CLIFFORD ALGEBRAS OF BINARY HOMOGENEOUS FORMS

JOURNAL OF ALGEBRA, VOL. 366, 94-111, (2012).

ADAM CHAPMAN AND UZI VISHNE

ABSTRACT. We study the generalized Clifford algebras associated to homogeneous binary forms of prime degree p, focusing on exponentiation forms of p-central spaces in division algebra.

For a two-dimensional *p*-central space, we make the simplifying assumption that one basis element is a sum of two eigenvectors with respect to conjugation by the other. If the product of the eigenvalues is 1 then the Clifford algebra is a symbol Azumaya algebra of degree p, generalizing the theory developed for p = 3. Furthermore, when p = 5 and the product is not 1, we show that any quotient division algebra of the Clifford algebra is a cyclic algebra or a tensor product of two cyclic algebras, and every product of two cyclic algebras can be obtained as a quotient. Explicit presentation is given to the Clifford algebra when the form is diagonal.

1. INTRODUCTION

An element y in an (associative) algebra A is called *n*-central if y^n is in the center. One way to study such elements is through *n*-central subspaces, which are linear spaces all of whose elements are *n*-central.

The *n*-central elements are of special importance in the theory of central simple algebras, through their connection with cyclic field extensions and cyclic algebras. Let F be a field. The **degree** of a central simple algebra over F is, by definition, the square root of the dimension. Every maximal subfield of a division algebra has dimension equal to the degree. The algebra is **cyclic** if it has a maximal subfield which is cyclic Galois over the center.

²⁰¹⁰ Mathematics Subject Classification. Primary: 15A66; Secondary: 16K20, 11E76.

Key words and phrases. generalized Clifford algebra; *p*-central space; cyclic algebra; eigenvector decomposition.

This research was supported by the Binational US-Israel Science Foundation, grant #2010/149.

Hamilton's quaternion algebra is the classical example of a cyclic algebra of degree 2 over the real numbers. The first examples of arbitrary degree were constructed by Dickson [1], as follows: Let L/F be an *n*dimensional cyclic Galois extension with σ a generator of $\operatorname{Gal}(L/F)$, and let $\beta \in F^{\times}$. Then $\bigoplus_{i=0}^{n-1} Ly^i$, subject to the relations $yu = \sigma(u)y$ (for $u \in L$) and $y^n = \beta$, is a cyclic algebra of degree *n*, denoted by $(L/F, \sigma, \beta)$; every cyclic algebra has this form. In particular, every cyclic algebra of degree *n* has an *n*-central element, which is not *n*'central for any proper divisor *n*' of *n* (we call such an element strongly *n*-central. This is taken to be the definition for *n*-central elements in some papers, but we find the closed definition to be more suitable when dealing with spaces).

If F contains nth roots of unity, then a strongly n-central element of a division algebra generates a cyclic maximal subfield. However, there are central division algebras with strongly n-central elements which are not cyclic. The first example, for n = 4, was given by Albert, and an example with $n = p^2$ for an arbitrary prime p was recently constructed by Matzri, Rowen and Vishne [11]. Nevertheless, Albert proved that in prime degree, every central division algebra with a p-central element is cyclic.

When F does have nth roots of unity ρ , a cyclic maximal subfield has the form L = F[x] where x is n-central, so every cyclic algebra has the 'symbol algebra' form

$$(\alpha,\beta)_{n,F} := F[x,y \mid x^n = \alpha, y^n = \beta, yx = \rho xy],$$

emphasizing even further the role of *n*-central elements in presentations of cyclic algebras. Moreover, in the above presentation, Fx + Fy is an *n*-central space (Remark 2.5 below).

To every *n*-central space V one associates the **exponentiation form** $\Phi: V \to F$, defined by $\Phi(v) = v^n$, which is homogeneous of degree n. One then studies the space (and the algebra it generates) via the associated form.

Definition 1.1. Let $\Phi: V \to F$ be a homogeneous form of degree n. The **generalized Clifford algebra** associated to Φ is the quotient C_{Φ} of the free associative algebra $F\langle x_1, \ldots, x_t \rangle$, subject to the relations $(a_1x_1 + \cdots + a_tx_t)^n = f(a_1v_1 + \cdots + a_tv_t)$ for every $a_1, \ldots, a_t \in F$, where $\{v_1, \ldots, v_t\}$ is a basis of V.

 $\mathbf{2}$

We will say that C_{Φ} is the Clifford algebra of Φ , or, oftentimes, of V itself.

Clearly, $Fx_1 + \cdots + Fx_n$ is an *n*-central subspace of C_{Φ} . A base change induces a linear isomorphism between the respective presentations of C_{Φ} , so the Clifford algebra is independent of the basis. This generalization of the classical construction of Clifford algebras is due to Roby, [13].

Fixing F, if A is a central simple algebra over an extension $K \supseteq F$, we call an F-subspace $V \subseteq A$ '*n*-subcentral' if $v^n \in F$ for every $v \in V$. For every homogeneous form $\Phi: V \to F$, the simple quotients of C_{Φ} are precisely the simple algebras generated by *n*-subcentral spaces V, in which $v^n = \Phi(v)$ for every $v \in V$.

A homogeneous form Φ is **anisotropic** if $\Phi(v) \neq 0$ for every $v \neq 0$. We say that an *n*-central space is anisotropic if its exponentiation form is anisotropic, which is the case exactly when its non-zero elements are all invertible. For example, any *n*-central subspace of a division algebra is anisotropic.

The Clifford algebras of quadratic forms are a classical object. In this case the center of C_{Φ} is F (for even dimensional forms) or an étale quadratic extension (otherwise), and C_{Φ} is a tensor product of quaternion algebras over the center (see, e.g., [9] or [6]).

Let us briefly describe what is known for binary cubic forms, to put the results of this paper in perspective.

Clifford algebras of a binary cubic form f were first considered by Heerema in [5]. Haile studied these algebras in [2] and [3], and showed that in characteristic not 2 or 3, C_{Φ} is an Azumaya algebra, with center which is the coordinate ring of the affine elliptic curve $s^2 = r^3 - 27\Delta$ where Δ is the discriminant of f. He also proved that the simple homomorphic images of C_{Φ} are cyclic algebras of degree 3; moreover for every algebraic extension K/F there is a one to one correspondence between the K-points of the elliptic curve $s^2 = r^3 - 27\Delta$ and the simple homomorphic images, mapping the point (r_0, s_0) on the curve to the symbol algebra $(a, s_0 + \frac{1}{2}(3\rho_3(1-\rho_3)ad))_{3,F(r_0,s_0)}$.

Along these lines, it is shown in [3] that C_{Φ} splits if and only if the ternary form $w^3 - \Phi(v)$ has a nontrivial *F*-rational point.

When d > 3 or n > 2, it is known that the Clifford algebra contains a free *F*-algebra on two generators (Haile [4] attributes this to Revoy). In particular, the algebra is not a finite module over its center and hence is not Azumaya.

This situation can be partially remedied by considering the **reduced Clifford algebra** A_{Φ} , defined as the quotient of C_{Φ} with respect to the intersection of the kernels of all the *d*-dimensional representations, where *d* is the degree of *f*. Haile and Tesser showed in [4] that A_{Φ} is Azumaya; also see [15]. This quotient was further studied by Kulkarni, [7],[8].

We will assume F is an infinite field. An invertible p-central element acting by conjugation decomposes the algebra into a direct sum of eigenspaces. Since the binary Clifford algebra is large even for small values of p > 3, our approach here is to restrict the number of eigenvectors in a basis element. More precisely, we study two-dimensional p-central spaces V = Fx + Fy, assuming that y can be written as a sum of two eigenvectors with respect to conjugation by x. Indeed, this much is guaranteed for p = 3.

After some preliminaries on homogeneous forms and eigenvector decomposition in Sections 2 and 3, we introduce **short** *p*-central spaces in Section 4: a *p*-central space is short if it is spanned by elements x, ysuch that x is invertible, and y is the sum of two eigenvectors corresponding to the conjugation action of x. The **type** of a short *p*-central space is the set of eigenvalues participating in the decomposition.

We prove (Theorem 4.12) that any division algebra, a-priori of arbitrary dimension, which is generated by a short *p*-space of type $\{\rho, \rho^{-1}\}$, is in fact a symbol algebra of degree *p* over its center. This is reinterpreted in Section 5 to show that the Clifford algebra of a short *p*-space of this type is an Azumaya algebra of degree *p*, whose center is the function ring of a hyper-elliptic curve of genus [(p-1)/2].

For p = 5 there are, up to choosing ρ , two possible types of short p-central spaces, $\{\rho, \rho^{-1}\}$ and $\{\rho, \rho^3\}$. In Section 6 we study short 5central spaces of type $\{\rho, \rho^3\}$. This case turns out to be very different than the previous one, resulting in quotients of the Clifford algebra which are tensor products of two cyclic algebras; and indeed, every division algebra which is either a symbol algebra of degree 5 or the tensor product of two symbol algebras is, essentially, a quotient of a suitable Clifford algebra associated to a diagonal quintic form.

2. Preliminaries

It is convenient to express *n*-centrality of a vector space in terms of basis elements. To this end, we adopt the notation of [12]: $x_1^{d_1} * \cdots * x_t^{d_t}$ denotes the sum of all the products with each x_i appearing d_i times. For example $x^2 * z^2 = xxzz + xzxz + xzzx + zxzz + zzxz + zzxz;$ as usual we may omit exponents $d_i = 1$, so that $x^2 * y = xxy + xyx + yxx$. This notation is commutative in the sense that $x_1^{d_1} * \cdots * x_t^{d_t} = x_{\sigma(1)}^{d_{\sigma(1)}} * \cdots * x_{\sigma(t)}^{d_{\sigma(t)}}$ for any permutation $\sigma \in S_t$.

- **Proposition 2.1.** (1) A subspace $V = \sum_{i=1}^{n} Fx_i$ of an associative algebra A is n-central iff $x_1^{d_1} * \cdots * x_t^{d_t} \in F$ for every partition $d_1 + \cdots + d_t = n$.
 - (2) If V as above is n-central, then the associated exponentiation form $V \to F$ is $\Phi(u_1x_1 + \cdots + u_tx_t) = \sum_{d_1 + \cdots + d_t = n} (x_1^{d_1} * \cdots * x_t^{d_t}) u_1^{d_1} \cdots u_t^{d_t}$.

Proof. If every $x_1^{d_1} * \cdots * x_t^{d_t} \in F$ then clearly

$$(u_1x_1 + \dots + u_tx_t)^n = \sum_{d_1 + \dots + d_t = n} (x_1^{d_1} * \dots * x_t^{d_t})u_1^{d_1} \cdots u_t^{d_t} \in F$$

for every $u_1, \ldots, u_t \in F$. On the other hand if the space is *n*-central, then for every linear functional $\psi: A \to F$ such that $F \subseteq \ker \psi$, we have $\sum_{d_1 + \cdots + d_t = n} u_1^{d_1} \cdots u_t^{d_t} \psi(x_1^{d_1} * \cdots * x_t^{d_t}) = 0$ for every u_1, \ldots, u_t ; since we assume F is infinite, this implies $\psi(x_1^{d_1} * \cdots * x_t^{d_t}) = 0$ for every partition and every ψ .

Corollary 2.2. Let V be a subspace in an algebra A over F. Then V is n-central iff every subspace of dimension at most n of V is n-central.

Stated in terms of elements, x_1, \ldots, x_t span an *n*-central space in A iff every subset of cardinality at most *n* spans such a space.

Corollary 2.3. Assume p is prime, and let V be an anisotropic p-central space, over a field of characteristic not p. Then every two commuting elements of V are linearly dependent.

Proof. If $x, y \in V$ commute and Fx+Fy is *p*-central with an anisotropic exponentiation form then $x^p \neq 0$ and since every $x + \beta y$ is *p*-central, we have that $px^{p-1}y = x^{p-1} * y \in F$, showing that $y \in Fx$. \Box

Corollary 2.4. When the characteristic is prime to n, an n-central space V has zero intersection with the center, unless V = F.

Remark 2.5. If $x, y \in A = F[x, y]$ satisfy $yx = \rho xy$, where *n* is an *n*-primitive root of unity, then $(x + y)^n = x^n + y^n$, and Fx + F[x]y is *n*-central.

Proof. The equality $(x + y)^n = x^n + y^n$ follows by considering the rotation action of $\mathbb{Z}/n\mathbb{Z}$ on the monomials in $x^{n-i} * y^i$; and for every $a \in F$ and $f \in F[x]$, $(fy)(ax) = \rho(ax)(fy)$, so that $(ax + fy)^n = (ax)^n + (fy)^n = a^n x^n + N_{F[x]/F}(f)y^n \in F$.

3. EIGENVECTOR DECOMPOSITION

From now on we consider p-central spaces, where p is a fixed odd prime. Let A be an algebra over a field F whose characteristic is not p.

Lemma 3.1. Let V be a two-dimensional space with a homogeneous form $\Phi: V \to F$ of degree p, and let $x \in V$ be a vector with $\Phi(x) \neq 0$. Then there is an element z such that V = Fx + Fz and the coefficient of $a^{p-1}b$ in $\Phi(ax + bz)$ is zero.

Proof. Write V = Fx + Fy, and let α be the coefficient of $a^{p-1}b$ in $\Phi(ax+by)$. Take $z = y - \frac{\alpha}{p\Phi(x)}x$; then V = Fx + Fz and the coefficient of $a^{p-1}b$ in $\Phi(ax+bz)$ is $\alpha - p\frac{\alpha}{p\Phi(x)}\Phi(x) = 0$.

Corollary 3.2. Let V be a p-central two-dimensional subspace of an algebra A. If $x \in V$ satisfies $x^p \neq 0$, then there is an element z such that V = Fx + Fz and $x^{p-1} * z = 0$.

Proof. Take the exponentiation form $\Phi(v) = v^p$ in Lemma 3.1.

Lemma 3.3. Let $x \in A$ be invertible. If $f(\lambda) = \sum_{i=0}^{n} c_i \lambda^i$ has distinct roots in F and $\sum_{i=0}^{n} c_i x^{-i} y x^i = 0$, then y is a sum of eigenvectors with respect to conjugation by x, namely $y = \sum_{j=1}^{n} z_j$ for $z_j \in A$ satisfying $x^{-1}z_j x = \alpha_j z_j$, where the α_j are the roots of f.

Proof. Indeed, let $T_x: A \to A$ denote conjugation by x, and let $V = \sum_{i=0}^{n-1} Fx^{-i}yx^i$ be the cyclic subspace generated by y. Then the restriction of T_x to a map $T_x: V \to V$ satisfies $f(\lambda)$ and hence is diagonalizable over F by the assumption.

Corollary 3.4. Let $x \in A$ be invertible and suppose $\rho \in F$ is a pth root of unity. Every element y commuting with x^p can be written as a sum $y = y_0 + y_1 + \cdots + y_{p-1}$, where $y_i x = \rho^i x y_i$.

Proof. As before let T_x denote conjugation by x. By assumption $x^p y x^{-p} - y = 0$, so $f(T_x)(y) = 0$ for $f(\lambda) = \lambda^p - 1 = 0$.

Lemma 3.5. Let $x, y \in A$ be elements, such that x is invertible and $x^{p-1} * y = 0$. Then $y = z_1 + \cdots + z_{p-1}$ for some z_1, \ldots, z_{p-1} such that

(1)
$$z_k x = \rho^k x z_k$$

 $(k=1,\ldots,p-1).$

Proof. Notice that $[x^p, y] = [x, x^{p-1} * y] = 0$. Since $\sum_{i=0}^{p-1} x^{-i}yx^i = x^{1-p} \cdot (x^{p-1} * y) = 0$, y satisfies the condition of Lemma 3.3 for the polynomial $\lambda^{p-1} + \cdots + 1$, whose distinct roots are $1, \rho, \ldots, \rho^{p-1}$, so the claim follows. In fact, we have

(2)
$$z_k = \frac{1}{p} \sum_{i=0}^{p-1} \rho^{-ki} x^{-i} y x^i.$$

4. Short p-central spaces

Let p be an odd prime, and A an associative algebra over a field F of characteristic not p, containing p-roots of unity.

Lemma 4.1. Let $x \in A$ be an invertible element, and assume $z_i x = \rho^i x z_i$ and $z_j x = \rho^j x z_j$, for some distinct $i, j \not\equiv 0 \pmod{p}$. If $(z_i + z_j)^p$ commutes with x, then $(z_i + z_j)^p = z_i^p + z_j^p$.

Proof. Replace A by the subalgebra generated by x, z_i, z_j . By assumption x^p commutes with z_i and with z_j . Therefore, the action of x on A by conjugation has order p, and we have an eigenspace decomposition $A = \bigoplus A_k$ where $ax = \rho^k xa$ for every $a \in A_k$. But $(z_i + z_j)^p = \sum_{k=0}^p z_i^{p-k} * z_j^k$, where $z_i^{p-k} * z_j^k \in A_{(j-i)k \pmod{p}}$. Since $(z_i + z_j)^p \in A_0$ by assumption, $z_i^{p-k} * z_j^k = 0$ for every $k \neq 0, p$. \Box

Lemma 4.2. Let $x \in A$ be invertible, and assume $z_i x = \rho^i x z_i$ and $z_j x = \rho^j x z_j$, for some distinct $i, j \not\equiv 0 \pmod{p}$. Let $y = z_i + z_j$.

- (1) Assume $i+j \equiv 0 \pmod{p}$. Then for every $\alpha \in F$, $x^{p-2} * y^2 = \alpha$ if and only if $z_i z_j - \rho^i z_j z_i = \frac{\alpha(1-\rho^i)}{n} x^{2-p}$.
- (2) If $i+j \not\equiv 0 \pmod{p}$ and $x^{p-2} * y^2 \in F$, then in fact $x^{p-2} * y^2 = 0$.

Proof. For any a, b, denote $g_{ab} = \sum_{0 \le r \le s \le p-2} \rho^{-(ar+bs)}$. Direct computation shows that $g_{00} = \binom{p}{2}$, $g_{0b} = \frac{\rho^{2b}p}{1-\rho^b}$ for every $b \not\equiv 0 \pmod{p}$, $g_{a0} = \frac{-\rho^a p}{1-\rho^a}$ for $a \not\equiv 0$, $g_{a,p-a} = \frac{p}{1-\rho^a}$, and $g_{ab} = 0$ if $a, b, a+b \not\equiv 0$. Writing $\alpha = x^{p-2} * y^2$ we have

$$\begin{aligned} \alpha &= \sum_{0 \le r \le s \le p-2} x^r y x^{s-r} y x^{p-s-2} \\ &= \sum_{0 \le r \le s \le p-2} x^r y x^{-r} \cdot x^s y x^{-s} \cdot x^{p-2} \\ &= \sum_{0 \le r \le s \le p-2} x^r (z_i + z_j) x^{-r} \cdot x^s (z_i + z_j) x^{-s} \cdot x^{p-2} \\ &= \sum_{0 \le r \le s \le p-2} (\rho^{-ir} z_i + \rho^{-jr} z_j) (\rho^{-is} z_i + \rho^{-js} z_j) x^{p-2} \\ &= (g_{ii} z_i^2 + g_{ij} z_i z_j + g_{ji} z_j z_i + g_{jj} z_j^2) x^{p-2}. \end{aligned}$$

Since $p \neq 2$, $g_{ii} = g_{jj} = 0$. If $i + j \not\equiv 0$ then $g_{ij} = g_{ji} = 0$ as well, and $\alpha = 0$. On the other hand if $j \equiv -i$ we obtain

$$\frac{\alpha(1-\rho^i)x^{2-p}}{p} = z_i z_j - \rho^i z_j z_i,$$

as asserted.

Lemma 4.3. Let $x, z_i, u \in A$, and assume $z_i x = \rho^i x z_i$ for some $i \neq 0 \pmod{p}$.

If $z_i u = \rho^i u z_i + \gamma x^2$ for some $\gamma \in F$, then z_i^p commutes with u.

Proof. By induction we have that

$$z_{i}^{k}u = \rho^{ki}uz_{i}^{k} + \rho^{i(k-1)}\gamma \sum_{j=0}^{k-1} \rho^{ij}x^{2}z_{i}^{k-1}$$

for $k = 0, \ldots, p$, and in particular $z_i^p u = u z_i^p$.

Definition 4.4. A *p*-central subspace $V \subseteq A$ is short if, for some $i \not\equiv j$, it has a basis $\{x, y\}$ with x invertible and a decomposition $y = z_i + z_j$, where $z_i x = \rho^i x z_i$ and $z_j x = \rho^j x z_j$. We say that V has type $\{\rho^i, \rho^j\}$.

Corollary 3.2 allows to assume $i, j \neq 0$. Also, if V is assumed to be anisotropic, then x is automatically invertible.

Remark 4.5. For p = 3, every anisotropic p-central space is short (of type $\{\rho, \rho^{-1}\}$).

Remark 4.6. Every symbol algebra of degree p over F is generated by a short p-central space, of type $\{\rho\}$, taking V = Fx + Fy where $yx = \rho xy$.

Proposition 4.7. Let V be a short anisotropic p-central space of type $\{\rho^i, \rho^{-i}\}$, generating an algebra whose center is a field. Then at least one of z_i and z_{-i} is invertible.

Proof. Let V = Fx + Fy be the space, where $y = z_i + z_{-i}$ is the assumed decomposition. By Lemma 4.1, $y^p = z_i^p + z_{-i}^p$. The element z_i^p commutes with x by assumption and with z_{-i} by Lemma 4.2.(1) and Lemma 4.3, so it is central. If z_i is non-invertible it follows that $z_i^p = 0$ and $z_{-i}^p = y^p \neq 0$ so z_{-i} is invertible.

Replacing ρ by a suitable power, we may always assume i = 1 and z_1 is invertible. For $k = 1, \ldots, (p-1)/2$, let us denote

(3)
$$\theta_k = \frac{1}{p} \sum_{S,S'} \rho^{\sum_{i \in S} i - \sum_{i \in S'} i},$$

where the outer sum is over all pairs of disjoint subsets of cardinality k of $\{0, 1, \ldots, p-1\}$. For example,

$$\theta_1 = \frac{1}{p} \sum_{i \neq i'} \rho^{i-i'} = \frac{1}{p} \left(\sum_{i,i'} \rho^{i-i'} - p \right) = -1.$$

The automorphisms of $\mathbb{Q}[\rho]/\mathbb{Q}$ leave θ_k fixed, so $\theta_k \in \mathbb{Q}$. Clearly $p\theta_k$ is an algebraic integer, and so a rational integer. But the action of $\mathbb{Z}/p\mathbb{Z}$ by rotation on the space of disjoint pairs leaves no fixed points, so each θ_k is itself an integer.

Lemma 4.8. Let x, z be elements of an algebra, satisfying $zx = \rho xz$, $x^p = z^p = 1$ (thus $F[x, z] \cong M_p(F)$). Then $x^{p-2k} * z^k * (z^{-1}x^2)^k = \rho^{-k}p\theta_k$ for every $k = 1, \ldots, (p-1)/2$.

Proof. Write $z = x\pi$, so that $\pi^p = 1$; let $F_0 = F(a, b, c)$ be a transcendental extension of F, and let $F' = F_0[\pi]$. By definition, $x^{p-2k} * z^k * (z^{-1}x^2)^k$ is the coefficient of $a^{p-2k}b^kc^k$ in $(ax + bz + cz^{-1}x^2)^p = (x(a + b\pi + \rho^{-1}c\pi^{-1}))^p$; but the conjugation action of x on F' multiplies the generator π by ρ , so this this p-power is the norm $N_{F_0[\pi]/F_0}(a + b\pi + \rho^{-1}c\pi^{-1})$. Putting $b = \beta a$ and $c = \rho\beta^{-1}\gamma a$, $x^{p-2k} * z^k * (z^{-1}x^2)^k$

is ρ^{-k} times the coefficient of $\beta^0 \gamma^k$ in

$$\begin{split} \mathcal{N}_{F_{0}[\pi]/F_{0}}(1+\beta\pi+\beta^{-1}\gamma\pi^{-1}) &= \prod_{i=0}^{p-1}(1+\beta\rho^{i}\pi+\rho^{-i}\beta^{-1}\gamma\pi^{-1})\\ &= \sum_{S\cap S'=\emptyset}\prod_{i\in S}(\beta\rho^{i}\pi)\prod_{i\in S'}(\rho^{-i}\beta^{-1}\gamma\pi^{-1})\\ &= \sum_{S\cap S'=\emptyset}\beta^{|S|-|S'|}\gamma^{|S'|}\pi^{|S|-|S'|}\prod_{i\in S}\rho^{i}\prod_{i\in S'}\rho^{-i}, \end{split}$$

where the sums are over subsets of $\{0, \ldots, p-1\}$. The coefficient of $\beta^0 \gamma^k$ is this sum is p times our θ_k .

Theorem 4.9. Let A be an algebra generated by an anisotropic short pcentral space V = Fx + Fy of type $\{\rho, \rho^{-1}\}$, whose center is an integral domain. Then the exponentiation form is

$$(ax + by)^{p} = \alpha_{0}a^{p} + \sum_{k=1}^{[p/2]} p\theta_{k}\alpha_{0} \left(-\frac{\alpha_{2}}{p\alpha_{0}}\right)^{k} a^{p-2k}b^{2k} + \alpha_{p}b^{p}$$

for suitable $\alpha_0, \alpha_2, \alpha_p \in F$.

Proof. Fix the basis x, y of V as in the definition, with $i = 1, y = z_1 + z_{-1}$ such that $z_k x = \rho^k x z_k$ for k = 1, -1. Passing to the ring of central fractions does not change the exponentiation form, so by Proposition 4.7 we may assume z_1 is invertible. The exponentiation form is $\Phi(ax + by) = (ax + by)^p = \sum_{i=0}^p \alpha_i a^{p-i} b^i$ for $a, b \in F$, where by Proposition 2.1.2, $\alpha_i = x^{p-i} * y^i \in F$, $i = 0, \ldots, p$. In particular $\alpha_0 = x^p, \alpha_1 = x^{p-1} * y = 0$ and $\alpha_2 = x^{p-2} * y^2$.

Lemma 4.2 provides the relation

(4)
$$z_1 z_{-1} = \rho z_{-1} z_1 + \frac{\alpha_2 (1-\rho)}{p \alpha_0} x^2.$$

Let

$$w = z_{-1}x^{-1}z_1 + \frac{\alpha_2}{p\alpha_0}x,$$

so that $z_{-1} = w z_1^{-1} x - \frac{\rho \alpha_2}{p \alpha_0} z_1^{-1} x^2$. From the relations $z_1 x = \rho x z_1$ and $z_{-1} x = \rho^{-1} z_{-1} x$ we see that x commutes with w, and using (4) we also have $[z_1, w] = [z_1, z_{-1} x^{-1}] z_1 + \frac{\alpha_2}{p \alpha_0} [z_1, x] = \frac{\alpha_2 (1-\rho)}{p \alpha_0} x z_1 + \frac{\alpha_2}{p \alpha_0} (\rho-1) x z_1 = 0$, where $[\cdot, \cdot]$ is the additive commutator. Since $z_{-1} \in F[w, z_1^{-1}, x]$ and $y = z_1 + z_{-1}$, we see that w is central in A = F[x, y]. Applying

11

Remark 2.5 twice, we have

(5)
$$y^{p} = (z_{1} + z_{-1})^{p}$$
$$= (z_{1} + wz_{1}^{-1}x - \frac{\rho\alpha_{2}}{p\alpha_{0}}z_{1}^{-1}x^{2})^{p}$$
$$= (wz_{1}^{-1}x)^{p} + (z_{1} - \frac{\rho\alpha_{2}}{p\alpha_{0}}z_{1}^{-1}x^{2})^{p}$$
$$= z_{1}^{p} + w^{p}z_{1}^{-p}x^{p} - \frac{\alpha_{2}^{p}}{p^{p}\alpha_{0}^{p}}z_{1}^{-p}x^{2p}.$$

Let $v = ax + by \in V$, where $a, b \in F$. We can write

$$v = ax + by = ax + b(z_1 + z_{-1}) = bwz_1^{-1}x + z_1(b + az_1^{-1}x - b\frac{\alpha_2}{p\alpha_0}(z_1^{-1}x)^2),$$

with $bwz_1^{-1}x$ commuting with the element in parenthesis, and ρ -commuting with z_1 . By Remark 2.5,

$$v^{p} = (bwz_{1}^{-1}x)^{p} + (bz_{1} + ax - b\frac{\rho\alpha_{2}}{p\alpha_{0}}z_{1}^{-1}x^{2})^{p}$$

and is in the center. Now, since

$$(bz_1 + ax - b\frac{\alpha_2}{p\alpha_0}z_1^{-1}x^2)^p = \sum_{i+j+k=p} (bz_1)^i * (ax)^j * (-b\frac{\rho\alpha_2}{p\alpha_0}z_1^{-1}x^2)^k$$
$$= \sum_{i+j+k=p} b^i a^j (-b\frac{\rho\alpha_2}{p\alpha_0})^k \cdot z_1^i * x^j * (z_1^{-1}x^2)^k$$

is central, only monomials of degree zero mod p in x and in z_1 have non-zero contribution, so

$$v^{p} = (bwz_{1}^{-1}x)^{p} + b^{p}z_{1}^{p} + a^{p}x^{p} + (-b\frac{\rho\alpha_{2}}{p\alpha_{0}})^{p}(z_{1}^{-1}x^{2})^{p} + \sum_{k=1}^{[p/2]} b^{k}a^{p-2k}(-b\frac{\rho\alpha_{2}}{p\alpha_{0}})^{k} \cdot z_{1}^{k} * x^{p-2k} * (z_{1}^{-1}x^{2})^{k}.$$

Because $xz_1 = \rho z_1 x$, Lemma 4.8 applies and gives the value $z_1^k * x^{p-2k} * (z_1^{-1}x^2)^k = \rho^{-k}p\theta_k x^p$. Therefore

$$v^{p} = \alpha_{0}a^{p} + \alpha_{p}b^{p} + \sum_{k=1}^{[p/2]} p\theta_{k}(-1)^{k}p^{-k}\alpha_{2}^{k}\alpha_{0}^{1-k}a^{p-2k}b^{2k}.$$

Corollary 4.10. Let V = Fx + Fy be a short *p*-central space of type $\{\rho, \rho^{-1}\}$ with an anisotropic exponentiation form. If $x^{p-2} * y^2 = 0$, then

 $x^{p-k} * y^k = 0$ for every k = 1, ..., p-1, and the form $(ax + by)^p = \alpha_0 a^p + \alpha_p b^p$ is diagonal.

Remark 4.11. We may always assume $\alpha_2 = 0$ or $\alpha_2 = 1$. Indeed if $\alpha_2 \neq 0$, the change of variables $x \mapsto \alpha_2 x$ and $y \mapsto \alpha^{(1-p)/2} y$ takes $\alpha_2 = x^{p-2} * y^2$ to 1.

The notion of Azumaya algebras generalizes central simple algebras over a field to algebras over arbitrary commutative ring R: an Ralgebra A is Azumaya if it is a faithful projective finite R-module, and the natural map $A \otimes_R A^{\mathrm{op}} \to \mathrm{End}_R(A)$ is an isomorphism. One prominent feature of Azumaya algebras is a 1-to-1 correspondence between ideals of R and ideals of A.

Similarly to the definition of a symbol algebra in the introduction, for any $\alpha, \beta \in R$ we can define the symbol algebra $(\alpha, \beta)_R = \oplus Rx^i z^j$ subject to the relations $zx = \rho xz$ and $x^n = \alpha$, $z^n = \beta$. Assume Ris connected, namely has no nontrivial idempotents. Then $(\alpha, \beta)_n$ is Azumaya if and only if α, β and n are invertible in R. This is shown in [10, Sec. 2.2], using the fact that a quotient of $(\alpha, \beta)_n$ over a maximal ideal of R is simple iff α and β are invertible modulo this ideal, and ρ remains primitive.

Theorem 4.12. Let A be an algebra generated by a short anisotropic p-central subspace V of type $\{\rho, \rho^{-1}\}$, with z_1^p invertible, and suppose the center R of A is connected. Then A is a symbol Azumaya algebra of degree p over R.

Proof. As in Theorem 4.9, the element $w = z_{-1}x^{-1}z_1 + \frac{\alpha_2}{p\alpha_0}x$ is in the center of A. Moreover z_1^p commutes with x by the relation (1), and with z_{-1} by Lemma 4.1, so $F[z_1^p, w]$ is contained in the center of A. Since z_1 is invertible, we have that $z_{-1} \in F[w, x, z_1^{-1}]$, so A is generated over $F[z_1^p, w]$ by z_1 and x. Finally A is a symbol Azumaya algebra because $p, \alpha_0 = x^p$ and z_1^p are invertible.

Theorem 4.13. A simple algebra generated by a short anisotropic pcentral subspace of type $\{\rho, \rho^{-1}\}$ is a symbol algebra of degree p over its center.

Proof. By Proposition 4.7 one of z_1 or z_{-1} is invertible, so we are done by Theorem 4.12.

5. Clifford algebras of short *p*-central spaces of type $\{\rho, \rho^{-1}\}$

Let V be an anisotropic p-central space generating an algebra A. Let C_{Φ} denote the Clifford algebra of the exponentiation form Φ of V, which, by definition, is the free algebra generated by x and y, subject to the relations $(ax + by)^p = \Phi(ax + by)$. By Proposition 2.1 these relations are equivalent to the system of relations

$$x^{p-i} * y^i = \alpha_i$$

for suitable $\alpha_0, \ldots, \alpha_p \in F$. We assume V contains an invertible element x, complement the basis to x, y with $\alpha_1 = 0$ by Corollary 3.2, and write $y = z_1 + \cdots + z_{p-1}$ where z_k satisfy (1).

If we assume V is short of type $\{\rho, \rho^{-1}\}$, then Theorem 4.9 gives the values

(6)
$$\alpha_i = 0$$
 for *i* odd

(7)
$$\alpha_i = p\theta_{i/2}\alpha_0 \left(-\frac{\alpha_2}{p\alpha_0}\right)^{i/2}$$
 for *i* even

(holding trivially for i = 1, 2).

Equivalently, we may study the Clifford algebra of an arbitrary pcentral space, presented in the form V = Fx + Fy with x invertible and the eigenvector decomposition for y, modulo its ideal $\langle z_2, \ldots, z_{p-2} \rangle$ (where z_k are defined by (2)). Indeed, let V = Fx + Fy be a p-central space in an arbitrary algebra. Let $\alpha_i = x^{p-i} * y^i \in F$. The image of V in the quotient algebra $C_{\Phi}/\langle z_2, \ldots, z_{p-2} \rangle$ is a short p-central space of type $\{\rho, \rho^{-1}\}$, so Theorem 4.9 forces the equalities (6) and (7). If these equalities do not originally hold, $\langle z_2, \ldots, z_{p-2} \rangle$ must be the whole algebra. But if they do hold, then $C_{\Phi}/\langle z_2, \ldots, z_{p-2} \rangle$ is the Clifford algebra of a short p-central space, so it is generic to this situation.

Therefore, we assume in this section that V is short of type $\{\rho, \rho^{-1}\}$. Then C_{Φ} is defined by the relations $x^p = \alpha_0$, $x^{p-2} * y^2 = \alpha_2$ and $y^p = \alpha_p$, where y has the form $y = z_1 + z_{-1}$ with $z_k x = \rho^k x z_k$. From Lemma 4.2.(1) and Remark 4.1 we obtain the presentation with generators

$$x, z_1, z_{-1},$$

and relations

(8)
$$x^p = \alpha_0,$$

(9)
$$z_1 x = \rho x z_1,$$

(10)
$$z_{-1}x = \rho^{-1}xz_{-1}$$

(11)
$$z_1 z_{-1} = \rho z_{-1} z_1 + \frac{\alpha_2 (1-\rho)}{p \alpha_0} x^2,$$

(12)
$$z_1^p + z_{-1}^p = \alpha_p,$$

depending of course on $\alpha_0, \alpha_2, \alpha_p \in F$.

As in Theorem 4.9, the element $w = z_{-1}x^{-1}z_1 + \frac{\alpha_2}{p\alpha_0}x$ is in the center of C_{Φ} . Since z_1^p is central, we may consider the algebra $C_{\Phi}[z_1^{-p}]$, where z_1 is invertible. Substituting $z_{-1} = wz_1^{-1}x - \frac{\rho\alpha_2}{p\alpha_0}z_1^{-1}x^2$, the presentation of $C_{\Phi}[z_1^{-p}]$ on the generators x, z_1, w has the relations (8), (9), wx = xw, $wz_1 = z_1w$, and

(13)
$$z_1^{2p} - \alpha_p z_1^p = p^{-p} \alpha_2^p \alpha_0^{2-p} - \alpha_0 w^p,$$

as computed in (5) above. It follows that the center of $C_{\Phi}[z_1^{-p}]$, which is the centralizer of the generators x and z_1 , is precisely $F[z_1^{\pm p}, w]$. From this we immediately obtain the center of C_{Φ} itself:

Theorem 5.1. Let Φ be the exponentiation form of a short p-central space V = Fx + Fy of type $\{\rho, \rho^{-1}\}$ in some algebra. Let $\alpha_0 = x^p$, $\alpha_2 = x^{p-2} * y^2$ and $\alpha_p = y^p$. Then the center of the associated Clifford algebra C_{Φ} is the function ring Z = F[X, Y] of the affine curve

(14)
$$Y(Y - \alpha_p) = \alpha_0 X^p + p^{-p} \alpha_2^p \alpha_0^{2-p}$$

Proof. The center is generated by X = -w and $Y = z_1^p$, subject only to Relation (13).

Note that Z is a Dedekind domain iff the curve is smooth, namely when char F = 2 or the discriminant $p^{-p}\alpha_2^p\alpha_0^{2-p} - 4^{-1}\alpha_p^2$ is non-zero.

Moreover, by Theorem 4.12 we have

Corollary 5.2. $C_{\Phi}[z_1^{-p}]$ is the symbol Azumaya algebra (α_0, Y) over the center $Z[Y^{-1}]$ under the identification X = -w and $Y = z_1^p$.

The above treatment suffers from some asymmetry, in that we assume z_1 is invertible. However, one can apply the following formal change of variables: x, y, α_0, α_p remain unchanged, z_1 and z_{-1} are switched, and ρ is replaced by ρ^{-1} ; Then w is being replaced by $\rho^{-1}w$. Noting the sensitivity of the symbol algebra notation to the choice of root of unity, we get the following:

Corollary 5.3. $C_{\Phi}[z_{-1}^{-p}]$ is the symbol Azumaya algebra $(\alpha_p - Y, \alpha_0)$ over the center $Z[(\alpha_p - Y)^{-1}]$ under the identification X = -w and $Y = z_1^p$.

By Corollary 5.2, any simple quotient of C_{Φ} in which z_1^p is invertible is a central simple algebra C_{Φ}/IC_{Φ} over Z/I, where $I \triangleleft Z$ is an ideal with $Y \notin I$. On the other hand if $z_1^p = 0$ in the quotient, then z_{-1}^p is invertible there by Lemma 4.7, and then the quotient is a quotient of $C_{\Phi}[z_{-1}^{-p}]$, which is Azumaya by Corollary 5.3, and therefore again a central simple algebra C_{Φ}/IC_{Φ} over Z/I, where $Y \in I$.

Corollary 5.4. C_{Φ} is an Azumaya algebra.

In particular:

Theorem 5.5. The simple quotients of C_{Φ} are all symbol algebras of degree p: the 'algebra at infinity' $(\alpha_p, \alpha_0)_{p,F}$ and, for every point $(t, s) \in C(\bar{F})$ with $t \neq 0$, the symbol algebra $(\alpha_0, t)_{p,K}$ where K = F[t, s].

Proof. In every simple quotient, Z = F[X, Y] maps onto an algebraic field extension K of F. Let t and s denote the images of Y and X, respectively, so that K = F[s, t]. For $t \neq 0$, the map $z_1^p = Y \mapsto t$ keeps z_1^p invertible, so the respective quotient $C_{\Phi}/\langle X - s, Y - t \rangle$ is a quotient of $C_{\Phi}[z_1^{-p}]$ as well, and these are computed in Corollary 5.2.

For t = 0, the quotient is generated by (the images of) x and $y = z_1 + z_{-1}$, where $z_{-1}^p = y^p = \alpha_p$ by Lemma 4.1; but $xz_{-1} = \rho z_{-1}x$, so this quotient is the symbol algebra (α_0, α_p) .

Remark 5.6. Assume z_1 is not invertible in a quotient C of C_{Φ} . Then C is a matrix algebra iff $\alpha_2 \neq 0$.

Proof. By assumption, Y = 0 in C. If $\alpha_2 \neq 0$, (14) forces $\alpha_0 = (-p\alpha_0\alpha_2^{-1}X)^p$, so $(\alpha_p, \alpha_0)_{p,F}$ splits. If $\alpha_2 = 0$ then $(ax + by)^p = (ax + bz_{-1})^p = \alpha_0 a^p + \alpha_p b^p$, which is isotropic if C is a matrix algebra. \Box

On passing, we note a minor inaccuracy in [2, Corollary 1.2], which can now be seen as the special case p = 3 of Theorem 5.5: the case $s_0 = -(3\omega(1-\omega)ad)/2$ corresponds to Y = 0 in our notation, and requires special treatment as above.

ADAM CHAPMAN AND UZI VISHNE

6. The Clifford Algebra of a diagonal binary quintic form

In this section we consider 5-central spaces which are short, but of different type than the one discussed above, with a surprisingly different outcome.

Let F be a field of characteristic not 5, containing a fifth root of unity ρ . Let V be an anisotropic two-dimensional 5-central space generating an algebra A over F. Write V = Fx + Fy; since the form is anisotropic, x is invertible. Let $\Phi(ax+by) = \alpha_0 a^5 + \alpha_1 a^4 b + \alpha_2 a^3 b^2 + \alpha_3 a^2 b^3 + \alpha_4 a b^4 + \beta b^5$ be the exponentiation form of V. In particular, A is a quotient of the Clifford algebra of Φ , and by Proposition 2.1.2 it satisfies the relations $\alpha_i = x^{p-i} * y^i$ for $i = 0, \ldots, 5$.

By Corollary 3.2, we may assume $\alpha_1 = x^4 * y = 0$. Generalizing Definition 4.4, let us say that V has type Ω , for $\Omega \subseteq \{\rho, \rho^2, \rho^3, \rho^4\}$, if there is a decomposition $y = \sum_{k \in \Omega} z_k$ such that $z_k x = \rho^k x z_k$ for each k. Following Lemma 3.5, every anisotropic 5-space has some minimal type. If the type is a singleton, then the generated algebra is cyclic by Remark 4.6. Replacing ρ by a suitable power leaves two types of size 2: type $\{\rho, \rho^{-1}\}$ which was analyzed in Sections 4 and 5, and type $\{\rho, \rho^3\}$. From now on we assume the latter, so that

$$y = z_1 + z_3;$$

as indicated above,

(15)
$$z_1 x = \rho x z_1, z_3 x = \rho^3 x z_3.$$

By Lemma 4.2, it follows that $\alpha_2 = x^3 * y^2 = 0$. Let us consider the next relation, $\alpha_3 = x^2 * (z_1 + z_3)^3$, namely

$$\alpha_3 = x^2 * z_1^3 + x^2 * z_1^2 * z_3 + x^2 * z_1 * z_3^2 + x^2 * z_3^3.$$

Conjugation by x induces a direct sum decomposition of A, with respect to which the four summands in the right-hand side fall into different components. Comparing components, we deduce that $x^2 * z_1^3 = x^2 * z_1 * z_3^2 = x^2 * z_3^3 = 0$, all following tautologically from (15), and

(16)
$$\alpha_3 = x^2 * z_1^2 * z_3.$$

Remark 6.1. If $z_1 = 0$ then $A = F[x, z_3]$ is the cyclic algebra (α, β^2) , since A = F[x, y] and $y = z_3 \rho$ -commutes with x.

FIGURE 1. Action graph for the generators

Since we are mostly interested in quotients of A which are division algebras, we will assume z_1 is invertible. Notice that $z_1^5 = y^5 - z_3^5$ commutes with both z_3 and x, and so it is central.

Consider the linear map $T: A \to A$ defined by $T(t) = z_1^2 t - (\rho + \rho^2) z_1 t z_1 + \rho^3 t z_1^2$, so that $T(t) z_1^{-2}$ is the combination of conjugates $z_1^2 t z_1^{-2} - (\rho + \rho^2) z_1 t z_1^{-1} + \rho^3 t$. By computation, for every $t \in A$ such that $tx = \rho^3 xt$, we have that $x^2 * z_1^2 * t = (1 - \rho^3)(1 - \rho^4)x^2T(t)$, so Equation (16) becomes $T(z_3) = (1 - \rho^3)^{-1}(1 - \rho^4)^{-1}x^{-2}\alpha_3$.

Consider $w_3 = cz_1^{-2}x^{-2}$ where $c = \frac{\alpha_3}{5\rho^2}$. Since $T(w_3) = (1 - \rho^3)(1 - \rho^4)cx^{-2} = (1 - \rho^3)^{-1}(1 - \rho^4)^{-1}\alpha_3x^{-2}$, we obtain for $z'_3 = z_3 - w_3$ that $T(z'_3) = 0$.

Because of the factorization $\lambda^2 - (\rho + \rho^2)\lambda + \rho^3 = (\lambda - \rho)(\lambda - \rho^2)$, $T(z'_3) = 0$ provides by Lemma 3.3 a decomposition $z'_3 = w_1 + w_2$, where $z_1w_i = \rho^i w_i z_1$ for i = 1, 2. By our choice of w_3 , we have a decomposition

$$z_3 = w_1 + w_2 + w_3$$

with $z_1 w_i = \rho^i w_i z_1$ for i = 3 as well.

Remark 6.2. The conjugation maps by x and by z_1 commute, so the eigenvectors w_i with respect to z_1 satisfy

(17) $w_i x = \rho^3 x w_i$

for i = 1, 2, 3.

Since $w_3 = cz_1^{-2}x^{-2}$ is defined in terms of x and z_1 , one easily checks that $w_1w_3 = \rho w_3w_1$ and $w_3w_2 = \rho^2 w_2w_3$. Figure 1 provides an action graph for the elements of A mentioned thus far: the relation $uv = \rho^i vu$ is depicted by an arrow $u \longrightarrow v$ with i beads (we could draw a reverse arrow with 5 - i beads). **Remark 6.3.** A subset $S \subseteq A$ is called a p-set, if $s^p \in F^{\times}$ for every $s \in S$, and all commutators $s_1s_2s_1^{-1}s_2^{-1}$ are powers of ρ (see [14, pp. 248–251] for a refined definition). The generated subalgebra F[S], whose center may strictly contain F, is then a tensor product of at most |S|/2 cyclic algebras of degree p.

If $w_1 = 0$ then A is generated by the 5-set $\{x, z_1, w_2\}$, and therefore it is a cyclic algebra of degree 5 over a 5-dimensional extension of F. We shall assume from now on that w_1 is invertible.

We come to the final relation, $\alpha_4 = x * y^4 = x * (z_1 + z_3)^4 = x * (z_1 + w_1 + w_2 + w_3)^4$, namely

(18)
$$\alpha_4 = \sum_{i_1+i_2+i_3+j=4} x * w_1^{i_1} * w_2^{i_2} * w_3^{i_3} * z_1^j.$$

Conjugation by x, using (17), breaks (18) into 5 equations:

$$\sum_{i_1+i_2+i_3=4-j} x * w_1^{i_1} * w_2^{i_2} * w_3^{i_3} * z_1^j = \begin{cases} \alpha_4 & j = 1, \\ 0 & j = 0, 2, 3, 4. \end{cases}$$

The equations for $j \neq 1$ are tautological. Indeed, for j = 0 and j = 4 we get $x * z_1^4 = x * z_3^4 = 0$. For j = 2 one writes

$$x * w_s * w_{s'} * z_1^2 = f_{ss'} w_s w_{s'} z_1^2 x;$$

for suitable $f_{ss'} \in \mathbb{Z}[\rho]$ (s, s' = 1, 2, 3); it then turns out that $f_{ss'} = 0$ unless precisely one of s, s' is 3. But $f_{13} + \rho^4 f_{31} = f_{23} + \rho^2 f_{32} = 0$, so the relations $w_3w_s = \rho^{2(3-s)}w_sw_3$ shows that $x * w_s * w_{s'} * z_1^2 = 0$ tautologically for every s, s' = 1, 2, 3. For the case j = 3 one computes that $x * w_s * z_1^3 = 0$ for s = 1, 2, 3. The only remaining case is j = 1, which translates (18) to

$$\sum_{i_1+i_2+i_3=3} x * w_1^{i_1} * w_2^{i_2} * w_3^{i_3} * z_1 = \alpha_4.$$

Splitting this further by conjugation by z_1 , we obtain the five relations

(19)
$$x * w_3^3 * z_1 + x * w_1^2 * w_2 * z_1 = \alpha_4$$

(20)
$$x * w_1^3 * z_1 + x * w_2 * w_3^2 * z_1 = 0$$

(21)
$$x * w_2^2 * w_3 * z_1 + x * w_1 * w_3^2 * z_1 = 0$$

(22)
$$x * w_1 * w_2 * w_3 * z_1 + x * w_2^3 * z_1 = 0$$

(23)
$$x * w_1 * w_2^2 * z_1 + x * w_1^2 * w_3 * z_1 = 0$$

Calculating with the ρ -commutation relations, (20), (21) and (22) are tautologically satisfied. Opening up the remaining two equations, noting that each pair of generators except (possibly) for w_1, w_2 are ρ -commuting, we get

$$(24) \begin{array}{c} -5\rho^2 w_3^3 + (1-\rho)(1-\rho^2)w_1^2 w_2 \\ +\rho(1-\rho)^2 w_1 w_2 w_1 + \rho(1-\rho)(1-\rho^2) w_2 w_1^2 \end{array} = \alpha_4 x^{-1} z_1^{-1},$$

$$(25)\frac{(1-\rho)(1-\rho^3)w_1w_2^2 + (1-\rho)(1-\rho^4)w_2w_1w_2}{+(1-\rho^2)(1-\rho^4)w_2^2w_1 - 5\rho(1+\rho)w_1^2w_3} = 0.$$

Write $w_2 = w'_2 + c' w_1^{-2} x^{-1} z_1^{-1}$, where $c' = \frac{\alpha_4}{5(1+\rho^3)} + \frac{\alpha_3^3}{25\alpha_0 z_1^5}$. Substituting $w_3 = c z_1^{-2} x^{-2}$ in (24) and dividing by $(1-\rho)(1-\rho^2)$, we obtain

$$w_1^2 w_2' + (-\rho^2 - \rho^4) w_1 w_2' w_1 + \rho w_2' w_1^2 = 0.$$

As before, the associated polynomial $\lambda^2 - (\rho^2 + \rho^4)\lambda + \rho$ factors as $(\lambda - \rho^2)(\lambda - \rho^4)$, so Lemma 3.3 provides the decomposition $w'_2 = v_1 + v_2$ where $v_1, v_3 \in A$ satisfy $v_i w_1 = \rho^i w_1 v_i$ for i = 1, 3. Taking $v_2 = c' w_1^{-2} x^{-1} z_1^{-1}$, we get

(26)
$$w_2 = v_1 + v_2 + v_3,$$

where

$$v_i w_1 = \rho^i w_1 v_i$$

for i = 1, 2, 3. By definition of v_2 we also have that $v_2v_1 = \rho^{-2}v_1v_2$ and $v_2v_3 = \rho^2 v_3v_2$.

Remark 6.4. Since conjugation by x, by z_1 and by w_1 commute, the eigenvectors v_i satisfy

$$\begin{aligned} xv_i &= \rho^2 v_i x, \\ z_1 v_i &= \rho^2 v_i z_1 \end{aligned}$$

for i = 1, 2, 3; consequently

$$w_3 v_i = \rho^2 v_i w_3.$$

A refined diagram of the commutation relations between the generators $x, z_1, w_1, w_3, v_1, v_2, v_3$ is given as Figure 2.

It remains to solve (25). Dividing by $(1 - \rho)(1 - \rho^3)$ we obtain

(27)
$$w_1 w_2^2 - \rho^2 (1 + \rho^2) w_2 w_1 w_2 + \rho w_2^2 w_1 + (1 - \rho^2)^2 w_1^2 w_3 = 0.$$

FIGURE 2. A refined action graph for the generators: an arrow to the framed zone depicts same action on v_1, v_2, v_3

We substitute (26) into (27), and collect homogeneous components with respect to conjugation by w_1 :

$$\begin{split} w_1 v_1^2 &- \rho^2 (1+\rho^2) v_1 w_1 v_1 + \rho v_1^2 w_1 &= 0, \\ w_1 v_3^2 &- \rho^2 (1+\rho^2) v_3 w_1 v_3 + \rho v_3^2 w_1 &= 0, \\ w_1 v_2^2 &- \rho^2 (1+\rho^2) v_2 w_1 v_2 + \rho v_2^2 w_1 \\ &+ w_1 v_1 v_3 - \rho^2 (1+\rho^2) v_1 w_1 v_3 + \rho v_1 v_3 w_1 &= -(1-\rho^2)^2 w_1^2 w_3, \\ &+ w_1 v_3 v_1 - \rho^2 (1+\rho^2) v_3 w_1 v_1 + \rho v_3 v_1 w_1 \\ \end{split}$$

$$\begin{split} w_1 v_1 v_2 &- \rho^2 (1+\rho^2) v_1 w_1 v_2 + \rho v_1 v_2 w_1 + w_1 v_2 v_1 - \rho^2 (1+\rho^2) v_2 w_1 v_1 + \rho v_2 v_1 w_1 &= 0, \\ w_1 v_3 v_2 &- \rho^2 (1+\rho^2) v_3 w_1 v_2 + \rho v_3 v_2 w_1 + w_1 v_2 v_3 - \rho^2 (1+\rho^2) v_2 w_1 v_3 + \rho v_2 v_3 w_1 &= 0. \end{split}$$

Plugging in the fact that $v_2 = c' w_1^{-2} x^{-1} z_1^{-1}$ and the relations satisfied by w_1, v_1 and by w_1, v_3 , the first two and final two equations vanish, and the third one becomes

$$(1-\rho)(1+\rho^2)w_1v_2^2 - \rho^3w_1v_1v_3 + w_1v_3v_1 = -(1-\rho^2)w_1^2w_3.$$

Dividing by w_1 from the left and noting that $v_2^2 = \rho^3 c'^2 w_1^{-4} z_1^{-2} x^{-2}$, we obtain

(28)
$$v_3v_1 - \rho^3 v_1v_3 = -[(1-\rho)(1+\rho^2)\rho^3 c'^2 w_1^{-5} + (1-\rho^2)c]w_1 z_1^{-2} x^{-2}.$$

If $v_1 = 0$ then A is generated by the 5-set $\{x, z_1, w_1, v_3\}$ and is a tensor product of two cyclic algebras of degree 5, see below.

Assume v_1 is invertible. Let $u_1 = c'' v_1^{-1} w_1 z_1^{-2} x^{-2}$ where $c'' = \rho^2 (1 + \rho^3)^2 w_1^{-5} c'^2 - \rho^4 c$, and write $v_3 = u_1 + u_2$; then Equation (28) becomes

$$v_1u_2 = \rho^2 u_2 v_1$$

FIGURE 3. A final action graph

so we have that $v_1u_i = \rho^i u_i v_1$ for i = 1, 2.

Remark 6.5. Since conjugation by x, by z_1 , by w_1 and by v_1 commute, u_2 satisfies

$$\begin{aligned} xu_2 &= \rho^2 u_2 x\\ z_1 u_2 &= \rho^2 u_2 z_1\\ u_2 w_1 &= \rho^3 w_1 u_2. \end{aligned}$$

In particular A is generated by the 5-set $\{x, z_1, w_1, v_1, u_2\}$, and is a tensor product of one or two cyclic algebras of degree 5 (generically two, as we see below). The commutation relations of the final generators, with the artificial ones, w_3, v_2, u_1 , omitted, are given in Figure 3.

In summary, we proved:

Theorem 6.6. Let V be an anisotropic two-dimensional 5-central space of type $\{\rho, \rho^3\}$, generating a division algebra A. Then A is a product of one or two cyclic division algebras of degree 5, whose center is some field extension of F.

Proof. We keep the notation given above. Decompose $y = z_1 + z_3$ where z_k are eigenvectors of x as above.

- (1) The case $z_1 = 0$ gives $A = F[x, z_3^2]$ where for the rest of this proof we understand that these are standard generators: the multiplicative commutator is ρ ; so assume $z_1 \neq 0$.
- (2) Decompose $z_3 = w_1 + w_2 + w_3$. If $w_1 = 0$ then $A = K[x, z_1]$ where $K = F[z_1^5, x^{-2}z_1^2w_2]$; so assume $w_1 \neq 0$.

ADAM CHAPMAN AND UZI VISHNE

- (3) Decompose $w_2 = v_1 + v_2 + v_3$. If $v_1 = 0$ and $v_3 = 0$ then $A = K[x, z_1]$, were $K = F[z_1^5, w_1^5, x^{-1}z_1^2w_1]$.
- (4) If $v_1 = 0$ and $v_3 \neq 0$ then $A = K[x, z_1] \otimes_K K[x^{-1}z_1^2w_1, x^{-2}z_1^2v_3]$, were $K = F[z_1^5, w_1^5, v_3^5]$.
- (5) Finally if $v_1 \neq 0$, decompose $v_3 = u_1 + u_2$, and then $A = K[x, z_1] \otimes K[x^{-2}z_1^2v_1, x^{-1}z_1^2w_1]$ where $K = F[z_1^5, v_1^5, w_1^5, x^{-1}z_1^{-2}w_1^2v_1u_2]$.

Note that in each case the extension K[x]/K splits (at least) one of the cyclic components.

Corollary 6.7. Let V be an anisotropic 5-central space of type $\{\rho, \rho^3\}$ in an algebra A. Then every quotient division algebra of the Clifford algebra of V is either cyclic of degree 5 or a tensor product of two cyclic algebras of degree 5.

The assumption that $y = z_1 + z_3$ forces $\alpha_1 = \alpha_2 = 0$ in the exponentiation form. In order to present A in terms of the exponentiation form of V, we need to compute quantities such as z_3^5 . Remark 4.1 enables us to do so when z_3 is a sum of two ρ -commuting elements, but there is no analogous formula for more than two summands. Recall that the artificial summands w_3 , v_2 and u_1 were defined in terms of constants $c = \frac{\rho^3 \alpha_3}{5}$, $c' = \frac{(1+\rho+\rho^2)\alpha_4}{5} + \frac{\alpha_3^3}{25\alpha_0 z_1^5}$ and $c'' = \rho^2 (1+\rho^3)^2 w_1^{-5} c'^2 - \rho^4 c$. Assuming $\alpha_3 = \alpha_4 = 0$, we find that $w_3 = 0$, $v_2 = 0$ and $u_1 = 0$. This enables us to formulate the final result.

Theorem 6.8. Assume in Theorem 6.6 that the exponentiation form of V is diagonal, namely $\Phi(ax + by) = \alpha a^5 + \beta b^5$ for suitable $\alpha, \beta \in F$. Then one of the following holds for the algebra A generated by V:

- (1) $A = (\alpha, \beta^2)_F$.
- (2) $A = (\alpha, t)_K$ where K = F(t, s) and $s^5 = \alpha^3 t^2 (\beta t)$.
- (3) $A = (\alpha, t)_K$ where K = F(t, s) and $s^5 = \alpha^{-1}t^2(\beta t)$.
- (4) $A = (\alpha, t)_K \otimes_K (t', t'')_K$ where K = F(t, t', t'') and $t^3 + \alpha t' + \alpha^2 t'' = \beta t^2$.
- (5) $A = (\alpha, t)_K \otimes_K (t', t'')_K$ where K = F(t, t', t'', s), and $s^5 = \alpha^3 t t' t''^2 (\beta t^2 t^3 \alpha^2 t t' \alpha t'').$

Proof. In the notation of this section, the assumption that Φ is diagonal, namely, that $\alpha_3 = \alpha_4 = 0$, implies c = c' = c'' = 0, and so (when these elements are defined) $w_3 = 0$, $v_2 = 0$ and $u_1 = 0$.

Following the proof of Theorem 6.6, there are four cases:

- (1) $z_1 = 0$. Then $y = z_3$ and A is generated by $x \leftarrow y^2$. Henceforth $z_1 \neq 0$.
- (2) $w_1 = 0$, so that $z_3 = w_2$. Thus $\beta = y^5 = (z_1 + z_3)^5 = z_1^5 + z_3^5$. Take $t = z_1^5$ and $s = x^3 z_1^2 z_3$. Then K = F[t, s], and $t + \alpha^{-3} t^{-2} s^5 = \beta$. Henceforth $w_1 \neq 0$.
- (3) $v_1 = 0$, so that $w_2 = v_3 = u_2$. Assume $v_3 = 0$. Let $t = z_1^5$. Then $A = (\alpha, t)_K$ and K = F[t, s] by Theorem 6.6, where $s = x^{-1}z_1^2w_1$ and $\beta = y^5 = z_1^5 + (w_1 + w_2)^5 = t + \alpha t^{-2}s^5$.
- (4) $v_1 = 0$ and $v_3 \neq 0$. Let $t = z_1^5$, $t' = \alpha^{-1} t^2 w_1^5$ and $t'' = \alpha^{-2} t^2 v_3^5$. Then $A = (\alpha, t)_K \otimes_K (t', t'')_K$ and K = F[t, t', t''] by Theorem 6.6, and $\beta = y^5 = z_1^5 + (w_1 + w_2)^5 = t + \alpha t^{-2} t' + \alpha^2 t^{-2} t''$.
- (5) Assuming $v_1 \neq 0$, let $t = z_1^5$, $t' = \alpha^{-2}tv_1^5$, $t'' = \alpha^{-1}t^2w_1^5$ and $s = x^{-1}z_1^8w_1^2v_1u_2$. Then $\beta = z_1^5 + z_3^5 = z_1^5 + w_1^5 + w_2^5 = z_1^5 + v_1^5 + w_1^5 + u_2^5 = t + \alpha^2t^{-1}t' + \alpha t^{-2}t'' + \alpha^{-3}t^{-3}t'^{-1}t''^{-2}s^5$, $A = (\alpha, t)_K \otimes_K (t', t'')_K$ and K = F[t, t', t'', s].

Finally we observe that, in a sense, every cyclic algebra of degree 5 and every product of two cyclic algebras of degree 5 is a quotient of a Clifford algebra of a binary diagonal quintic form.

Theorem 6.9. Let k be a field of characteristic not 5 containing 5th roots of unity.

Let A' be a division algebra over an arbitrary extension K'/k, which is either cyclic, or a product of two cyclic algebras, containing a noncentral element whose 5th power is in k.

Then A' is a scalar extension of a quotient of the Clifford algebra of some binary diagonal quintic form defined over an intermediate field $k \subseteq F \subseteq K'$, such that F is generated by a single element over k.

Proof. Let $x \in A'$ be an element such that $x^5 = \alpha \in k^{\times}$. If deg(A') = 5 write $A' = (\alpha, t)_{K'}$ for $t \in K'$; let $\beta = \alpha^{-3}t^{-2} + t$ and let $F = k(\beta)$ and K = F(t). Let $z_1 \in A'$ be an element such that $z_1^5 = t$ and $z_1x = \rho x z_1$, and reverse the computation in Theorem 6.8.(2) by taking $z_3 = z_1^{-2}x^{-3}$, $y = z_1 + z_3$ and V = Fx + Fy. Then $A = K[x, z_1]$ is a quotient of the Clifford algebra of V over F, and A' = K'A.

If deg(A') = 5², write A' = $(\alpha, t) \otimes (t', t'')$ for $t, t', t'' \in K'$, and take $\beta = t + \alpha t^{-2}t' + \alpha^2 t^{-2}t''$, $F = k(\beta)$ and $K = F(\beta, t, t', t'')$. In a similar

manner, solving for z_1, w_1 and w_2 as in Theorem 6.8.(3), and letting $y = z_1 + w_1 + w_2$, $A = (\alpha, t)_K \otimes_K (t', t'')_K$ is a quotient of the Clifford algebra of V = Fx + Fy, and A' = K'A.

Remark 6.10. Let C be the Clifford algebra of an anisotropic 5-central space of type $\{\rho, \rho^3\}$ in an algebra A, and assume the exponentiation form is diagonal. Let $x, y, z_1, z_3 \in C$ be as before. Let $C' = C[z_1^{-5}]$. Let $w_1, w_2 \in C'$ be as before. Let $C'' = C'[w_1^{-5}]$. Let $v_1, v_3 \in C''$ be as before. Then $C''[v_1^{-5}]$ and $C''[v_3^{-5}]$ are Azumaya.

The remark follows from Theorem 6.8 because the only quotients come from cases (4) and (5) and are central simple algebras of degree 5^2 . However:

Corollary 6.11. The Clifford algebra of an anisotropic 5-central space of type containing $\{\rho, \rho^3\}$ is in general not Azumaya.

Indeed, one may choose the fields in Theorem 6.9 so that quotient division algebras exists both of degree 5 and 25.

References

- L. E. Dickson, *Linear associative algebras and abelian equations*, Trans. Amer. Math. Soc. 15(1), 31–46, (1914).
- [2] D. E. Haile, On the Clifford algebra of a binary cuibc form, Amer. J. Math. 106(6), 1269–1280, (1984).
- [3] D. E. Haile, When is the Clifford algebra of a binary cubic form split?, J. Algebra 146(2), 514–520, (1992).
- [4] D. E. Haile and S. Tesser, On Azumaya algebras arising from Clifford algebras, J. Algebra 116(2), 372–384, (1988).
- [5] N. Heerema, An algebra determined by a binary cubic form, Duke Math. J. 21, 423–444, (1954).
- [6] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, "The book of involutions", American Mathematical Society Colloquium Publications 44, American Mathematical Society, 1998.
- [7] R. S. Kulkarni, On the Clifford algebra of a binary form, Trans. Amer. Math. Soc. 355(8), 3181–3208, (2003).
- [8] R. S. Kulkarni, The extension of the reduced Clifford algebra and its Brauer class, Manuscripta Math. 112(3), 297–311, (2003).
- [9] T. Y. Lam, "The Algebraic Theory of Quadratic Forms", W. A. Benjamin, Inc., 1973.
- [10] E. Matzri, "Azumaya Algebras", Master's thesis, Bar-Ilan University, 2004.
- [11] E. Matzri, L.H. Rowen and U. Vishne, Non-cyclic algebras with n-central elements, Proc. Amer. Math. Soc. 140(2), 513–518, (2012).

- [12] Ph. Revoy, Algèbres de Clifford et algèbres extérieures, J. Algebra 46(1), 268-277, (1977).
- [13] N. Roby, Algèbres de Clifford des formes polynomes, C. R. Acad. Sci. Paris Se'r. I. Math. A 268, A484–A486, (1969).
- [14] L.H. Rowen, "Ring Theory", Vol. II, Academic Press, New York, 1988.
- [15] S. Tesser, Representations of a Clifford algebra that are Azumaya algebras and generate the Brauer group, J. Algebra 119(2), 265-281, (1988).
- [16] J. H. M. Wedderburn, A type of primitive algebra, Trans. Amer. Math. Soc. 15(2), 162–166, (1914).