In particular, every

cyclic algebra of degree n has an n-central element, which is not n′-

central for any proper divisor n′ of n (we call such an element strongly

n-central . This is taken to be the definition for n-central elements in

some papers, but we find the closed definition to be more suitable when

dealing with spaces).

If F contains nth roots of unity, then a strongly n-central element of

a division algebra generates a cyclic maximal subfield. However, there

are central division algebras with strongly n-central elements which are

not cyclic. The first example, for n = 4, was given by Albert, and an

example with n = p2 for an arbitrary prime p was recently constructed

by Matzri, Rowen and Vishne [11]. Nevertheless, Albert proved that

in prime degree, every central division algebra with a p-central element

is cyclic.

When F does have nth roots of unity ρ, a cyclic maximal subfield

has the form L = F [x] where x is n-central, so every cyclic algebra has

the ‘symbol algebra’ form

(α, β)n,F := F [x, y | xn = α, yn = β, yx = ρxy],

emphasizing even further the role of n-central elements in presentations

of cyclic algebras. Moreover, in the above presentation, Fx+ Fy is an

n-central space (Remark 2.5 below).

To every n-central space V one associates the exponentiation form

Φ :V→F , defined by Φ(v) = vn, which is homogeneous of degree n.

One then studies the space (and the algebra it generates) via the asso-

ciated form.

Definition 1.1. Let Φ :V→F be a homogeneous form of degree n.

The generalized Clifford algebra associated to Φ is the quotient

CΦ of the free associative algebra F ⟨x1, . . . , xt⟩, subject to the relations

(a1x1 + · · · + atxt)
n = f(a1v1 + · · · + atvt) for every a1, . . . , at ∈ F ,

where {v1, . . . , vt} is a basis of V .
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We will say that CΦ is the Clifford algebra of Φ, or, oftentimes, of

V itself.

Clearly, Fx1 + · · · + Fxn is an n-central subspace of CΦ. A base

change induces a linear isomorphism between the respective presenta-

tions of CΦ, so the Clifford algebra is independent of the basis. This

generalization of the classical construction of Clifford algebras is due

to Roby, [13].

Fixing F , if A is a central simple algebra over an extension K ⊇ F ,

we call an F -subspace V ⊆ A ‘n-subcentral’ if vn ∈ F for every v ∈ V .

For every homogeneous form Φ :V→F , the simple quotients of CΦ are

precisely the simple algebras generated by n-subcentral spaces V , in

which vn = Φ(v) for every v ∈ V .

A homogeneous form Φ is anisotropic if Φ(v) ̸= 0 for every v ̸= 0.

We say that an n-central space is anisotropic if its exponentiation form

is anisotropic, which is the case exactly when its non-zero elements are

all invertible. For example, any n-central subspace of a division algebra

is anisotropic.

The Clifford algebras of quadratic forms are a classical object. In

this case the center of CΦ is F (for even dimensional forms) or an

étale quadratic extension (otherwise), and CΦ is a tensor product of

quaternion algebras over the center (see, e.g., [9] or [6]).

Let us briefly describe what is known for binary cubic forms, to put

the results of this paper in perspective.

Clifford algebras of a binary cubic form f were first considered by

Heerema in [5]. Haile studied these algebras in [2] and [3], and showed

that in characteristic not 2 or 3, CΦ is an Azumaya algebra, with center

which is the coordinate ring of the affine elliptic curve s2 = r3 − 27∆

where ∆ is the discriminant of f . He also proved that the simple

homomorphic images of CΦ are cyclic algebras of degree 3; moreover

for every algebraic extension K/F there is a one to one correspondence

between the K-points of the elliptic curve s2 = r3−27∆ and the simple

homomorphic images, mapping the point (r0, s0) on the curve to the

symbol algebra (a, s0 +
1
2
(3ρ3(1− ρ3)ad))3,F (r0,s0).

Along these lines, it is shown in [3] that CΦ splits if and only if the

ternary form w3 − Φ(v) has a nontrivial F -rational point.

When d > 3 or n > 2, it is known that the Clifford algebra contains

a free F -algebra on two generators (Haile [4] attributes this to Revoy).
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In particular, the algebra is not a finite module over its center and

hence is not Azumaya.

This situation can be partially remedied by considering the reduced

Clifford algebra AΦ, defined as the quotient of CΦ with respect to

the intersection of the kernels of all the d-dimensional representations,

where d is the degree of f . Haile and Tesser showed in [4] that AΦ is

Azumaya; also see [15]. This quotient was further studied by Kulkarni,

[7],[8].

We will assume F is an infinite field. An invertible p-central ele-

ment acting by conjugation decomposes the algebra into a direct sum

of eigenspaces. Since the binary Clifford algebra is large even for small

values of p > 3, our approach here is to restrict the number of eigen-

vectors in a basis element. More precisely, we study two-dimensional

p-central spaces V = Fx + Fy, assuming that y can be written as a

sum of two eigenvectors with respect to conjugation by x. Indeed, this

much is guaranteed for p = 3.

After some preliminaries on homogeneous forms and eigenvector de-

composition in Sections 2 and 3, we introduce short p-central spaces

in Section 4: a p-central space is short if it is spanned by elements x, y

such that x is invertible, and y is the sum of two eigenvectors corre-

sponding to the conjugation action of x. The type of a short p-central

space is the set of eigenvalues participating in the decomposition.

We prove (Theorem 4.12) that any division algebra, a-priori of arbi-

trary dimension, which is generated by a short p-space of type {ρ, ρ−1},
is in fact a symbol algebra of degree p over its center. This is re-

interpreted in Section 5 to show that the Clifford algebra of a short

p-space of this type is an Azumaya algebra of degree p, whose center

is the function ring of a hyper-elliptic curve of genus [(p− 1)/2].

For p = 5 there are, up to choosing ρ, two possible types of short

p-central spaces, {ρ, ρ−1} and {ρ, ρ3}. In Section 6 we study short 5-

central spaces of type {ρ, ρ3}. This case turns out to be very different

than the previous one, resulting in quotients of the Clifford algebra

which are tensor products of two cyclic algebras; and indeed, every

division algebra which is either a symbol algebra of degree 5 or the

tensor product of two symbol algebras is, essentially, a quotient of a

suitable Clifford algebra associated to a diagonal quintic form.
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2. Preliminaries

It is convenient to express n-centrality of a vector space in terms of

basis elements. To this end, we adopt the notation of [12]: xd11 ∗· · ·∗xdtt
denotes the sum of all the products with each xi appearing di times.

For example x2∗z2 = xxzz+xzxz+xzzx+zxxz+zxzx+zzxx; as usual

we may omit exponents di = 1, so that x2 ∗ y = xxy+xyx+ yxx. This

notation is commutative in the sense that xd11 ∗· · ·∗xdtt = x
dσ(1)

σ(1) ∗· · ·∗x
dσ(t)

σ(t)

for any permutation σ ∈ St.

Proposition 2.1. (1) A subspace V =
∑
Fxi of an associative

algebra A is n-central iff xd11 ∗ · · · ∗ xdtt ∈ F for every partition

d1 + · · ·+ dt = n.

(2) If V as above is n-central, then the associated exponentiation

form V→F is Φ(u1x1 + · · · + utxt) =
∑

d1+···+dt=n(x
d1
1 ∗ · · · ∗

xdtt )u
d1
1 · · ·udtt .

Proof. If every xd11 ∗ · · · ∗ xdtt ∈ F then clearly

(u1x1 + · · ·+ utxt)
n =

∑
d1+···+dt=n

(xd11 ∗ · · · ∗ xdtt )u
d1
1 · · ·udtt ∈ F

for every u1, . . . , ut ∈ F . On the other hand if the space is n-central,

then for every linear functional ψ :A→F such that F ⊆ kerψ, we have∑
d1+···+dt=n u

d1
1 · · ·udtt ψ(xd11 ∗ · · · ∗ xdtt ) = 0 for every u1, . . . , ut; since

we assume F is infinite, this implies ψ(xd11 ∗ · · · ∗ xdtt ) = 0 for every

partition and every ψ. �

Corollary 2.2. Let V be a subspace in an algebra A over F . Then V

is n-central iff every subspace of dimension at most n of V is n-central.

Stated in terms of elements, x1, . . . , xt span an n-central space in A

iff every subset of cardinality at most n spans such a space.

Corollary 2.3. Assume p is prime, and let V be an anisotropic p-

central space, over a field of characteristic not p. Then every two com-

muting elements of V are linearly dependent.

Proof. If x, y ∈ V commute and Fx+Fy is p-central with an anisotropic

exponentiation form then xp ̸= 0 and since every x + βy is p-central,

we have that pxp−1y = xp−1 ∗ y ∈ F , showing that y ∈ Fx. �

Corollary 2.4. When the characteristic is prime to n, an n-central

space V has zero intersection with the center, unless V = F .
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Remark 2.5. If x, y ∈ A = F [x, y] satisfy yx = ρxy, where n is an

n-primitive root of unity, then (x + y)n = xn + yn, and Fx + F [x]y is

n-central.

Proof. The equality (x + y)n = xn + yn follows by considering the

rotation action of Z/nZ on the monomials in xn−i ∗ yi; and for every

a ∈ F and f ∈ F [x], (fy)(ax) = ρ(ax)(fy), so that (ax + fy)n =

(ax)n + (fy)n = anxn +NF [x]/F (f)y
n ∈ F . �

3. Eigenvector decomposition

From now on we consider p-central spaces, where p is a fixed odd

prime. Let A be an algebra over a field F whose characteristic is not

p.

Lemma 3.1. Let V be a two-dimensional space with a homogeneous

form Φ :V→F of degree p, and let x ∈ V be a vector with Φ(x) ̸= 0.

Then there is an element z such that V = Fx+ Fz and the coefficient

of ap−1b in Φ(ax+ bz) is zero.

Proof. Write V = Fx + Fy, and let α be the coefficient of ap−1b in

Φ(ax+ by). Take z = y− α
pΦ(x)

x; then V = Fx+Fz and the coefficient

of ap−1b in Φ(ax+ bz) is α− p α
pΦ(x)

Φ(x) = 0. �

Corollary 3.2. Let V be a p-central two-dimensional subspace of an

algebra A. If x ∈ V satisfies xp ̸= 0, then there is an element z such

that V = Fx+ Fz and xp−1 ∗ z = 0.

Proof. Take the exponentiation form Φ(v) = vp in Lemma 3.1. �

Lemma 3.3. Let x ∈ A be invertible. If f(λ) =
∑n

i=0 ciλ
i has distinct

roots in F and
∑n

i=0 cix
−iyxi = 0, then y is a sum of eigenvectors with

respect to conjugation by x, namely y =
∑n

j=1 zj for zj ∈ A satisfying

x−1zjx = αjzj, where the αj are the roots of f .

Proof. Indeed, let Tx :A→A denote conjugation by x, and let V =∑n−1
i=0 Fx

−iyxi be the cyclic subspace generated by y. Then the restric-

tion of Tx to a map Tx :V→V satisfies f(λ) and hence is diagonalizable

over F by the assumption. �

Corollary 3.4. Let x ∈ A be invertible and suppose ρ ∈ F is a pth

root of unity. Every element y commuting with xp can be written as a

sum y = y0 + y1 + · · ·+ yp−1, where yix = ρixyi.
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Proof. As before let Tx denote conjugation by x. By assumption xpyx−p−
y = 0, so f(Tx)(y) = 0 for f(λ) = λp − 1 = 0. �

Lemma 3.5. Let x, y ∈ A be elements, such that x is invertible and

xp−1 ∗ y = 0. Then y = z1 + · · ·+ zp−1 for some z1, . . . , zp−1 such that

(1) zkx = ρkxzk

(k = 1, . . . , p− 1).

Proof. Notice that [xp, y] = [x, xp−1 ∗ y] = 0. Since
∑p−1

i=0 x
−iyxi =

x1−p · (xp−1 ∗ y) = 0, y satisfies the condition of Lemma 3.3 for the

polynomial λp−1+ · · ·+1, whose distinct roots are 1, ρ, . . . , ρp−1, so the

claim follows. In fact, we have

(2) zk =
1

p

p−1∑
i=0

ρ−kix−iyxi.

�

4. Short p-central spaces

Let p be an odd prime, and A an associative algebra over a field F

of characteristic not p, containing p-roots of unity.

Lemma 4.1. Let x ∈ A be an invertible element, and assume zix =

ρixzi and zjx = ρjxzj, for some distinct i, j ̸≡ 0 (mod p).

If (zi + zj)
p commutes with x, then (zi + zj)

p = zpi + zpj .

Proof. Replace A by the subalgebra generated by x, zi, zj. By as-

sumption xp commutes with zi and with zj. Therefore, the action

of x on A by conjugation has order p, and we have an eigenspace

decomposition A = ⊕Ak where ax = ρkxa for every a ∈ Ak. But

(zi + zj)
p =

∑p
k=0 z

p−k
i ∗ zkj , where z

p−k
i ∗ zkj ∈ A(j−i)k (mod p). Since

(zi + zj)
p ∈ A0 by assumption, zp−k

i ∗ zkj = 0 for every k ̸= 0, p. �

Lemma 4.2. Let x ∈ A be invertible, and assume zix = ρixzi and

zjx = ρjxzj, for some distinct i, j ̸≡ 0 (mod p). Let y = zi + zj.

(1) Assume i+j ≡ 0 (mod p). Then for every α ∈ F , xp−2∗y2 = α

if and only if zizj − ρizjzi =
α(1−ρi)

p
x2−p.

(2) If i+j ̸≡ 0 (mod p) and xp−2∗y2 ∈ F , then in fact xp−2∗y2 = 0.
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Proof. For any a, b, denote gab =
∑

0≤r≤s≤p−2 ρ
−(ar+bs). Direct com-

putation shows that g00 =
(
p
2

)
, g0b = ρ2bp

1−ρb
for every b ̸≡ 0 (mod p),

ga0 =
−ρap
1−ρa

for a ̸≡ 0, ga,p−a =
p

1−ρa
, and gab = 0 if a, b, a+ b ̸≡ 0.

Writing α = xp−2 ∗ y2 we have

α =
∑

0≤r≤s≤p−2

xryxs−ryxp−s−2

=
∑

0≤r≤s≤p−2

xryx−r · xsyx−s · xp−2

=
∑

0≤r≤s≤p−2

xr(zi + zj)x
−r · xs(zi + zj)x

−s · xp−2

=
∑

0≤r≤s≤p−2

(ρ−irzi + ρ−jrzj)(ρ
−iszi + ρ−jszj)x

p−2

= (giiz
2
i + gijzizj + gjizjzi + gjjz

2
j )x

p−2.

Since p ̸= 2, gii = gjj = 0. If i + j ̸≡ 0 then gij = gji = 0 as well, and

α = 0. On the other hand if j ≡ −i we obtain

α(1− ρi)x2−p

p
= zizj − ρizjzi,

as asserted. �

Lemma 4.3. Let x, zi, u ∈ A, and assume zix = ρixzi for some i ̸≡ 0

(mod p).

If ziu = ρiuzi + γx2 for some γ ∈ F , then zpi commutes with u.

Proof. By induction we have that

zki u = ρkiuzki + ρi(k−1)γ

k−1∑
j=0

ρijx2zk−1
i

for k = 0, . . . , p, and in particular zpi u = uzpi . �

Definition 4.4. A p-central subspace V ⊆ A is short if, for some i ̸≡
j, it has a basis {x, y} with x invertible and a decomposition y = zi+zj,

where zix = ρixzi and zjx = ρjxzj. We say that V has type {ρi, ρj}.

Corollary 3.2 allows to assume i, j ̸= 0. Also, if V is assumed to be

anisotropic, then x is automatically invertible.

Remark 4.5. For p = 3, every anisotropic p-central space is short (of

type {ρ, ρ−1}).
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Remark 4.6. Every symbol algebra of degree p over F is generated

by a short p-central space, of type {ρ}, taking V = Fx + Fy where

yx = ρxy.

Proposition 4.7. Let V be a short anisotropic p-central space of type

{ρi, ρ−i}, generating an algebra whose center is a field. Then at least

one of zi and z−i is invertible.

Proof. Let V = Fx + Fy be the space, where y = zi + z−i is the

assumed decomposition. By Lemma 4.1, yp = zpi +z
p
−i. The element zpi

commutes with x by assumption and with z−i by Lemma 4.2.(1) and

Lemma 4.3, so it is central. If zi is non-invertible it follows that z
p
i = 0

and zp−i = yp ̸= 0 so z−i is invertible. �

Replacing ρ by a suitable power, we may always assume i = 1 and

z1 is invertible. For k = 1, . . . , (p− 1)/2, let us denote

(3) θk =
1

p

∑
S,S′

ρ
∑

i∈S i−
∑

i∈S′ i,

where the outer sum is over all pairs of disjoint subsets of cardinality

k of {0, 1, . . . , p− 1}. For example,

θ1 =
1

p

∑
i ̸=i′

ρi−i′ =
1

p

(∑
i,i′

ρi−i′ − p

)
= −1.

The automorphisms of Q[ρ]/Q leave θk fixed, so θk ∈ Q. Clearly pθk is

an algebraic integer, and so a rational integer. But the action of Z/pZ
by rotation on the space of disjoint pairs leaves no fixed points, so each

θk is itself an integer.

Lemma 4.8. Let x, z be elements of an algebra, satisfying zx = ρxz,

xp = zp = 1 (thus F [x, z]∼=Mp(F )). Then x
p−2k∗zk∗(z−1x2)k = ρ−kpθk

for every k = 1, . . . , (p− 1)/2.

Proof. Write z = xπ, so that πp = 1; let F0 = F (a, b, c) be a tran-

scendental extension of F , and let F ′ = F0[π]. By definition, xp−2k ∗
zk ∗ (z−1x2)k is the coefficient of ap−2kbkck in (ax + bz + cz−1x2)p =

(x(a + bπ + ρ−1cπ−1))p; but the conjugation action of x on F ′ multi-

plies the generator π by ρ, so this this p-power is the norm NF0[π]/F0
(a+

bπ + ρ−1cπ−1). Putting b = βa and c = ρβ−1γa, xp−2k ∗ zk ∗ (z−1x2)k
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is ρ−k times the coefficient of β0γk in

NF0[π]/F0
(1 + βπ + β−1γπ−1) =

p−1∏
i=0

(1 + βρiπ + ρ−iβ−1γπ−1)

=
∑

S∩S′=∅

∏
i∈S

(βρiπ)
∏
i∈S′

(ρ−iβ−1γπ−1)

=
∑

S∩S′=∅

β|S|−|S′|γ|S
′|π|S|−|S′|

∏
i∈S

ρi
∏
i∈S′

ρ−i,

where the sums are over subsets of {0, . . . , p − 1}. The coefficient of

β0γk is this sum is p times our θk. �

Theorem 4.9. Let A be an algebra generated by an anisotropic short p-

central space V = Fx+Fy of type {ρ, ρ−1}, whose center is an integral

domain. Then the exponentiation form is

(ax+ by)p = α0a
p +

[p/2]∑
k=1

pθkα0

(
− α2

pα0

)k

ap−2kb2k + αpb
p

for suitable α0, α2, αp ∈ F .

Proof. Fix the basis x, y of V as in the definition, with i = 1, y =

z1 + z−1 such that zkx = ρkxzk for k = 1,−1. Passing to the ring

of central fractions does not change the exponentiation form, so by

Proposition 4.7 we may assume z1 is invertible. The exponentiation

form is Φ(ax + by) = (ax + by)p =
∑p

i=0 αia
p−ibi for a, b ∈ F , where

by Proposition 2.1.2, αi = xp−i ∗ yi ∈ F , i = 0, . . . , p. In particular

α0 = xp, α1 = xp−1 ∗ y = 0 and α2 = xp−2 ∗ y2.
Lemma 4.2 provides the relation

(4) z1z−1 = ρz−1z1 +
α2(1− ρ)

pα0

x2.

Let

w = z−1x
−1z1 +

α2

pα0

x,

so that z−1 = wz−1
1 x − ρα2

pα0
z−1
1 x2. From the relations z1x = ρxz1 and

z−1x = ρ−1z−1x we see that x commutes with w, and using (4) we also

have [z1, w] = [z1, z−1x
−1]z1+

α2

pα0
[z1, x] =

α2(1−ρ)
pα0

xz1+
α2

pα0
(ρ−1)xz1 = 0,

where [·, ·] is the additive commutator. Since z−1 ∈ F [w, z−1
1 , x] and

y = z1 + z−1, we see that w is central in A = F [x, y]. Applying
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Remark 2.5 twice, we have

yp = (z1 + z−1)
p(5)

= (z1 + wz−1
1 x− ρα2

pα0

z−1
1 x2)p

= (wz−1
1 x)p + (z1 −

ρα2

pα0

z−1
1 x2)p

= zp1 + wpz−p
1 xp − αp

2

ppαp
0

z−p
1 x2p.

Let v = ax+ by ∈ V , where a, b ∈ F . We can write

v = ax+by = ax+b(z1+z−1) = bwz−1
1 x+z1(b+az

−1
1 x−b α2

pα0

(z−1
1 x)2),

with bwz−1
1 x commuting with the element in parenthesis, and ρ-commuting

with z1. By Remark 2.5,

vp = (bwz−1
1 x)p + (bz1 + ax− b

ρα2

pα0

z−1
1 x2)p

and is in the center. Now, since

(bz1 + ax− b
α2

pα0

z−1
1 x2)p =

∑
i+j+k=p

(bz1)
i ∗ (ax)j ∗ (−bρα2

pα0

z−1
1 x2)k

=
∑

i+j+k=p

biaj(−bρα2

pα0

)k · zi1 ∗ xj ∗ (z−1
1 x2)k

is central, only monomials of degree zero mod p in x and in z1 have

non-zero contribution, so

vp = (bwz−1
1 x)p + bpzp1 + apxp + (−bρα2

pα0

)p(z−1
1 x2)p

+

[p/2]∑
k=1

bkap−2k(−bρα2

pα0

)k · zk1 ∗ xp−2k ∗ (z−1
1 x2)k.

Because xz1 = ρz1x, Lemma 4.8 applies and gives the value zk1 ∗xp−2k ∗
(z−1

1 x2)k = ρ−kpθkx
p. Therefore

vp = α0a
p + αpb

p +

[p/2]∑
k=1

pθk(−1)kp−kαk
2α

1−k
0 ap−2kb2k.

�

Corollary 4.10. Let V = Fx + Fy be a short p-central space of type

{ρ, ρ−1} with an anisotropic exponentiation form. If xp−2∗y2 = 0, then
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xp−k ∗ yk = 0 for every k = 1, . . . , p − 1, and the form (ax + by)p =

α0a
p + αpb

p is diagonal.

Remark 4.11. We may always assume α2 = 0 or α2 = 1. Indeed

if α2 ̸= 0, the change of variables x 7→ α2x and y 7→ α(1−p)/2y takes

α2 = xp−2 ∗ y2 to 1.

The notion of Azumaya algebras generalizes central simple algebras

over a field to algebras over arbitrary commutative ring R: an R-

algebra A is Azumaya if it is a faithful projective finite R-module, and

the natural map A⊗RA
op→EndR(A) is an isomorphism. One promi-

nent feature of Azumaya algebras is a 1-to-1 correspondence between

ideals of R and ideals of A.

Similarly to the definition of a symbol algebra in the introduction,

for any α, β ∈ R we can define the symbol algebra (α, β)R = ⊕Rxizj
subject to the relations zx = ρxz and xn = α, zn = β. Assume R

is connected, namely has no nontrivial idempotents. Then (α, β)n is

Azumaya if and only if α, β and n are invertible in R. This is shown in

[10, Sec. 2.2], using the fact that a quotient of (α, β)n over a maximal

ideal of R is simple iff α and β are invertible modulo this ideal, and ρ

remains primitive.

Theorem 4.12. Let A be an algebra generated by a short anisotropic

p-central subspace V of type {ρ, ρ−1}, with zp1 invertible, and suppose

the center R of A is connected. Then A is a symbol Azumaya algebra

of degree p over R.

Proof. As in Theorem 4.9, the element w = z−1x
−1z1 +

α2

pα0
x is in the

center of A. Moreover zp1 commutes with x by the relation (1), and with

z−1 by Lemma 4.1, so F [zp1 , w] is contained in the center of A. Since

z1 is invertible, we have that z−1 ∈ F [w, x, z−1
1 ], so A is generated over

F [zp1 , w] by z1 and x. Finally A is a symbol Azumaya algebra because

p, α0 = xp and zp1 are invertible. �

Theorem 4.13. A simple algebra generated by a short anisotropic p-

central subspace of type {ρ, ρ−1} is a symbol algebra of degree p over its

center.

Proof. By Proposition 4.7 one of z1 or z−1 is invertible, so we are done

by Theorem 4.12. �
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5. Clifford algebras of short p-central spaces of

type {ρ, ρ−1}

Let V be an anisotropic p-central space generating an algebra A.

Let CΦ denote the Clifford algebra of the exponentiation form Φ of V ,

which, by definition, is the free algebra generated by x and y, subject

to the relations (ax + by)p = Φ(ax + by). By Proposition 2.1 these

relations are equivalent to the system of relations

xp−i ∗ yi = αi

for suitable α0, . . . , αp ∈ F . We assume V contains an invertible ele-

ment x, complement the basis to x, y with α1 = 0 by Corollary 3.2,

and write y = z1 + · · ·+ zp−1 where zk satisfy (1).

If we assume V is short of type {ρ, ρ−1}, then Theorem 4.9 gives the

values

αi = 0 for i odd,(6)

αi = pθi/2α0

(
− α2

pα0

)i/2

for i even(7)

(holding trivially for i = 1, 2).

Equivalently, we may study the Clifford algebra of an arbitrary p-

central space, presented in the form V = Fx + Fy with x invertible

and the eigenvector decomposition for y, modulo its ideal ⟨z2, . . . , zp−2⟩
(where zk are defined by (2)). Indeed, let V = Fx+ Fy be a p-central

space in an arbitrary algebra. Let αi = xp−i ∗ yi ∈ F . The image of

V in the quotient algebra CΦ/⟨z2, . . . , zp−2⟩ is a short p-central space

of type {ρ, ρ−1}, so Theorem 4.9 forces the equalities (6) and (7). If

these equalities do not originally hold, ⟨z2, . . . , zp−2⟩ must be the whole

algebra. But if they do hold, then CΦ/⟨z2, . . . , zp−2⟩ is the Clifford

algebra of a short p-central space, so it is generic to this situation.

Therefore, we assume in this section that V is short of type {ρ, ρ−1}.
Then CΦ is defined by the relations xp = α0, x

p−2 ∗ y2 = α2 and

yp = αp, where y has the form y = z1 + z−1 with zkx = ρkxzk. From

Lemma 4.2.(1) and Remark 4.1 we obtain the presentation with gen-

erators

x, z1, z−1,
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and relations

xp = α0,(8)

z1x = ρxz1,(9)

z−1x = ρ−1xz−1,(10)

z1z−1 = ρz−1z1 +
α2(1− ρ)

pα0

x2,(11)

zp1 + zp−1 = αp,(12)

depending of course on α0, α2, αp ∈ F .

As in Theorem 4.9, the element w = z−1x
−1z1+

α2

pα0
x is in the center

of CΦ. Since z
p
1 is central, we may consider the algebra CΦ[z

−p
1 ], where

z1 is invertible. Substituting z−1 = wz−1
1 x− ρα2

pα0
z−1
1 x2, the presentation

of CΦ[z
−p
1 ] on the generators x, z1, w has the relations (8), (9), wx = xw,

wz1 = z1w, and

(13) z2p1 − αpz
p
1 = p−pαp

2α
2−p
0 − α0w

p,

as computed in (5) above. It follows that the center of CΦ[z
−p
1 ], which is

the centralizer of the generators x and z1, is precisely F [z
±p
1 , w]. From

this we immediately obtain the center of CΦ itself:

Theorem 5.1. Let Φ be the exponentiation form of a short p-central

space V = Fx + Fy of type {ρ, ρ−1} in some algebra. Let α0 = xp,

α2 = xp−2 ∗ y2 and αp = yp. Then the center of the associated Clifford

algebra CΦ is the function ring Z = F [X, Y ] of the affine curve

(14) Y (Y − αp) = α0X
p + p−pαp

2α
2−p
0 .

Proof. The center is generated by X = −w and Y = zp1 , subject only

to Relation (13). �
Note that Z is a Dedekind domain iff the curve is smooth, namely

when charF = 2 or the discriminant p−pαp
2α

2−p
0 − 4−1α2

p is non-zero.

Moreover, by Theorem 4.12 we have

Corollary 5.2. CΦ[z
−p
1 ] is the symbol Azumaya algebra (α0, Y ) over

the center Z[Y −1] under the identification X = −w and Y = zp1.

The above treatment suffers from some asymmetry, in that we as-

sume z1 is invertible. However, one can apply the following formal

change of variables: x, y, α0, αp remain unchanged, z1 and z−1 are

switched, and ρ is replaced by ρ−1; Then w is being replaced by ρ−1w.
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Noting the sensitivity of the symbol algebra notation to the choice of

root of unity, we get the following:

Corollary 5.3. CΦ[z
−p
−1 ] is the symbol Azumaya algebra (αp − Y, α0)

over the center Z[(αp − Y )−1] under the identification X = −w and

Y = zp1.

By Corollary 5.2, any simple quotient of CΦ in which zp1 is invertible

is a central simple algebra CΦ/ICΦ over Z/I, where I�Z is an ideal

with Y ̸∈ I. On the other hand if zp1 = 0 in the quotient, then zp−1

is invertible there by Lemma 4.7, and then the quotient is a quotient

of CΦ[z
−p
−1 ], which is Azumaya by Corollary 5.3, and therefore again a

central simple algebra CΦ/ICΦ over Z/I, where Y ∈ I.

Corollary 5.4. CΦ is an Azumaya algebra.

In particular:

Theorem 5.5. The simple quotients of CΦ are all symbol algebras of

degree p: the ‘algebra at infinity’ (αp, α0)p,F and, for every point (t, s) ∈
C(F̄ ) with t ̸= 0, the symbol algebra (α0, t)p,K where K = F [t, s].

Proof. In every simple quotient, Z = F [X, Y ] maps onto an algebraic

field extension K of F . Let t and s denote the images of Y and X,

respectively, so that K = F [s, t]. For t ̸= 0, the map zp1 = Y 7→ t

keeps zp1 invertible, so the respective quotient CΦ/⟨X − s, Y − t⟩ is a

quotient of CΦ[z
−p
1 ] as well, and these are computed in Corollary 5.2.

For t = 0, the quotient is generated by (the images of) x and y =

z1 + z−1, where z
p
−1 = yp = αp by Lemma 4.1; but xz−1 = ρz−1x, so

this quotient is the symbol algebra (α0, αp). �

Remark 5.6. Assume z1 is not invertible in a quotient C of CΦ. Then

C is a matrix algebra iff α2 ̸= 0.

Proof. By assumption, Y = 0 in C. If α2 ̸= 0, (14) forces α0 =

(−pα0α
−1
2 X)p, so (αp, α0)p,F splits. If α2 = 0 then (ax+ by)p = (ax+

bz−1)
p = α0a

p + αpb
p, which is isotropic if C is a matrix algebra. �

On passing, we note a minor inaccuracy in [2, Corollary 1.2], which

can now be seen as the special case p = 3 of Theorem 5.5: the case

s0 = −(3ω(1 − ω)ad)/2 corresponds to Y = 0 in our notation, and

requires special treatment as above.
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6. The Clifford algebra of a diagonal binary quintic

form

In this section we consider 5-central spaces which are short, but of

different type than the one discussed above, with a surprisingly different

outcome.

Let F be a field of characteristic not 5, containing a fifth root of unity

ρ. Let V be an anisotropic two-dimensional 5-central space generating

an algebra A over F . Write V = Fx+Fy; since the form is anisotropic,

x is invertible. Let Φ(ax+by) = α0a
5+α1a

4b+α2a
3b2+α3a

2b3+α4ab
4+

βb5 be the exponentiation form of V . In particular, A is a quotient

of the Clifford algebra of Φ, and by Proposition 2.1.2 it satisfies the

relations αi = xp−i ∗ yi for i = 0, . . . , 5.

By Corollary 3.2, we may assume α1 = x4 ∗ y = 0. Generalizing

Definition 4.4, let us say that V has type Ω, for Ω ⊆ {ρ, ρ2, ρ3, ρ4}, if
there is a decomposition y =

∑
k∈Ω zk such that zkx = ρkxzk for each

k. Following Lemma 3.5, every anisotropic 5-space has some minimal

type. If the type is a singleton, then the generated algebra is cyclic

by Remark 4.6. Replacing ρ by a suitable power leaves two types of

size 2: type {ρ, ρ−1} which was analyzed in Sections 4 and 5, and type

{ρ, ρ3}. From now on we assume the latter, so that

y = z1 + z3;

as indicated above,

(15)
z1x = ρxz1,

z3x = ρ3xz3.

By Lemma 4.2, it follows that α2 = x3 ∗ y2 = 0. Let us consider the

next relation, α3 = x2 ∗ (z1 + z3)
3, namely

α3 = x2 ∗ z31 + x2 ∗ z21 ∗ z3 + x2 ∗ z1 ∗ z23 + x2 ∗ z33 .

Conjugation by x induces a direct sum decomposition of A, with respect

to which the four summands in the right-hand side fall into different

components. Comparing components, we deduce that x2 ∗ z31 = x2 ∗
z1 ∗ z23 = x2 ∗ z33 = 0, all following tautologically from (15), and

(16) α3 = x2 ∗ z21 ∗ z3.

Remark 6.1. If z1 = 0 then A = F [x, z3] is the cyclic algebra (α, β2),

since A = F [x, y] and y = z3 ρ-commutes with x.
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Figure 1. Action graph for the generators

Since we are mostly interested in quotients of A which are division

algebras, we will assume z1 is invertible. Notice that z51 = y5 − z53
commutes with both z3 and x, and so it is central.

Consider the linear map T :A→A defined by T (t) = z21t − (ρ +

ρ2)z1tz1 + ρ3tz21 , so that T (t)z−2
1 is the combination of conjugates

z21tz
−2
1 − (ρ + ρ2)z1tz

−1
1 + ρ3t. By computation, for every t ∈ A such

that tx = ρ3xt, we have that x2 ∗ z21 ∗ t = (1 − ρ3)(1 − ρ4)x2T (t), so

Equation (16) becomes T (z3) = (1− ρ3)−1(1− ρ4)−1x−2α3.

Consider w3 = cz−2
1 x−2 where c = α3

5ρ2
. Since T (w3) = (1 − ρ3)(1 −

ρ4)cx−2 = (1 − ρ3)−1(1 − ρ4)−1α3x
−2, we obtain for z′3 = z3 − w3 that

T (z′3) = 0.

Because of the factorization λ2 − (ρ + ρ2)λ + ρ3 = (λ − ρ)(λ − ρ2),

T (z′3) = 0 provides by Lemma 3.3 a decomposition z′3 = w1+w2, where

z1wi = ρiwiz1 for i = 1, 2. By our choice of w3, we have a decomposition

z3 = w1 + w2 + w3

with z1wi = ρiwiz1 for i = 3 as well.

Remark 6.2. The conjugation maps by x and by z1 commute, so the

eigenvectors wi with respect to z1 satisfy

(17) wix = ρ3xwi

for i = 1, 2, 3.

Since w3 = cz−2
1 x−2 is defined in terms of x and z1, one easily checks

that w1w3 = ρw3w1 and w3w2 = ρ2w2w3. Figure 1 provides an action

graph for the elements of A mentioned thus far: the relation uv = ρivu

is depicted by an arrow u // v with i beads (we could draw a reverse

arrow with 5− i beads).
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Remark 6.3. A subset S ⊆ A is called a p-set, if sp ∈ F× for every s ∈
S, and all commutators s1s2s

−1
1 s−1

2 are powers of ρ (see [14, pp. 248–

251] for a refined definition). The generated subalgebra F [S], whose

center may strictly contain F , is then a tensor product of at most |S|/2
cyclic algebras of degree p.

If w1 = 0 then A is generated by the 5-set {x, z1, w2}, and therefore

it is a cyclic algebra of degree 5 over a 5-dimensional extension of F .

We shall assume from now on that w1 is invertible.

We come to the final relation, α4 = x ∗ y4 = x ∗ (z1+ z3)4 = x ∗ (z1+
w1 + w2 + w3)

4, namely

(18) α4 =
∑

i1+i2+i3+j=4

x ∗ wi1
1 ∗ wi2

2 ∗ wi3
3 ∗ zj1.

Conjugation by x, using (17), breaks (18) into 5 equations:∑
i1+i2+i3=4−j

x ∗ wi1
1 ∗ wi2

2 ∗ wi3
3 ∗ zj1 =

{
α4 j = 1,

0 j = 0, 2, 3, 4.

The equations for j ̸= 1 are tautological. Indeed, for j = 0 and j = 4

we get x ∗ z41 = x ∗ z43 = 0. For j = 2 one writes

x ∗ ws ∗ ws′ ∗ z21 = fss′wsws′z
2
1x;

for suitable fss′ ∈ Z[ρ] (s, s′ = 1, 2, 3); it then turns out that fss′ = 0

unless precisely one of s, s′ is 3. But f13 + ρ4f31 = f23 + ρ2f32 = 0,

so the relations w3ws = ρ2(3−s)wsw3 shows that x ∗ ws ∗ ws′ ∗ z21 = 0

tautologically for every s, s′ = 1, 2, 3. For the case j = 3 one computes

that x ∗ ws ∗ z31 = 0 for s = 1, 2, 3. The only remaining case is j = 1,

which translates (18) to∑
i1+i2+i3=3

x ∗ wi1
1 ∗ wi2

2 ∗ wi3
3 ∗ z1 = α4.

Splitting this further by conjugation by z1, we obtain the five relations

x ∗ w3
3 ∗ z1 + x ∗ w2

1 ∗ w2 ∗ z1 = α4(19)

x ∗ w3
1 ∗ z1 + x ∗ w2 ∗ w2

3 ∗ z1 = 0(20)

x ∗ w2
2 ∗ w3 ∗ z1 + x ∗ w1 ∗ w2

3 ∗ z1 = 0(21)

x ∗ w1 ∗ w2 ∗ w3 ∗ z1 + x ∗ w3
2 ∗ z1 = 0(22)

x ∗ w1 ∗ w2
2 ∗ z1 + x ∗ w2

1 ∗ w3 ∗ z1 = 0(23)
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Calculating with the ρ-commutation relations, (20), (21) and (22)

are tautologically satisfied. Opening up the remaining two equations,

noting that each pair of generators except (possibly) for w1, w2 are

ρ-commuting, we get

−5ρ2w3
3 + (1− ρ)(1− ρ2)w2

1w2

+ρ(1− ρ)2w1w2w1 + ρ(1− ρ)(1− ρ2)w2w
2
1

= α4x
−1z−1

1 ,(24)

(1− ρ)(1− ρ3)w1w
2
2 + (1− ρ)(1− ρ4)w2w1w2

+(1− ρ2)(1− ρ4)w2
2w1 − 5ρ(1 + ρ)w2

1w3
= 0.(25)

Write w2 = w′
2 + c′w−2

1 x−1z−1
1 , where c′ = α4

5(1+ρ3)
+

α3
3

25α0z51
. Sub-

stituting w3 = cz−2
1 x−2 in (24) and dividing by (1 − ρ)(1 − ρ2), we

obtain

w2
1w

′
2 + (−ρ2 − ρ4)w1w

′
2w1 + ρw′

2w
2
1 = 0.

As before, the associated polynomial λ2 − (ρ2 + ρ4)λ + ρ factors

as (λ − ρ2)(λ − ρ4), so Lemma 3.3 provides the decomposition w′
2 =

v1 + v2 where v1, v3 ∈ A satisfy viw1 = ρiw1vi for i = 1, 3. Taking

v2 = c′w−2
1 x−1z−1

1 , we get

(26) w2 = v1 + v2 + v3,

where

viw1 = ρiw1vi

for i = 1, 2, 3. By definition of v2 we also have that v2v1 = ρ−2v1v2 and

v2v3 = ρ2v3v2.

Remark 6.4. Since conjugation by x, by z1 and by w1 commute, the

eigenvectors vi satisfy

xvi = ρ2vix,

z1vi = ρ2viz1

for i = 1, 2, 3; consequently

w3vi = ρ2viw3.

A refined diagram of the commutation relations between the gener-

ators x, z1, w1, w3, v1, v2, v3 is given as Figure 2.

It remains to solve (25). Dividing by (1− ρ)(1− ρ3) we obtain

(27) w1w
2
2 − ρ2(1 + ρ2)w2w1w2 + ρw2

2w1 + (1− ρ2)2w2
1w3 = 0.
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Figure 2. A refined action graph for the generators: an

arrow to the framed zone depicts same action on v1, v2, v3

We substitute (26) into (27), and collect homogeneous components

with respect to conjugation by w1:

w1v
2
1 − ρ2(1 + ρ2)v1w1v1 + ρv21w1 = 0,

w1v
2
3 − ρ2(1 + ρ2)v3w1v3 + ρv23w1 = 0,

w1v
2
2 − ρ2(1 + ρ2)v2w1v2 + ρv22w1

+w1v1v3 − ρ2(1 + ρ2)v1w1v3 + ρv1v3w1

+w1v3v1 − ρ2(1 + ρ2)v3w1v1 + ρv3v1w1

= −(1− ρ2)2w2
1w3,

w1v1v2 − ρ2(1 + ρ2)v1w1v2 + ρv1v2w1 + w1v2v1 − ρ2(1 + ρ2)v2w1v1 + ρv2v1w1 = 0,

w1v3v2 − ρ2(1 + ρ2)v3w1v2 + ρv3v2w1 + w1v2v3 − ρ2(1 + ρ2)v2w1v3 + ρv2v3w1 = 0.

Plugging in the fact that v2 = c′w−2
1 x−1z−1

1 and the relations satisfied

by w1, v1 and by w1, v3, the first two and final two equations vanish,

and the third one becomes

(1− ρ)(1 + ρ2)w1v
2
2 − ρ3w1v1v3 + w1v3v1 = −(1− ρ2)w2

1w3.

Dividing by w1 from the left and noting that v22 = ρ3c′2w−4
1 z−2

1 x−2,

we obtain

(28) v3v1 − ρ3v1v3 = −[(1− ρ)(1 + ρ2)ρ3c′
2
w−5

1 + (1− ρ2)c]w1z
−2
1 x−2.

If v1 = 0 then A is generated by the 5-set {x, z1, w1, v3} and is a

tensor product of two cyclic algebras of degree 5, see below.

Assume v1 is invertible. Let u1 = c′′v−1
1 w1z

−2
1 x−2 where c′′ = ρ2(1 +

ρ3)2w−5
1 c′2 − ρ4c, and write v3 = u1 + u2; then Equation (28) becomes

v1u2 = ρ2u2v1,
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Figure 3. A final action graph

so we have that v1ui = ρiuiv1 for i = 1, 2.

Remark 6.5. Since conjugation by x, by z1, by w1 and by v1 commute,

u2 satisfies

xu2 = ρ2u2x

z1u2 = ρ2u2z1

u2w1 = ρ3w1u2.

In particular A is generated by the 5-set {x, z1, w1, v1, u2}, and is a

tensor product of one or two cyclic algebras of degree 5 (generically two,

as we see below). The commutation relations of the final generators,

with the artificial ones, w3, v2, u1, omitted, are given in Figure 3.

In summary, we proved:

Theorem 6.6. Let V be an anisotropic two-dimensional 5-central space

of type {ρ, ρ3}, generating a division algebra A. Then A is a product

of one or two cyclic division algebras of degree 5, whose center is some

field extension of F .

Proof. We keep the notation given above. Decompose y = z1+z3 where

zk are eigenvectors of x as above.

(1) The case z1 = 0 gives A = F [x, z23 ] where for the rest of this

proof we understand that these are standard generators: the

multiplicative commutator is ρ; so assume z1 ̸= 0.

(2) Decompose z3 = w1 + w2 + w3. If w1 = 0 then A = K[x, z1]

where K = F [z51 , x
−2z21w2]; so assume w1 ̸= 0.
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(3) Decompose w2 = v1 + v2 + v3. If v1 = 0 and v3 = 0 then

A = K[x, z1], were K = F [z51 , w
5
1, x

−1z21w1].

(4) If v1 = 0 and v3 ̸= 0 then A = K[x, z1]⊗KK[x−1z21w1, x
−2z21v3],

were K = F [z51 , w
5
1, v

5
3].

(5) Finally if v1 ̸= 0, decompose v3 = u1 + u2, and then A =

K[x, z1]⊗K[x−2z21v1, x
−1z21w1] whereK = F [z51 , v

5
1, w

5
1, x

−1z−2
1 w2

1v1u2].

�

Note that in each case the extension K[x]/K splits (at least) one of

the cyclic components.

Corollary 6.7. Let V be an anisotropic 5-central space of type {ρ, ρ3}
in an algebra A. Then every quotient division algebra of the Clifford

algebra of V is either cyclic of degree 5 or a tensor product of two cyclic

algebras of degree 5.

The assumption that y = z1 + z3 forces α1 = α2 = 0 in the exponen-

tiation form. In order to present A in terms of the exponentiation form

of V , we need to compute quantities such as z53 . Remark 4.1 enables

us to do so when z3 is a sum of two ρ-commuting elements, but there

is no analogous formula for more than two summands. Recall that the

artificial summands w3, v2 and u1 were defined in terms of constants

c = ρ3α3

5
, c′ = (1+ρ+ρ2)α4

5
+

α3
3

25α0z51
and c′′ = ρ2(1 + ρ3)2w−5

1 c′2 − ρ4c.

Assuming α3 = α4 = 0, we find that w3 = 0, v2 = 0 and u1 = 0. This

enables us to formulate the final result.

Theorem 6.8. Assume in Theorem 6.6 that the exponentiation form

of V is diagonal, namely Φ(ax+ by) = αa5+βb5 for suitable α, β ∈ F .

Then one of the following holds for the algebra A generated by V :

(1) A = (α, β2)F .

(2) A = (α, t)K where K = F (t, s) and s5 = α3t2(β − t).

(3) A = (α, t)K where K = F (t, s) and s5 = α−1t2(β − t).

(4) A = (α, t)K⊗K(t
′, t′′)K where K = F (t, t′, t′′) and t3 + αt′ +

α2t′′ = βt2.

(5) A = (α, t)K⊗K(t
′, t′′)K where K = F (t, t′, t′′, s), and s5 =

α3tt′t′′2(βt2 − t3 − α2tt′ − αt′′).

Proof. In the notation of this section, the assumption that Φ is diago-

nal, namely, that α3 = α4 = 0, implies c = c′ = c′′ = 0, and so (when

these elements are defined) w3 = 0, v2 = 0 and u1 = 0.
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Following the proof of Theorem 6.6, there are four cases:

(1) z1 = 0. Then y = z3 and A is generated by x y2◦oo . Hence-

forth z1 ̸= 0.

(2) w1 = 0, so that z3 = w2. Thus β = y5 = (z1 + z3)
5 = z51 +

z53 . Take t = z51 and s = x3z21z3. Then K = F [t, s], and

t+ α−3t−2s5 = β. Henceforth w1 ̸= 0.

(3) v1 = 0, so that w2 = v3 = u2. Assume v3 = 0. Let t = z51 .

Then A = (α, t)K and K = F [t, s] by Theorem 6.6, where

s = x−1z21w1 and β = y5 = z51 + (w1 + w2)
5 = t+ αt−2s5.

(4) v1 = 0 and v3 ̸= 0. Let t = z51 , t
′ = α−1t2w5

1 and t′′ = α−2t2v53.

Then A = (α, t)K⊗K(t
′, t′′)K and K = F [t, t′, t′′] by Theo-

rem 6.6, and β = y5 = z51 + (w1 + w2)
5 = t+ αt−2t′ + α2t−2t′′.

(5) Assuming v1 ̸= 0, let t = z51 , t
′ = α−2tv51, t

′′ = α−1t2w5
1 and

s = x−1z81w
2
1v1u2. Then β = z51 + z53 = z51 + w5

1 + w5
2 = z51 +

v51 + w5
1 + u52 = t + α2t−1t′ + αt−2t′′ + α−3t−3t′−1t′′−2s5, A =

(α, t)K⊗K(t
′, t′′)K and K = F [t, t′, t′′, s].

�

Finally we observe that, in a sense, every cyclic algebra of degree 5

and every product of two cyclic algebras of degree 5 is a quotient of a

Clifford algebra of a binary diagonal quintic form.

Theorem 6.9. Let k be a field of characteristic not 5 containing 5th

roots of unity.

Let A′ be a division algebra over an arbitrary extension K ′/k, which

is either cyclic, or a product of two cyclic algebras, containing a non-

central element whose 5th power is in k.

Then A′ is a scalar extension of a quotient of the Clifford algebra of

some binary diagonal quintic form defined over an intermediate field

k ⊆ F ⊆ K ′, such that F is generated by a single element over k.

Proof. Let x ∈ A′ be an element such that x5 = α ∈ k×. If deg(A′) = 5

write A′ = (α, t)K′ for t ∈ K ′; let β = α−3t−2 + t and let F = k(β) and

K = F (t). Let z1 ∈ A′ be an element such that z51 = t and z1x = ρxz1,

and reverse the computation in Theorem 6.8.(2) by taking z3 = z−2
1 x−3,

y = z1 + z3 and V = Fx+ Fy. Then A = K[x, z1] is a quotient of the

Clifford algebra of V over F , and A′ = K ′A.

If deg(A′) = 52, write A′ = (α, t)⊗(t′, t′′) for t, t′, t′′ ∈ K ′, and take

β = t+ αt−2t′ + α2t−2t′′, F = k(β) and K = F (β, t, t′, t′′). In a similar
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manner, solving for z1, w1 and w2 as in Theorem 6.8.(3), and letting

y = z1 + w1 + w2, A = (α, t)K⊗K(t
′, t′′)K is a quotient of the Clifford

algebra of V = Fx+ Fy, and A′ = K ′A. �

Remark 6.10. Let C be the Clifford algebra of an anisotropic 5-central

space of type {ρ, ρ3} in an algebra A, and assume the exponentiation

form is diagonal. Let x, y, z1, z3 ∈ C be as before. Let C ′ = C[z−5
1 ].

Let w1, w2 ∈ C ′ be as before. Let C ′′ = C ′[w−5
1 ]. Let v1, v3 ∈ C ′′ be as

before. Then C ′′[v−5
1 ] and C ′′[v−5

3 ] are Azumaya.

The remark follows from Theorem 6.8 because the only quotients

come from cases (4) and (5) and are central simple algebras of degree

52. However:

Corollary 6.11. The Clifford algebra of an anisotropic 5-central space

of type containing {ρ, ρ3} is in general not Azumaya.

Indeed, one may choose the fields in Theorem 6.9 so that quotient

division algebras exists both of degree 5 and 25.
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