CLIFFORD ALGEBRAS OF BINARY HOMOGENEOUS FORMS

JOURNAL OF ALGEBRA, VOL. 366, 94-111, (2012).

ADAM CHAPMAN AND UZI VISHNE

Abstract

We study the generalized Clifford algebras associated to homogeneous binary forms of prime degree p, focusing on exponentiation forms of p-central spaces in division algebra.

For a two-dimensional p-central space, we make the simplifying assumption that one basis element is a sum of two eigenvectors with respect to conjugation by the other. If the product of the eigenvalues is 1 then the Clifford algebra is a symbol Azumaya algebra of degree p, generalizing the theory developed for $p=3$. Furthermore, when $p=5$ and the product is not 1 , we show that any quotient division algebra of the Clifford algebra is a cyclic algebra or a tensor product of two cyclic algebras, and every product of two cyclic algebras can be obtained as a quotient. Explicit presentation is given to the Clifford algebra when the form is diagonal.

1. Introduction

An element y in an (associative) algebra A is called n-central if y^{n} is in the center. One way to study such elements is through n-central subspaces, which are linear spaces all of whose elements are n-central.

The n-central elements are of special importance in the theory of central simple algebras, through their connection with cyclic field extensions and cyclic algebras. Let F be a field. The degree of a central simple algebra over F is, by definition, the square root of the dimension. Every maximal subfield of a division algebra has dimension equal to the degree. The algebra is cyclic if it has a maximal subfield which is cyclic Galois over the center.

[^0]Hamilton's quaternion algebra is the classical example of a cyclic algebra of degree 2 over the real numbers. The first examples of arbitrary degree were constructed by Dickson [1], as follows: Let L / F be an n dimensional cyclic Galois extension with σ a generator of $\operatorname{Gal}(L / F)$, and let $\beta \in F^{\times}$. Then $\oplus_{i=0}^{n-1} L y^{i}$, subject to the relations $y u=\sigma(u) y$ (for $u \in L$) and $y^{n}=\beta$, is a cyclic algebra of degree n, denoted by $(L / F, \sigma, \beta)$; every cyclic algebra has this form. In particular, every cyclic algebra of degree n has an n-central element, which is not n^{\prime} central for any proper divisor n^{\prime} of n (we call such an element strongly n-central. This is taken to be the definition for n-central elements in some papers, but we find the closed definition to be more suitable when dealing with spaces).

If F contains nth roots of unity, then a strongly n-central element of a division algebra generates a cyclic maximal subfield. However, there are central division algebras with strongly n-central elements which are not cyclic. The first example, for $n=4$, was given by Albert, and an example with $n=p^{2}$ for an arbitrary prime p was recently constructed by Matzri, Rowen and Vishne [11]. Nevertheless, Albert proved that in prime degree, every central division algebra with a p-central element is cyclic.

When F does have nth roots of unity ρ, a cyclic maximal subfield has the form $L=F[x]$ where x is n-central, so every cyclic algebra has the 'symbol algebra' form

$$
(\alpha, \beta)_{n, F}:=F\left[x, y \mid x^{n}=\alpha, y^{n}=\beta, y x=\rho x y\right],
$$

emphasizing even further the role of n-central elements in presentations of cyclic algebras. Moreover, in the above presentation, $F x+F y$ is an n-central space (Remark 2.5 below).

To every n-central space V one associates the exponentiation form $\Phi: V \rightarrow F$, defined by $\Phi(v)=v^{n}$, which is homogeneous of degree n. One then studies the space (and the algebra it generates) via the associated form.

Definition 1.1. Let $\Phi: V \rightarrow F$ be a homogeneous form of degree n. The generalized Clifford algebra associated to Φ is the quotient C_{Φ} of the free associative algebra $F\left\langle x_{1}, \ldots, x_{t}\right\rangle$, subject to the relations $\left(a_{1} x_{1}+\cdots+a_{t} x_{t}\right)^{n}=f\left(a_{1} v_{1}+\cdots+a_{t} v_{t}\right)$ for every $a_{1}, \ldots, a_{t} \in F$, where $\left\{v_{1}, \ldots, v_{t}\right\}$ is a basis of V.

We will say that C_{Φ} is the Clifford algebra of Φ, or, oftentimes, of V itself.

Clearly, $F x_{1}+\cdots+F x_{n}$ is an n-central subspace of C_{Φ}. A base change induces a linear isomorphism between the respective presentations of C_{Φ}, so the Clifford algebra is independent of the basis. This generalization of the classical construction of Clifford algebras is due to Roby, [13].

Fixing F, if A is a central simple algebra over an extension $K \supseteq F$, we call an F-subspace $V \subseteq A$ ' n-subcentral' if $v^{n} \in F$ for every $v \in V$. For every homogeneous form $\Phi: V \rightarrow F$, the simple quotients of C_{Φ} are precisely the simple algebras generated by n-subcentral spaces V, in which $v^{n}=\Phi(v)$ for every $v \in V$.

A homogeneous form Φ is anisotropic if $\Phi(v) \neq 0$ for every $v \neq 0$. We say that an n-central space is anisotropic if its exponentiation form is anisotropic, which is the case exactly when its non-zero elements are all invertible. For example, any n-central subspace of a division algebra is anisotropic.

The Clifford algebras of quadratic forms are a classical object. In this case the center of C_{Φ} is F (for even dimensional forms) or an étale quadratic extension (otherwise), and C_{Φ} is a tensor product of quaternion algebras over the center (see, e.g., [9] or [6]).

Let us briefly describe what is known for binary cubic forms, to put the results of this paper in perspective.

Clifford algebras of a binary cubic form f were first considered by Heerema in [5]. Haile studied these algebras in [2] and [3], and showed that in characteristic not 2 or $3, C_{\Phi}$ is an Azumaya algebra, with center which is the coordinate ring of the affine elliptic curve $s^{2}=r^{3}-27 \Delta$ where Δ is the discriminant of f. He also proved that the simple homomorphic images of C_{Φ} are cyclic algebras of degree 3; moreover for every algebraic extension K / F there is a one to one correspondence between the K-points of the elliptic curve $s^{2}=r^{3}-27 \Delta$ and the simple homomorphic images, mapping the point $\left(r_{0}, s_{0}\right)$ on the curve to the symbol algebra $\left(a, s_{0}+\frac{1}{2}\left(3 \rho_{3}\left(1-\rho_{3}\right) a d\right)\right)_{3, F\left(r_{0}, s_{0}\right)}$.

Along these lines, it is shown in [3] that C_{Φ} splits if and only if the ternary form $w^{3}-\Phi(v)$ has a nontrivial F-rational point.

When $d>3$ or $n>2$, it is known that the Clifford algebra contains a free F-algebra on two generators (Haile [4] attributes this to Revoy).

In particular, the algebra is not a finite module over its center and hence is not Azumaya.

This situation can be partially remedied by considering the reduced Clifford algebra A_{Φ}, defined as the quotient of C_{Φ} with respect to the intersection of the kernels of all the d-dimensional representations, where d is the degree of f. Haile and Tesser showed in [4] that A_{Φ} is Azumaya; also see [15]. This quotient was further studied by Kulkarni, [7],[8].

We will assume F is an infinite field. An invertible p-central element acting by conjugation decomposes the algebra into a direct sum of eigenspaces. Since the binary Clifford algebra is large even for small values of $p>3$, our approach here is to restrict the number of eigenvectors in a basis element. More precisely, we study two-dimensional p-central spaces $V=F x+F y$, assuming that y can be written as a sum of two eigenvectors with respect to conjugation by x. Indeed, this much is guaranteed for $p=3$.

After some preliminaries on homogeneous forms and eigenvector decomposition in Sections 2 and 3, we introduce short p-central spaces in Section 4: a p-central space is short if it is spanned by elements x, y such that x is invertible, and y is the sum of two eigenvectors corresponding to the conjugation action of x. The type of a short p-central space is the set of eigenvalues participating in the decomposition.

We prove (Theorem 4.12) that any division algebra, a-priori of arbitrary dimension, which is generated by a short p-space of type $\left\{\rho, \rho^{-1}\right\}$, is in fact a symbol algebra of degree p over its center. This is reinterpreted in Section 5 to show that the Clifford algebra of a short p-space of this type is an Azumaya algebra of degree p, whose center is the function ring of a hyper-elliptic curve of genus $[(p-1) / 2]$.

For $p=5$ there are, up to choosing ρ, two possible types of short p-central spaces, $\left\{\rho, \rho^{-1}\right\}$ and $\left\{\rho, \rho^{3}\right\}$. In Section 6 we study short 5 central spaces of type $\left\{\rho, \rho^{3}\right\}$. This case turns out to be very different than the previous one, resulting in quotients of the Clifford algebra which are tensor products of two cyclic algebras; and indeed, every division algebra which is either a symbol algebra of degree 5 or the tensor product of two symbol algebras is, essentially, a quotient of a suitable Clifford algebra associated to a diagonal quintic form.

2. Preliminaries

It is convenient to express n-centrality of a vector space in terms of basis elements. To this end, we adopt the notation of [12]: $x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}}$ denotes the sum of all the products with each x_{i} appearing d_{i} times. For example $x^{2} * z^{2}=x x z z+x z x z+x z z x+z x x z+z x z x+z z x x$; as usual we may omit exponents $d_{i}=1$, so that $x^{2} * y=x x y+x y x+y x x$. This notation is commutative in the sense that $x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}}=x_{\sigma(1)}^{d_{\sigma(1)}} * \cdots * x_{\sigma(t)}^{d_{\sigma(t)}}$ for any permutation $\sigma \in S_{t}$.

Proposition 2.1. (1) A subspace $V=\sum F x_{i}$ of an associative algebra A is n-central iff $x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}} \in F$ for every partition $d_{1}+\cdots+d_{t}=n$.
(2) If V as above is n-central, then the associated exponentiation form $V \rightarrow F$ is $\Phi\left(u_{1} x_{1}+\cdots+u_{t} x_{t}\right)=\sum_{d_{1}+\cdots+d_{t}=n}\left(x_{1}^{d_{1}} * \cdots *\right.$ $\left.x_{t}^{d_{t}}\right) u_{1}^{d_{1}} \cdots u_{t}^{d_{t}}$.
Proof. If every $x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}} \in F$ then clearly

$$
\left(u_{1} x_{1}+\cdots+u_{t} x_{t}\right)^{n}=\sum_{d_{1}+\cdots+d_{t}=n}\left(x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}}\right) u_{1}^{d_{1}} \cdots u_{t}^{d_{t}} \in F
$$

for every $u_{1}, \ldots, u_{t} \in F$. On the other hand if the space is n-central, then for every linear functional $\psi: A \rightarrow F$ such that $F \subseteq \operatorname{ker} \psi$, we have $\sum_{d_{1}+\cdots+d_{t}=n} u_{1}^{d_{1}} \cdots u_{t}^{d_{t}} \psi\left(x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}}\right)=0$ for every u_{1}, \ldots, u_{t}; since we assume F is infinite, this implies $\psi\left(x_{1}^{d_{1}} * \cdots * x_{t}^{d_{t}}\right)=0$ for every partition and every ψ.

Corollary 2.2. Let V be a subspace in an algebra A over F. Then V is n-central iff every subspace of dimension at most n of V is n-central.

Stated in terms of elements, x_{1}, \ldots, x_{t} span an n-central space in A iff every subset of cardinality at most n spans such a space.

Corollary 2.3. Assume p is prime, and let V be an anisotropic p central space, over a field of characteristic not p. Then every two commuting elements of V are linearly dependent.

Proof. If $x, y \in V$ commute and $F x+F y$ is p-central with an anisotropic exponentiation form then $x^{p} \neq 0$ and since every $x+\beta y$ is p-central, we have that $p x^{p-1} y=x^{p-1} * y \in F$, showing that $y \in F x$.

Corollary 2.4. When the characteristic is prime to n, an n-central space V has zero intersection with the center, unless $V=F$.

Remark 2.5. If $x, y \in A=F[x, y]$ satisfy $y x=\rho x y$, where n is an n-primitive root of unity, then $(x+y)^{n}=x^{n}+y^{n}$, and $F x+F[x] y$ is n-central.

Proof. The equality $(x+y)^{n}=x^{n}+y^{n}$ follows by considering the rotation action of $\mathbb{Z} / n \mathbb{Z}$ on the monomials in $x^{n-i} * y^{i}$; and for every $a \in F$ and $f \in F[x],(f y)(a x)=\rho(a x)(f y)$, so that $(a x+f y)^{n}=$ $(a x)^{n}+(f y)^{n}=a^{n} x^{n}+\mathrm{N}_{F[x] / F}(f) y^{n} \in F$.

3. Eigenvector decomposition

From now on we consider p-central spaces, where p is a fixed odd prime. Let A be an algebra over a field F whose characteristic is not p.

Lemma 3.1. Let V be a two-dimensional space with a homogeneous form $\Phi: V \rightarrow F$ of degree p, and let $x \in V$ be a vector with $\Phi(x) \neq 0$. Then there is an element z such that $V=F x+F z$ and the coefficient of $a^{p-1} b$ in $\Phi(a x+b z)$ is zero.

Proof. Write $V=F x+F y$, and let α be the coefficient of $a^{p-1} b$ in $\Phi(a x+b y)$. Take $z=y-\frac{\alpha}{p \Phi(x)} x$; then $V=F x+F z$ and the coefficient of $a^{p-1} b$ in $\Phi(a x+b z)$ is $\alpha-p \frac{\alpha}{p \Phi(x)} \Phi(x)=0$.

Corollary 3.2. Let V be a p-central two-dimensional subspace of an algebra A. If $x \in V$ satisfies $x^{p} \neq 0$, then there is an element z such that $V=F x+F z$ and $x^{p-1} * z=0$.

Proof. Take the exponentiation form $\Phi(v)=v^{p}$ in Lemma 3.1.
Lemma 3.3. Let $x \in A$ be invertible. If $f(\lambda)=\sum_{i=0}^{n} c_{i} \lambda^{i}$ has distinct roots in F and $\sum_{i=0}^{n} c_{i} x^{-i} y x^{i}=0$, then y is a sum of eigenvectors with respect to conjugation by x, namely $y=\sum_{j=1}^{n} z_{j}$ for $z_{j} \in A$ satisfying $x^{-1} z_{j} x=\alpha_{j} z_{j}$, where the α_{j} are the roots of f.

Proof. Indeed, let $T_{x}: A \rightarrow A$ denote conjugation by x, and let $V=$ $\sum_{i=0}^{n-1} F x^{-i} y x^{i}$ be the cyclic subspace generated by y. Then the restriction of T_{x} to a map $T_{x}: V \rightarrow V$ satisfies $f(\lambda)$ and hence is diagonalizable over F by the assumption.

Corollary 3.4. Let $x \in A$ be invertible and suppose $\rho \in F$ is a pth root of unity. Every element y commuting with x^{p} can be written as a sum $y=y_{0}+y_{1}+\cdots+y_{p-1}$, where $y_{i} x=\rho^{i} x y_{i}$.

Proof. As before let T_{x} denote conjugation by x. By assumption $x^{p} y x^{-p}-$ $y=0$, so $f\left(T_{x}\right)(y)=0$ for $f(\lambda)=\lambda^{p}-1=0$.

Lemma 3.5. Let $x, y \in A$ be elements, such that x is invertible and $x^{p-1} * y=0$. Then $y=z_{1}+\cdots+z_{p-1}$ for some z_{1}, \ldots, z_{p-1} such that

$$
\begin{equation*}
z_{k} x=\rho^{k} x z_{k} \tag{1}
\end{equation*}
$$

$(k=1, \ldots, p-1)$.
Proof. Notice that $\left[x^{p}, y\right]=\left[x, x^{p-1} * y\right]=0$. Since $\sum_{i=0}^{p-1} x^{-i} y x^{i}=$ $x^{1-p} \cdot\left(x^{p-1} * y\right)=0, y$ satisfies the condition of Lemma 3.3 for the polynomial $\lambda^{p-1}+\cdots+1$, whose distinct roots are $1, \rho, \ldots, \rho^{p-1}$, so the claim follows. In fact, we have

$$
\begin{equation*}
z_{k}=\frac{1}{p} \sum_{i=0}^{p-1} \rho^{-k i} x^{-i} y x^{i} . \tag{2}
\end{equation*}
$$

4. Short p-central spaces

Let p be an odd prime, and A an associative algebra over a field F of characteristic not p, containing p-roots of unity.

Lemma 4.1. Let $x \in A$ be an invertible element, and assume $z_{i} x=$ $\rho^{i} x z_{i}$ and $z_{j} x=\rho^{j} x z_{j}$, for some distinct $i, j \not \equiv 0(\bmod p)$.

If $\left(z_{i}+z_{j}\right)^{p}$ commutes with x, then $\left(z_{i}+z_{j}\right)^{p}=z_{i}^{p}+z_{j}^{p}$.
Proof. Replace A by the subalgebra generated by x, z_{i}, z_{j}. By assumption x^{p} commutes with z_{i} and with z_{j}. Therefore, the action of x on A by conjugation has order p, and we have an eigenspace decomposition $A=\oplus A_{k}$ where $a x=\rho^{k} x a$ for every $a \in A_{k}$. But $\left(z_{i}+z_{j}\right)^{p}=\sum_{k=0}^{p} z_{i}^{p-k} * z_{j}^{k}$, where $z_{i}^{p-k} * z_{j}^{k} \in A_{(j-i) k}(\bmod p)$. Since $\left(z_{i}+z_{j}\right)^{p} \in A_{0}$ by assumption, $z_{i}^{p-k} * z_{j}^{k}=0$ for every $k \neq 0, p$.

Lemma 4.2. Let $x \in A$ be invertible, and assume $z_{i} x=\rho^{i} x z_{i}$ and $z_{j} x=\rho^{j} x z_{j}$, for some distinct $i, j \not \equiv 0(\bmod p)$. Let $y=z_{i}+z_{j}$.
(1) Assume $i+j \equiv 0(\bmod p)$. Then for every $\alpha \in F, x^{p-2} * y^{2}=\alpha$ if and only if $z_{i} z_{j}-\rho^{i} z_{j} z_{i}=\frac{\alpha\left(1-\rho^{i}\right)}{\rho} x^{2-p}$.
(2) If $i+j \not \equiv 0(\bmod p)$ and $x^{p-2} * y^{2} \in F$, then in fact $x^{p-2} * y^{2}=0$.

Proof. For any a, b, denote $g_{a b}=\sum_{0 \leq r \leq s \leq p-2} \rho^{-(a r+b s)}$. Direct computation shows that $g_{00}=\binom{p}{2}, g_{0 b}=\frac{\rho^{2 b} p}{1-\rho^{b}}$ for every $b \not \equiv 0(\bmod p)$, $g_{a 0}=\frac{-\rho^{a} p}{1-\rho^{a}}$ for $a \not \equiv 0, g_{a, p-a}=\frac{p}{1-\rho^{a}}$, and $g_{a b}=0$ if $a, b, a+b \not \equiv 0$.

Writing $\alpha=x^{p-2} * y^{2}$ we have

$$
\begin{aligned}
\alpha & =\sum_{0 \leq r \leq s \leq p-2} x^{r} y x^{s-r} y x^{p-s-2} \\
& =\sum_{0 \leq r \leq s \leq p-2} x^{r} y x^{-r} \cdot x^{s} y x^{-s} \cdot x^{p-2} \\
& =\sum_{0 \leq r \leq s \leq p-2} x^{r}\left(z_{i}+z_{j}\right) x^{-r} \cdot x^{s}\left(z_{i}+z_{j}\right) x^{-s} \cdot x^{p-2} \\
& =\sum_{0 \leq r \leq s \leq p-2}\left(\rho^{-i r} z_{i}+\rho^{-j r} z_{j}\right)\left(\rho^{-i s} z_{i}+\rho^{-j s} z_{j}\right) x^{p-2} \\
& =\left(g_{i i} z_{i}^{2}+g_{i j} z_{i} z_{j}+g_{j i} z_{j} z_{i}+g_{j j} z_{j}^{2}\right) x^{p-2} .
\end{aligned}
$$

Since $p \neq 2, g_{i i}=g_{j j}=0$. If $i+j \not \equiv 0$ then $g_{i j}=g_{j i}=0$ as well, and $\alpha=0$. On the other hand if $j \equiv-i$ we obtain

$$
\frac{\alpha\left(1-\rho^{i}\right) x^{2-p}}{p}=z_{i} z_{j}-\rho^{i} z_{j} z_{i}
$$

as asserted.
Lemma 4.3. Let $x, z_{i}, u \in A$, and assume $z_{i} x=\rho^{i} x_{i}$ for some $i \not \equiv 0$ $(\bmod p)$.

If $z_{i} u=\rho^{i} u z_{i}+\gamma x^{2}$ for some $\gamma \in F$, then z_{i}^{p} commutes with u.
Proof. By induction we have that

$$
z_{i}^{k} u=\rho^{k i} u z_{i}^{k}+\rho^{i(k-1)} \gamma \sum_{j=0}^{k-1} \rho^{i j} x^{2} z_{i}^{k-1}
$$

for $k=0, \ldots, p$, and in particular $z_{i}^{p} u=u z_{i}^{p}$.
Definition 4.4. A p-central subspace $V \subseteq A$ is short $i f$, for some $i \not \equiv$ j, it has a basis $\{x, y\}$ with x invertible and a decomposition $y=z_{i}+z_{j}$, where $z_{i} x=\rho^{i} x z_{i}$ and $z_{j} x=\rho^{j} x z_{j}$. We say that V has type $\left\{\rho^{i}, \rho^{j}\right\}$.

Corollary 3.2 allows to assume $i, j \neq 0$. Also, if V is assumed to be anisotropic, then x is automatically invertible.

Remark 4.5. For $p=3$, every anisotropic p-central space is short (of type $\left\{\rho, \rho^{-1}\right\}$).

Remark 4.6. Every symbol algebra of degree p over F is generated by a short p-central space, of type $\{\rho\}$, taking $V=F x+F y$ where $y x=\rho x y$.

Proposition 4.7. Let V be a short anisotropic p-central space of type $\left\{\rho^{i}, \rho^{-i}\right\}$, generating an algebra whose center is a field. Then at least one of z_{i} and z_{-i} is invertible.

Proof. Let $V=F x+F y$ be the space, where $y=z_{i}+z_{-i}$ is the assumed decomposition. By Lemma 4.1, $y^{p}=z_{i}^{p}+z_{-i}^{p}$. The element z_{i}^{p} commutes with x by assumption and with z_{-i} by Lemma 4.2.(1) and Lemma 4.3, so it is central. If z_{i} is non-invertible it follows that $z_{i}^{p}=0$ and $z_{-i}^{p}=y^{p} \neq 0$ so z_{-i} is invertible.

Replacing ρ by a suitable power, we may always assume $i=1$ and z_{1} is invertible. For $k=1, \ldots,(p-1) / 2$, let us denote

$$
\begin{equation*}
\theta_{k}=\frac{1}{p} \sum_{S, S^{\prime}} \rho^{\sum_{i \in S^{\prime}} i-\sum_{i \in S^{\prime}} i} \tag{3}
\end{equation*}
$$

where the outer sum is over all pairs of disjoint subsets of cardinality k of $\{0,1, \ldots, p-1\}$. For example,

$$
\theta_{1}=\frac{1}{p} \sum_{i \neq i^{\prime}} \rho^{i-i^{\prime}}=\frac{1}{p}\left(\sum_{i, i^{\prime}} \rho^{i-i^{\prime}}-p\right)=-1 .
$$

The automorphisms of $\mathbb{Q}[\rho] / \mathbb{Q}$ leave θ_{k} fixed, so $\theta_{k} \in \mathbb{Q}$. Clearly $p \theta_{k}$ is an algebraic integer, and so a rational integer. But the action of $\mathbb{Z} / p \mathbb{Z}$ by rotation on the space of disjoint pairs leaves no fixed points, so each θ_{k} is itself an integer.

Lemma 4.8. Let x, z be elements of an algebra, satisfying $z x=\rho x z$, $x^{p}=z^{p}=1$ (thus $F[x, z] \cong \mathrm{M}_{p}(F)$). Then $x^{p-2 k} * z^{k} *\left(z^{-1} x^{2}\right)^{k}=\rho^{-k} p \theta_{k}$ for every $k=1, \ldots,(p-1) / 2$.

Proof. Write $z=x \pi$, so that $\pi^{p}=1$; let $F_{0}=F(a, b, c)$ be a transcendental extension of F, and let $F^{\prime}=F_{0}[\pi]$. By definition, $x^{p-2 k} *$ $z^{k} *\left(z^{-1} x^{2}\right)^{k}$ is the coefficient of $a^{p-2 k} b^{k} c^{k}$ in $\left(a x+b z+c z^{-1} x^{2}\right)^{p}=$ $\left(x\left(a+b \pi+\rho^{-1} c \pi^{-1}\right)\right)^{p}$; but the conjugation action of x on F^{\prime} multiplies the generator π by ρ, so this this p-power is the norm $\mathrm{N}_{F_{0}[\pi] / F_{0}}(a+$ $b \pi+\rho^{-1} c \pi^{-1}$). Putting $b=\beta a$ and $c=\rho \beta^{-1} \gamma a, x^{p-2 k} * z^{k} *\left(z^{-1} x^{2}\right)^{k}$
is ρ^{-k} times the coefficient of $\beta^{0} \gamma^{k}$ in

$$
\begin{aligned}
\mathrm{N}_{F_{0}[\pi] / F_{0}}\left(1+\beta \pi+\beta^{-1} \gamma \pi^{-1}\right) & =\prod_{i=0}^{p-1}\left(1+\beta \rho^{i} \pi+\rho^{-i} \beta^{-1} \gamma \pi^{-1}\right) \\
& =\sum_{S \cap S^{\prime}=\emptyset} \prod_{i \in S}\left(\beta \rho^{i} \pi\right) \prod_{i \in S^{\prime}}\left(\rho^{-i} \beta^{-1} \gamma \pi^{-1}\right) \\
& =\sum_{S \cap S^{\prime}=\emptyset} \beta^{|S|-\left|S^{\prime}\right|} \gamma^{\left|S^{\prime}\right|} \pi^{|S|-\left|S^{\prime}\right|} \prod_{i \in S} \rho^{i} \prod_{i \in S^{\prime}} \rho^{-i},
\end{aligned}
$$

where the sums are over subsets of $\{0, \ldots, p-1\}$. The coefficient of $\beta^{0} \gamma^{k}$ is this sum is p times our θ_{k}.

Theorem 4.9. Let A be an algebra generated by an anisotropic short pcentral space $V=F x+F y$ of type $\left\{\rho, \rho^{-1}\right\}$, whose center is an integral domain. Then the exponentiation form is

$$
(a x+b y)^{p}=\alpha_{0} a^{p}+\sum_{k=1}^{[p / 2]} p \theta_{k} \alpha_{0}\left(-\frac{\alpha_{2}}{p \alpha_{0}}\right)^{k} a^{p-2 k} b^{2 k}+\alpha_{p} b^{p}
$$

for suitable $\alpha_{0}, \alpha_{2}, \alpha_{p} \in F$.
Proof. Fix the basis x, y of V as in the definition, with $i=1, y=$ $z_{1}+z_{-1}$ such that $z_{k} x=\rho^{k} x z_{k}$ for $k=1,-1$. Passing to the ring of central fractions does not change the exponentiation form, so by Proposition 4.7 we may assume z_{1} is invertible. The exponentiation form is $\Phi(a x+b y)=(a x+b y)^{p}=\sum_{i=0}^{p} \alpha_{i} a^{p-i} b^{i}$ for $a, b \in F$, where by Proposition 2.1.2, $\alpha_{i}=x^{p-i} * y^{i} \in F, i=0, \ldots, p$. In particular $\alpha_{0}=x^{p}, \alpha_{1}=x^{p-1} * y=0$ and $\alpha_{2}=x^{p-2} * y^{2}$.

Lemma 4.2 provides the relation

$$
\begin{equation*}
z_{1} z_{-1}=\rho z_{-1} z_{1}+\frac{\alpha_{2}(1-\rho)}{p \alpha_{0}} x^{2} \tag{4}
\end{equation*}
$$

Let

$$
w=z_{-1} x^{-1} z_{1}+\frac{\alpha_{2}}{p \alpha_{0}} x
$$

so that $z_{-1}=w z_{1}^{-1} x-\frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}$. From the relations $z_{1} x=\rho x z_{1}$ and $z_{-1} x=\rho^{-1} z_{-1} x$ we see that x commutes with w, and using (4) we also have $\left[z_{1}, w\right]=\left[z_{1}, z_{-1} x^{-1}\right] z_{1}+\frac{\alpha_{2}}{p \alpha_{0}}\left[z_{1}, x\right]=\frac{\alpha_{2}(1-\rho)}{p \alpha_{0}} x z_{1}+\frac{\alpha_{2}}{p \alpha_{0}}(\rho-1) x z_{1}=0$, where $[\cdot, \cdot]$ is the additive commutator. Since $z_{-1} \in F\left[w, z_{1}^{-1}, x\right]$ and $y=z_{1}+z_{-1}$, we see that w is central in $A=F[x, y]$. Applying

Remark 2.5 twice, we have

$$
\begin{align*}
y^{p} & =\left(z_{1}+z_{-1}\right)^{p} \tag{5}\\
& =\left(z_{1}+w z_{1}^{-1} x-\frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}\right)^{p} \\
& =\left(w z_{1}^{-1} x\right)^{p}+\left(z_{1}-\frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}\right)^{p} \\
& =z_{1}^{p}+w^{p} z_{1}^{-p} x^{p}-\frac{\alpha_{2}^{p}}{p^{p} \alpha_{0}^{p}} z_{1}^{-p} x^{2 p} .
\end{align*}
$$

Let $v=a x+b y \in V$, where $a, b \in F$. We can write
$v=a x+b y=a x+b\left(z_{1}+z_{-1}\right)=b w z_{1}^{-1} x+z_{1}\left(b+a z_{1}^{-1} x-b \frac{\alpha_{2}}{p \alpha_{0}}\left(z_{1}^{-1} x\right)^{2}\right)$,
with $b w z_{1}^{-1} x$ commuting with the element in parenthesis, and ρ-commuting with z_{1}. By Remark 2.5,

$$
v^{p}=\left(b w z_{1}^{-1} x\right)^{p}+\left(b z_{1}+a x-b \frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}\right)^{p}
$$

and is in the center. Now, since

$$
\begin{aligned}
\left(b z_{1}+a x-b \frac{\alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}\right)^{p} & =\sum_{i+j+k=p}\left(b z_{1}\right)^{i} *(a x)^{j} *\left(-b \frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}\right)^{k} \\
& =\sum_{i+j+k=p} b^{i} a^{j}\left(-b \frac{\rho \alpha_{2}}{p \alpha_{0}}\right)^{k} \cdot z_{1}^{i} * x^{j} *\left(z_{1}^{-1} x^{2}\right)^{k}
\end{aligned}
$$

is central, only monomials of degree zero $\bmod p$ in x and in z_{1} have non-zero contribution, so

$$
\begin{aligned}
v^{p}= & \left(b w z_{1}^{-1} x\right)^{p}+b^{p} z_{1}^{p}+a^{p} x^{p}+\left(-b \frac{\rho \alpha_{2}}{p \alpha_{0}}\right)^{p}\left(z_{1}^{-1} x^{2}\right)^{p} \\
& +\sum_{k=1}^{[p / 2]} b^{k} a^{p-2 k}\left(-b \frac{\rho \alpha_{2}}{p \alpha_{0}}\right)^{k} \cdot z_{1}^{k} * x^{p-2 k} *\left(z_{1}^{-1} x^{2}\right)^{k} .
\end{aligned}
$$

Because $x z_{1}=\rho z_{1} x$, Lemma 4.8 applies and gives the value $z_{1}^{k} * x^{p-2 k} *$ $\left(z_{1}^{-1} x^{2}\right)^{k}=\rho^{-k} p \theta_{k} x^{p}$. Therefore

$$
v^{p}=\alpha_{0} a^{p}+\alpha_{p} b^{p}+\sum_{k=1}^{[p / 2]} p \theta_{k}(-1)^{k} p^{-k} \alpha_{2}^{k} \alpha_{0}^{1-k} a^{p-2 k} b^{2 k} .
$$

Corollary 4.10. Let $V=F x+F y$ be a short p-central space of type $\left\{\rho, \rho^{-1}\right\}$ with an anisotropic exponentiation form. If $x^{p-2} * y^{2}=0$, then
$x^{p-k} * y^{k}=0$ for every $k=1, \ldots, p-1$, and the form $(a x+b y)^{p}=$ $\alpha_{0} a^{p}+\alpha_{p} b^{p}$ is diagonal.

Remark 4.11. We may always assume $\alpha_{2}=0$ or $\alpha_{2}=1$. Indeed if $\alpha_{2} \neq 0$, the change of variables $x \mapsto \alpha_{2} x$ and $y \mapsto \alpha^{(1-p) / 2} y$ takes $\alpha_{2}=x^{p-2} * y^{2}$ to 1 .

The notion of Azumaya algebras generalizes central simple algebras over a field to algebras over arbitrary commutative ring R : an R algebra A is Azumaya if it is a faithful projective finite R-module, and the natural map $A \otimes_{R} A^{\text {op }} \rightarrow \operatorname{End}_{R}(A)$ is an isomorphism. One prominent feature of Azumaya algebras is a 1-to-1 correspondence between ideals of R and ideals of A.

Similarly to the definition of a symbol algebra in the introduction, for any $\alpha, \beta \in R$ we can define the symbol algebra $(\alpha, \beta)_{R}=\oplus R x^{i} z^{j}$ subject to the relations $z x=\rho x z$ and $x^{n}=\alpha, z^{n}=\beta$. Assume R is connected, namely has no nontrivial idempotents. Then $(\alpha, \beta)_{n}$ is Azumaya if and only if α, β and n are invertible in R. This is shown in [10, Sec. 2.2], using the fact that a quotient of $(\alpha, \beta)_{n}$ over a maximal ideal of R is simple iff α and β are invertible modulo this ideal, and ρ remains primitive.

Theorem 4.12. Let A be an algebra generated by a short anisotropic p-central subspace V of type $\left\{\rho, \rho^{-1}\right\}$, with z_{1}^{p} invertible, and suppose the center R of A is connected. Then A is a symbol Azumaya algebra of degree p over R.

Proof. As in Theorem 4.9, the element $w=z_{-1} x^{-1} z_{1}+\frac{\alpha_{2}}{p \alpha_{0}} x$ is in the center of A. Moreover z_{1}^{p} commutes with x by the relation (1), and with z_{-1} by Lemma 4.1, so $F\left[z_{1}^{p}, w\right]$ is contained in the center of A. Since z_{1} is invertible, we have that $z_{-1} \in F\left[w, x, z_{1}^{-1}\right]$, so A is generated over $F\left[z_{1}^{p}, w\right]$ by z_{1} and x. Finally A is a symbol Azumaya algebra because $p, \alpha_{0}=x^{p}$ and z_{1}^{p} are invertible.

Theorem 4.13. A simple algebra generated by a short anisotropic p central subspace of type $\left\{\rho, \rho^{-1}\right\}$ is a symbol algebra of degree p over its center.

Proof. By Proposition 4.7 one of z_{1} or z_{-1} is invertible, so we are done by Theorem 4.12.

5. Clifford algebras of short p-Central spaces of TYPE $\left\{\rho, \rho^{-1}\right\}$

Let V be an anisotropic p-central space generating an algebra A. Let C_{Φ} denote the Clifford algebra of the exponentiation form Φ of V, which, by definition, is the free algebra generated by x and y, subject to the relations $(a x+b y)^{p}=\Phi(a x+b y)$. By Proposition 2.1 these relations are equivalent to the system of relations

$$
x^{p-i} * y^{i}=\alpha_{i}
$$

for suitable $\alpha_{0}, \ldots, \alpha_{p} \in F$. We assume V contains an invertible element x, complement the basis to x, y with $\alpha_{1}=0$ by Corollary 3.2, and write $y=z_{1}+\cdots+z_{p-1}$ where z_{k} satisfy (1).

If we assume V is short of type $\left\{\rho, \rho^{-1}\right\}$, then Theorem 4.9 gives the values

$$
\begin{align*}
& \alpha_{i}=0 \quad \text { for } i \text { odd, } \tag{6}\\
& \alpha_{i}=p \theta_{i / 2} \alpha_{0}\left(-\frac{\alpha_{2}}{p \alpha_{0}}\right)^{i / 2} \quad \text { for } i \text { even } \tag{7}
\end{align*}
$$

(holding trivially for $i=1,2$).
Equivalently, we may study the Clifford algebra of an arbitrary p central space, presented in the form $V=F x+F y$ with x invertible and the eigenvector decomposition for y, modulo its ideal $\left\langle z_{2}, \ldots, z_{p-2}\right\rangle$ (where z_{k} are defined by (2)). Indeed, let $V=F x+F y$ be a p-central space in an arbitrary algebra. Let $\alpha_{i}=x^{p-i} * y^{i} \in F$. The image of V in the quotient algebra $C_{\Phi} /\left\langle z_{2}, \ldots, z_{p-2}\right\rangle$ is a short p-central space of type $\left\{\rho, \rho^{-1}\right\}$, so Theorem 4.9 forces the equalities (6) and (7). If these equalities do not originally hold, $\left\langle z_{2}, \ldots, z_{p-2}\right\rangle$ must be the whole algebra. But if they do hold, then $C_{\Phi} /\left\langle z_{2}, \ldots, z_{p-2}\right\rangle$ is the Clifford algebra of a short p-central space, so it is generic to this situation.

Therefore, we assume in this section that V is short of type $\left\{\rho, \rho^{-1}\right\}$. Then C_{Φ} is defined by the relations $x^{p}=\alpha_{0}, x^{p-2} * y^{2}=\alpha_{2}$ and $y^{p}=\alpha_{p}$, where y has the form $y=z_{1}+z_{-1}$ with $z_{k} x=\rho^{k} x z_{k}$. From Lemma 4.2.(1) and Remark 4.1 we obtain the presentation with generators

$$
x, z_{1}, z_{-1}
$$

and relations

$$
\begin{align*}
x^{p} & =\alpha_{0}, \tag{8}\\
z_{1} x & =\rho x z_{1}, \tag{9}\\
z_{-1} x & =\rho^{-1} x z_{-1}, \tag{10}\\
z_{1} z_{-1} & =\rho z_{-1} z_{1}+\frac{\alpha_{2}(1-\rho)}{p \alpha_{0}} x^{2}, \tag{11}\\
z_{1}^{p}+z_{-1}^{p} & =\alpha_{p}, \tag{12}
\end{align*}
$$

depending of course on $\alpha_{0}, \alpha_{2}, \alpha_{p} \in F$.
As in Theorem 4.9, the element $w=z_{-1} x^{-1} z_{1}+\frac{\alpha_{2}}{p \alpha_{0}} x$ is in the center of C_{Φ}. Since z_{1}^{p} is central, we may consider the algebra $C_{\Phi}\left[z_{1}^{-p}\right]$, where z_{1} is invertible. Substituting $z_{-1}=w z_{1}^{-1} x-\frac{\rho \alpha_{2}}{p \alpha_{0}} z_{1}^{-1} x^{2}$, the presentation of $C_{\Phi}\left[z_{1}^{-p}\right]$ on the generators x, z_{1}, w has the relations (8), (9), $w x=x w$, $w z_{1}=z_{1} w$, and

$$
\begin{equation*}
z_{1}^{2 p}-\alpha_{p} z_{1}^{p}=p^{-p} \alpha_{2}^{p} \alpha_{0}^{2-p}-\alpha_{0} w^{p}, \tag{13}
\end{equation*}
$$

as computed in (5) above. It follows that the center of $C_{\Phi}\left[z_{1}^{-p}\right]$, which is the centralizer of the generators x and z_{1}, is precisely $F\left[z_{1}^{ \pm p}, w\right]$. From this we immediately obtain the center of C_{Φ} itself:

Theorem 5.1. Let Φ be the exponentiation form of a short p-central space $V=F x+F y$ of type $\left\{\rho, \rho^{-1}\right\}$ in some algebra. Let $\alpha_{0}=x^{p}$, $\alpha_{2}=x^{p-2} * y^{2}$ and $\alpha_{p}=y^{p}$. Then the center of the associated Clifford algebra C_{Φ} is the function ring $Z=F[X, Y]$ of the affine curve

$$
\begin{equation*}
Y\left(Y-\alpha_{p}\right)=\alpha_{0} X^{p}+p^{-p} \alpha_{2}^{p} \alpha_{0}^{2-p} . \tag{14}
\end{equation*}
$$

Proof. The center is generated by $X=-w$ and $Y=z_{1}^{p}$, subject only to Relation (13).

Note that Z is a Dedekind domain iff the curve is smooth, namely when char $F=2$ or the discriminant $p^{-p} \alpha_{2}^{p} \alpha_{0}^{2-p}-4^{-1} \alpha_{p}^{2}$ is non-zero.

Moreover, by Theorem 4.12 we have
Corollary 5.2. $C_{\Phi}\left[z_{1}^{-p}\right]$ is the symbol Azumaya algebra $\left(\alpha_{0}, Y\right)$ over the center $Z\left[Y^{-1}\right]$ under the identification $X=-w$ and $Y=z_{1}^{p}$.

The above treatment suffers from some asymmetry, in that we assume z_{1} is invertible. However, one can apply the following formal change of variables: $x, y, \alpha_{0}, \alpha_{p}$ remain unchanged, z_{1} and z_{-1} are switched, and ρ is replaced by ρ^{-1}; Then w is being replaced by $\rho^{-1} w$.

Noting the sensitivity of the symbol algebra notation to the choice of root of unity, we get the following:

Corollary 5.3. $C_{\Phi}\left[z_{-1}^{-p}\right]$ is the symbol Azumaya algebra $\left(\alpha_{p}-Y, \alpha_{0}\right)$ over the center $Z\left[\left(\alpha_{p}-Y\right)^{-1}\right]$ under the identification $X=-w$ and $Y=z_{1}^{p}$.

By Corollary 5.2, any simple quotient of C_{Φ} in which z_{1}^{p} is invertible is a central simple algebra $C_{\Phi} / I C_{\Phi}$ over Z / I, where $I \triangleleft Z$ is an ideal with $Y \notin I$. On the other hand if $z_{1}^{p}=0$ in the quotient, then z_{-1}^{p} is invertible there by Lemma 4.7, and then the quotient is a quotient of $C_{\Phi}\left[z_{-1}^{-p}\right]$, which is Azumaya by Corollary 5.3, and therefore again a central simple algebra $C_{\Phi} / I C_{\Phi}$ over Z / I, where $Y \in I$.

Corollary 5.4. C_{Φ} is an Azumaya algebra.
In particular:
Theorem 5.5. The simple quotients of C_{Φ} are all symbol algebras of degree p : the 'algebra at infinity' $\left(\alpha_{p}, \alpha_{0}\right)_{p, F}$ and, for every point $(t, s) \in$ $C(\bar{F})$ with $t \neq 0$, the symbol algebra $\left(\alpha_{0}, t\right)_{p, K}$ where $K=F[t, s]$.

Proof. In every simple quotient, $Z=F[X, Y]$ maps onto an algebraic field extension K of F. Let t and s denote the images of Y and X, respectively, so that $K=F[s, t]$. For $t \neq 0$, the map $z_{1}^{p}=Y \mapsto t$ keeps z_{1}^{p} invertible, so the respective quotient $C_{\Phi} /\langle X-s, Y-t\rangle$ is a quotient of $C_{\Phi}\left[z_{1}^{-p}\right]$ as well, and these are computed in Corollary 5.2.

For $t=0$, the quotient is generated by (the images of) x and $y=$ $z_{1}+z_{-1}$, where $z_{-1}^{p}=y^{p}=\alpha_{p}$ by Lemma 4.1; but $x z_{-1}=\rho z_{-1} x$, so this quotient is the symbol algebra $\left(\alpha_{0}, \alpha_{p}\right)$.

Remark 5.6. Assume z_{1} is not invertible in a quotient C of C_{Φ}. Then C is a matrix algebra iff $\alpha_{2} \neq 0$.

Proof. By assumption, $Y=0$ in C. If $\alpha_{2} \neq 0$, (14) forces $\alpha_{0}=$ $\left(-p \alpha_{0} \alpha_{2}^{-1} X\right)^{p}$, so $\left(\alpha_{p}, \alpha_{0}\right)_{p, F}$ splits. If $\alpha_{2}=0$ then $(a x+b y)^{p}=(a x+$ $\left.b z_{-1}\right)^{p}=\alpha_{0} a^{p}+\alpha_{p} b^{p}$, which is isotropic if C is a matrix algebra.

On passing, we note a minor inaccuracy in [2, Corollary 1.2], which can now be seen as the special case $p=3$ of Theorem 5.5: the case $s_{0}=-(3 \omega(1-\omega) a d) / 2$ corresponds to $Y=0$ in our notation, and requires special treatment as above.

6. The Clifford algebra of a diagonal Binary quintic FORM

In this section we consider 5-central spaces which are short, but of different type than the one discussed above, with a surprisingly different outcome.

Let F be a field of characteristic not 5 , containing a fifth root of unity ρ. Let V be an anisotropic two-dimensional 5 -central space generating an algebra A over F. Write $V=F x+F y$; since the form is anisotropic, x is invertible. Let $\Phi(a x+b y)=\alpha_{0} a^{5}+\alpha_{1} a^{4} b+\alpha_{2} a^{3} b^{2}+\alpha_{3} a^{2} b^{3}+\alpha_{4} a b^{4}+$ βb^{5} be the exponentiation form of V. In particular, A is a quotient of the Clifford algebra of Φ, and by Proposition 2.1.2 it satisfies the relations $\alpha_{i}=x^{p-i} * y^{i}$ for $i=0, \ldots, 5$.

By Corollary 3.2, we may assume $\alpha_{1}=x^{4} * y=0$. Generalizing Definition 4.4, let us say that V has type Ω, for $\Omega \subseteq\left\{\rho, \rho^{2}, \rho^{3}, \rho^{4}\right\}$, if there is a decomposition $y=\sum_{k \in \Omega} z_{k}$ such that $z_{k} x=\rho^{k} x z_{k}$ for each k. Following Lemma 3.5, every anisotropic 5 -space has some minimal type. If the type is a singleton, then the generated algebra is cyclic by Remark 4.6. Replacing ρ by a suitable power leaves two types of size 2: type $\left\{\rho, \rho^{-1}\right\}$ which was analyzed in Sections 4 and 5 , and type $\left\{\rho, \rho^{3}\right\}$. From now on we assume the latter, so that

$$
y=z_{1}+z_{3}
$$

as indicated above,

$$
\begin{align*}
& z_{1} x=\rho x z_{1} \\
& z_{3} x=\rho^{3} x z_{3} . \tag{15}
\end{align*}
$$

By Lemma 4.2, it follows that $\alpha_{2}=x^{3} * y^{2}=0$. Let us consider the next relation, $\alpha_{3}=x^{2} *\left(z_{1}+z_{3}\right)^{3}$, namely

$$
\alpha_{3}=x^{2} * z_{1}^{3}+x^{2} * z_{1}^{2} * z_{3}+x^{2} * z_{1} * z_{3}^{2}+x^{2} * z_{3}^{3}
$$

Conjugation by x induces a direct sum decomposition of A, with respect to which the four summands in the right-hand side fall into different components. Comparing components, we deduce that $x^{2} * z_{1}^{3}=x^{2} *$ $z_{1} * z_{3}^{2}=x^{2} * z_{3}^{3}=0$, all following tautologically from (15), and

$$
\begin{equation*}
\alpha_{3}=x^{2} * z_{1}^{2} * z_{3} \tag{16}
\end{equation*}
$$

Remark 6.1. If $z_{1}=0$ then $A=F\left[x, z_{3}\right]$ is the cyclic algebra $\left(\alpha, \beta^{2}\right)$, since $A=F[x, y]$ and $y=z_{3} \rho$-commutes with x.

Figure 1. Action graph for the generators
Since we are mostly interested in quotients of A which are division algebras, we will assume z_{1} is invertible. Notice that $z_{1}^{5}=y^{5}-z_{3}^{5}$ commutes with both z_{3} and x, and so it is central.

Consider the linear map $T: A \rightarrow A$ defined by $T(t)=z_{1}^{2} t-(\rho+$ $\left.\rho^{2}\right) z_{1} t z_{1}+\rho^{3} t z_{1}^{2}$, so that $T(t) z_{1}^{-2}$ is the combination of conjugates $z_{1}^{2} t z_{1}^{-2}-\left(\rho+\rho^{2}\right) z_{1} t z_{1}^{-1}+\rho^{3} t$. By computation, for every $t \in A$ such that $t x=\rho^{3} x t$, we have that $x^{2} * z_{1}^{2} * t=\left(1-\rho^{3}\right)\left(1-\rho^{4}\right) x^{2} T(t)$, so Equation (16) becomes $T\left(z_{3}\right)=\left(1-\rho^{3}\right)^{-1}\left(1-\rho^{4}\right)^{-1} x^{-2} \alpha_{3}$.

Consider $w_{3}=c z_{1}^{-2} x^{-2}$ where $c=\frac{\alpha_{3}}{5 \rho^{2}}$. Since $T\left(w_{3}\right)=\left(1-\rho^{3}\right)(1-$ $\left.\rho^{4}\right) c x^{-2}=\left(1-\rho^{3}\right)^{-1}\left(1-\rho^{4}\right)^{-1} \alpha_{3} x^{-2}$, we obtain for $z_{3}^{\prime}=z_{3}-w_{3}$ that $T\left(z_{3}^{\prime}\right)=0$.

Because of the factorization $\lambda^{2}-\left(\rho+\rho^{2}\right) \lambda+\rho^{3}=(\lambda-\rho)\left(\lambda-\rho^{2}\right)$, $T\left(z_{3}^{\prime}\right)=0$ provides by Lemma 3.3 a decomposition $z_{3}^{\prime}=w_{1}+w_{2}$, where $z_{1} w_{i}=\rho^{i} w_{i} z_{1}$ for $i=1,2$. By our choice of w_{3}, we have a decomposition

$$
z_{3}=w_{1}+w_{2}+w_{3}
$$

with $z_{1} w_{i}=\rho^{i} w_{i} z_{1}$ for $i=3$ as well.
Remark 6.2. The conjugation maps by x and by z_{1} commute, so the eigenvectors w_{i} with respect to z_{1} satisfy

$$
\begin{equation*}
w_{i} x=\rho^{3} x w_{i} \tag{17}
\end{equation*}
$$

for $i=1,2,3$.
Since $w_{3}=c z_{1}^{-2} x^{-2}$ is defined in terms of x and z_{1}, one easily checks that $w_{1} w_{3}=\rho w_{3} w_{1}$ and $w_{3} w_{2}=\rho^{2} w_{2} w_{3}$. Figure 1 provides an action graph for the elements of A mentioned thus far: the relation $u v=\rho^{i} v u$ is depicted by an arrow $u \longrightarrow v$ with i beads (we could draw a reverse arrow with $5-i$ beads).

Remark 6.3. A subset $S \subseteq A$ is called a p-set, if $s^{p} \in F^{\times}$for every $s \in$ S, and all commutators $s_{1} s_{2} s_{1}^{-1} s_{2}^{-1}$ are powers of ρ (see [14, pp. 248251] for a refined definition). The generated subalgebra $F[S]$, whose center may strictly contain F, is then a tensor product of at most $|S| / 2$ cyclic algebras of degree p.

If $w_{1}=0$ then A is generated by the 5 -set $\left\{x, z_{1}, w_{2}\right\}$, and therefore it is a cyclic algebra of degree 5 over a 5 -dimensional extension of F. We shall assume from now on that w_{1} is invertible.

We come to the final relation, $\alpha_{4}=x * y^{4}=x *\left(z_{1}+z_{3}\right)^{4}=x *\left(z_{1}+\right.$ $\left.w_{1}+w_{2}+w_{3}\right)^{4}$, namely

$$
\begin{equation*}
\alpha_{4}=\sum_{i_{1}+i_{2}+i_{3}+j=4} x * w_{1}^{i_{1}} * w_{2}^{i_{2}} * w_{3}^{i_{3}} * z_{1}^{j} . \tag{18}
\end{equation*}
$$

Conjugation by x, using (17), breaks (18) into 5 equations:

$$
\sum_{i_{1}+i_{2}+i_{3}=4-j} x * w_{1}^{i_{1}} * w_{2}^{i_{2}} * w_{3}^{i_{3}} * z_{1}^{j}= \begin{cases}\alpha_{4} & j=1 \\ 0 & j=0,2,3,4 .\end{cases}
$$

The equations for $j \neq 1$ are tautological. Indeed, for $j=0$ and $j=4$ we get $x * z_{1}^{4}=x * z_{3}^{4}=0$. For $j=2$ one writes

$$
x * w_{s} * w_{s^{\prime}} * z_{1}^{2}=f_{s s^{\prime}} w_{s} w_{s^{\prime}} z_{1}^{2} x
$$

for suitable $f_{s s^{\prime}} \in \mathbb{Z}[\rho]\left(s, s^{\prime}=1,2,3\right)$; it then turns out that $f_{s s^{\prime}}=0$ unless precisely one of s, s^{\prime} is 3 . But $f_{13}+\rho^{4} f_{31}=f_{23}+\rho^{2} f_{32}=0$, so the relations $w_{3} w_{s}=\rho^{2(3-s)} w_{s} w_{3}$ shows that $x * w_{s} * w_{s^{\prime}} * z_{1}^{2}=0$ tautologically for every $s, s^{\prime}=1,2,3$. For the case $j=3$ one computes that $x * w_{s} * z_{1}^{3}=0$ for $s=1,2,3$. The only remaining case is $j=1$, which translates (18) to

$$
\sum_{i_{1}+i_{2}+i_{3}=3} x * w_{1}^{i_{1}} * w_{2}^{i_{2}} * w_{3}^{i_{3}} * z_{1}=\alpha_{4} .
$$

Splitting this further by conjugation by z_{1}, we obtain the five relations

$$
\begin{align*}
& x * w_{3}^{3} * z_{1}+x * w_{1}^{2} * w_{2} * z_{1}=\alpha_{4} \tag{19}\\
& x * w_{1}^{3} * z_{1}+x * w_{2} * w_{3}^{2} * z_{1}=0 \tag{20}\\
& x * w_{2}^{2} * w_{3} * z_{1}+x * w_{1} * w_{3}^{2} * z_{1}= 0 \tag{21}\\
& x * w_{1} * w_{2} * w_{3} * z_{1}+x * w_{2}^{3} * z_{1}=0 \tag{22}\\
& x * w_{1} * w_{2}^{2} * z_{1}+x * w_{1}^{2} * w_{3} * z_{1}=0 \tag{23}
\end{align*}
$$

Calculating with the ρ-commutation relations, (20), (21) and (22) are tautologically satisfied. Opening up the remaining two equations, noting that each pair of generators except (possibly) for w_{1}, w_{2} are ρ-commuting, we get

$$
\begin{gather*}
\text { (24) } \begin{array}{c}
-5 \rho^{2} w_{3}^{3}+(1-\rho)\left(1-\rho^{2}\right) w_{1}^{2} w_{2} \\
+\rho(1-\rho)^{2} w_{1} w_{2} w_{1}+\rho(1-\rho)\left(1-\rho^{2}\right) w_{2} w_{1}^{2}
\end{array}=\alpha_{4} x^{-1} z_{1}^{-1}, \tag{24}\\
(25) \begin{array}{l}
(1-\rho)\left(1-\rho^{3}\right) w_{1} w_{2}^{2}+(1-\rho)\left(1-\rho^{4}\right) w_{2} w_{1} w_{2} \\
+\left(1-\rho^{2}\right)\left(1-\rho^{4}\right) w_{2}^{2} w_{1}-5 \rho(1+\rho) w_{1}^{2} w_{3}
\end{array}=0 .
\end{gather*}
$$

Write $w_{2}=w_{2}^{\prime}+c^{\prime} w_{1}^{-2} x^{-1} z_{1}^{-1}$, where $c^{\prime}=\frac{\alpha_{4}}{5\left(1+\rho^{3}\right)}+\frac{\alpha_{3}^{3}}{25 \alpha_{0} z_{1}^{5}}$. Substituting $w_{3}=c z_{1}^{-2} x^{-2}$ in (24) and dividing by $(1-\rho)\left(1-\rho^{2}\right)$, we obtain

$$
w_{1}^{2} w_{2}^{\prime}+\left(-\rho^{2}-\rho^{4}\right) w_{1} w_{2}^{\prime} w_{1}+\rho w_{2}^{\prime} w_{1}^{2}=0
$$

As before, the associated polynomial $\lambda^{2}-\left(\rho^{2}+\rho^{4}\right) \lambda+\rho$ factors as $\left(\lambda-\rho^{2}\right)\left(\lambda-\rho^{4}\right)$, so Lemma 3.3 provides the decomposition $w_{2}^{\prime}=$ $v_{1}+v_{2}$ where $v_{1}, v_{3} \in A$ satisfy $v_{i} w_{1}=\rho^{i} w_{1} v_{i}$ for $i=1,3$. Taking $v_{2}=c^{\prime} w_{1}^{-2} x^{-1} z_{1}^{-1}$, we get

$$
\begin{equation*}
w_{2}=v_{1}+v_{2}+v_{3}, \tag{26}
\end{equation*}
$$

where

$$
v_{i} w_{1}=\rho^{i} w_{1} v_{i}
$$

for $i=1,2,3$. By definition of v_{2} we also have that $v_{2} v_{1}=\rho^{-2} v_{1} v_{2}$ and $v_{2} v_{3}=\rho^{2} v_{3} v_{2}$.

Remark 6.4. Since conjugation by x, by z_{1} and by w_{1} commute, the eigenvectors v_{i} satisfy

$$
\begin{aligned}
x v_{i} & =\rho^{2} v_{i} x, \\
z_{1} v_{i} & =\rho^{2} v_{i} z_{1}
\end{aligned}
$$

for $i=1,2,3$; consequently

$$
w_{3} v_{i}=\rho^{2} v_{i} w_{3}
$$

A refined diagram of the commutation relations between the generators $x, z_{1}, w_{1}, w_{3}, v_{1}, v_{2}, v_{3}$ is given as Figure 2.

It remains to solve (25). Dividing by $(1-\rho)\left(1-\rho^{3}\right)$ we obtain

$$
\begin{equation*}
w_{1} w_{2}^{2}-\rho^{2}\left(1+\rho^{2}\right) w_{2} w_{1} w_{2}+\rho w_{2}^{2} w_{1}+\left(1-\rho^{2}\right)^{2} w_{1}^{2} w_{3}=0 \tag{27}
\end{equation*}
$$

Figure 2. A refined action graph for the generators: an arrow to the framed zone depicts same action on v_{1}, v_{2}, v_{3}

We substitute (26) into (27), and collect homogeneous components with respect to conjugation by w_{1} :

$$
\begin{aligned}
& w_{1} v_{1}^{2}-\rho^{2}\left(1+\rho^{2}\right) v_{1} w_{1} v_{1}+\rho v_{1}^{2} w_{1}=0 \\
& w_{1} v_{3}^{2}-\rho^{2}\left(1+\rho^{2}\right) v_{3} w_{1} v_{3}+\rho v_{3}^{2} w_{1}=0 \\
& w_{1} v_{2}^{2}-\rho^{2}\left(1+\rho^{2}\right) v_{2} w_{1} v_{2}+\rho v_{2}^{2} w_{1} \\
&+w_{1} v_{1} v_{3}-\rho^{2}\left(1+\rho^{2}\right) v_{1} w_{1} v_{3}+\rho v_{1} v_{3} w_{1}=-\left(1-\rho^{2}\right)^{2} w_{1}^{2} w_{3} \\
&+w_{1} v_{3} v_{1}-\rho^{2}\left(1+\rho^{2}\right) v_{3} w_{1} v_{1}+\rho v_{3} v_{1} w_{1} \\
& w_{1} v_{1} v_{2}-\rho^{2}\left(1+\rho^{2}\right) v_{1} w_{1} v_{2}+\rho v_{1} v_{2} w_{1}+w_{1} v_{2} v_{1}-\rho^{2}\left(1+\rho^{2}\right) v_{2} w_{1} v_{1}+\rho v_{2} v_{1} w_{1}=0 \\
& w_{1} v_{3} v_{2}-\rho^{2}\left(1+\rho^{2}\right) v_{3} w_{1} v_{2}+\rho v_{3} v_{2} w_{1}+w_{1} v_{2} v_{3}-\rho^{2}\left(1+\rho^{2}\right) v_{2} w_{1} v_{3}+\rho v_{2} v_{3} w_{1}=0
\end{aligned}
$$

Plugging in the fact that $v_{2}=c^{\prime} w_{1}^{-2} x^{-1} z_{1}^{-1}$ and the relations satisfied by w_{1}, v_{1} and by w_{1}, v_{3}, the first two and final two equations vanish, and the third one becomes

$$
(1-\rho)\left(1+\rho^{2}\right) w_{1} v_{2}^{2}-\rho^{3} w_{1} v_{1} v_{3}+w_{1} v_{3} v_{1}=-\left(1-\rho^{2}\right) w_{1}^{2} w_{3}
$$

Dividing by w_{1} from the left and noting that $v_{2}^{2}=\rho^{3} c^{\prime 2} w_{1}^{-4} z_{1}^{-2} x^{-2}$, we obtain
(28) $v_{3} v_{1}-\rho^{3} v_{1} v_{3}=-\left[(1-\rho)\left(1+\rho^{2}\right) \rho^{3} c^{\prime 2} w_{1}^{-5}+\left(1-\rho^{2}\right) c\right] w_{1} z_{1}^{-2} x^{-2}$.

If $v_{1}=0$ then A is generated by the 5 -set $\left\{x, z_{1}, w_{1}, v_{3}\right\}$ and is a tensor product of two cyclic algebras of degree 5 , see below.

Assume v_{1} is invertible. Let $u_{1}=c^{\prime \prime} v_{1}^{-1} w_{1} z_{1}^{-2} x^{-2}$ where $c^{\prime \prime}=\rho^{2}(1+$ $\left.\rho^{3}\right)^{2} w_{1}^{-5} c^{\prime 2}-\rho^{4} c$, and write $v_{3}=u_{1}+u_{2}$; then Equation (28) becomes

$$
v_{1} u_{2}=\rho^{2} u_{2} v_{1},
$$

Figure 3. A final action graph
so we have that $v_{1} u_{i}=\rho^{i} u_{i} v_{1}$ for $i=1,2$.
Remark 6.5. Since conjugation by x, by z_{1}, by w_{1} and by v_{1} commute, u_{2} satisfies

$$
\begin{aligned}
x u_{2} & =\rho^{2} u_{2} x \\
z_{1} u_{2} & =\rho^{2} u_{2} z_{1} \\
u_{2} w_{1} & =\rho^{3} w_{1} u_{2} .
\end{aligned}
$$

In particular A is generated by the 5 -set $\left\{x, z_{1}, w_{1}, v_{1}, u_{2}\right\}$, and is a tensor product of one or two cyclic algebras of degree 5 (generically two, as we see below). The commutation relations of the final generators, with the artificial ones, w_{3}, v_{2}, u_{1}, omitted, are given in Figure 3.

In summary, we proved:
Theorem 6.6. Let V be an anisotropic two-dimensional 5 -central space of type $\left\{\rho, \rho^{3}\right\}$, generating a division algebra A. Then A is a product of one or two cyclic division algebras of degree 5 , whose center is some field extension of F.

Proof. We keep the notation given above. Decompose $y=z_{1}+z_{3}$ where z_{k} are eigenvectors of x as above.
(1) The case $z_{1}=0$ gives $A=F\left[x, z_{3}^{2}\right]$ where for the rest of this proof we understand that these are standard generators: the multiplicative commutator is ρ; so assume $z_{1} \neq 0$.
(2) Decompose $z_{3}=w_{1}+w_{2}+w_{3}$. If $w_{1}=0$ then $A=K\left[x, z_{1}\right]$ where $K=F\left[z_{1}^{5}, x^{-2} z_{1}^{2} w_{2}\right]$; so assume $w_{1} \neq 0$.
(3) Decompose $w_{2}=v_{1}+v_{2}+v_{3}$. If $v_{1}=0$ and $v_{3}=0$ then $A=K\left[x, z_{1}\right]$, were $K=F\left[z_{1}^{5}, w_{1}^{5}, x^{-1} z_{1}^{2} w_{1}\right]$.
(4) If $v_{1}=0$ and $v_{3} \neq 0$ then $A=K\left[x, z_{1}\right] \otimes_{K} K\left[x^{-1} z_{1}^{2} w_{1}, x^{-2} z_{1}^{2} v_{3}\right]$, were $K=F\left[z_{1}^{5}, w_{1}^{5}, v_{3}^{5}\right]$.
(5) Finally if $v_{1} \neq 0$, decompose $v_{3}=u_{1}+u_{2}$, and then $A=$ $K\left[x, z_{1}\right] \otimes K\left[x^{-2} z_{1}^{2} v_{1}, x^{-1} z_{1}^{2} w_{1}\right]$ where $K=F\left[z_{1}^{5}, v_{1}^{5}, w_{1}^{5}, x^{-1} z_{1}^{-2} w_{1}^{2} v_{1} u_{2}\right]$.

Note that in each case the extension $K[x] / K$ splits (at least) one of the cyclic components.

Corollary 6.7. Let V be an anisotropic 5 -central space of type $\left\{\rho, \rho^{3}\right\}$ in an algebra A. Then every quotient division algebra of the Clifford algebra of V is either cyclic of degree 5 or a tensor product of two cyclic algebras of degree 5 .

The assumption that $y=z_{1}+z_{3}$ forces $\alpha_{1}=\alpha_{2}=0$ in the exponentiation form. In order to present A in terms of the exponentiation form of V, we need to compute quantities such as z_{3}^{5}. Remark 4.1 enables us to do so when z_{3} is a sum of two ρ-commuting elements, but there is no analogous formula for more than two summands. Recall that the artificial summands w_{3}, v_{2} and u_{1} were defined in terms of constants $c=\frac{\rho^{3} \alpha_{3}}{5}, c^{\prime}=\frac{\left(1+\rho+\rho^{2}\right) \alpha_{4}}{5}+\frac{\alpha_{3}^{3}}{25 \alpha_{0} z_{1}^{5}}$ and $c^{\prime \prime}=\rho^{2}\left(1+\rho^{3}\right)^{2} w_{1}^{-5} c^{\prime 2}-\rho^{4} c$. Assuming $\alpha_{3}=\alpha_{4}=0$, we find that $w_{3}=0, v_{2}=0$ and $u_{1}=0$. This enables us to formulate the final result.

Theorem 6.8. Assume in Theorem 6.6 that the exponentiation form of V is diagonal, namely $\Phi(a x+b y)=\alpha a^{5}+\beta b^{5}$ for suitable $\alpha, \beta \in F$. Then one of the following holds for the algebra A generated by V :
(1) $A=\left(\alpha, \beta^{2}\right)_{F}$.
(2) $A=(\alpha, t)_{K}$ where $K=F(t, s)$ and $s^{5}=\alpha^{3} t^{2}(\beta-t)$.
(3) $A=(\alpha, t)_{K}$ where $K=F(t, s)$ and $s^{5}=\alpha^{-1} t^{2}(\beta-t)$.
(4) $A=(\alpha, t)_{K} \otimes_{K}\left(t^{\prime}, t^{\prime \prime}\right)_{K}$ where $K=F\left(t, t^{\prime}, t^{\prime \prime}\right)$ and $t^{3}+\alpha t^{\prime}+$ $\alpha^{2} t^{\prime \prime}=\beta t^{2}$.
(5) $A=(\alpha, t)_{K} \otimes_{K}\left(t^{\prime}, t^{\prime \prime}\right)_{K}$ where $K=F\left(t, t^{\prime}, t^{\prime \prime}, s\right)$, and $s^{5}=$ $\alpha^{3} t t^{\prime} t^{\prime \prime}\left(\beta t^{2}-t^{3}-\alpha^{2} t t^{\prime}-\alpha t^{\prime \prime}\right)$.

Proof. In the notation of this section, the assumption that Φ is diagonal, namely, that $\alpha_{3}=\alpha_{4}=0$, implies $c=c^{\prime}=c^{\prime \prime}=0$, and so (when these elements are defined) $w_{3}=0, v_{2}=0$ and $u_{1}=0$.

Following the proof of Theorem 6.6, there are four cases:
(1) $z_{1}=0$. Then $y=z_{3}$ and A is generated by $x \leftarrow-y^{2}$. Henceforth $z_{1} \neq 0$.
(2) $w_{1}=0$, so that $z_{3}=w_{2}$. Thus $\beta=y^{5}=\left(z_{1}+z_{3}\right)^{5}=z_{1}^{5}+$ z_{3}^{5}. Take $t=z_{1}^{5}$ and $s=x^{3} z_{1}^{2} z_{3}$. Then $K=F[t, s]$, and $t+\alpha^{-3} t^{-2} s^{5}=\beta$. Henceforth $w_{1} \neq 0$.
(3) $v_{1}=0$, so that $w_{2}=v_{3}=u_{2}$. Assume $v_{3}=0$. Let $t=z_{1}^{5}$. Then $A=(\alpha, t)_{K}$ and $K=F[t, s]$ by Theorem 6.6, where $s=x^{-1} z_{1}^{2} w_{1}$ and $\beta=y^{5}=z_{1}^{5}+\left(w_{1}+w_{2}\right)^{5}=t+\alpha t^{-2} s^{5}$.
(4) $v_{1}=0$ and $v_{3} \neq 0$. Let $t=z_{1}^{5}, t^{\prime}=\alpha^{-1} t^{2} w_{1}^{5}$ and $t^{\prime \prime}=\alpha^{-2} t^{2} v_{3}^{5}$. Then $A=(\alpha, t)_{K} \otimes_{K}\left(t^{\prime}, t^{\prime \prime}\right)_{K}$ and $K=F\left[t, t^{\prime}, t^{\prime \prime}\right]$ by Theorem 6.6, and $\beta=y^{5}=z_{1}^{5}+\left(w_{1}+w_{2}\right)^{5}=t+\alpha t^{-2} t^{\prime}+\alpha^{2} t^{-2} t^{\prime \prime}$.
(5) Assuming $v_{1} \neq 0$, let $t=z_{1}^{5}, t^{\prime}=\alpha^{-2} t v_{1}^{5}, t^{\prime \prime}=\alpha^{-1} t^{2} w_{1}^{5}$ and $s=x^{-1} z_{1}^{8} w_{1}^{2} v_{1} u_{2}$. Then $\beta=z_{1}^{5}+z_{3}^{5}=z_{1}^{5}+w_{1}^{5}+w_{2}^{5}=z_{1}^{5}+$ $v_{1}^{5}+w_{1}^{5}+u_{2}^{5}=t+\alpha^{2} t^{-1} t^{\prime}+\alpha t^{-2} t^{\prime \prime}+\alpha^{-3} t^{-3} t^{\prime-1} t^{\prime \prime-2} s^{5}, A=$ $(\alpha, t)_{K} \otimes_{K}\left(t^{\prime}, t^{\prime \prime}\right)_{K}$ and $K=F\left[t, t^{\prime}, t^{\prime \prime}, s\right]$.

Finally we observe that, in a sense, every cyclic algebra of degree 5 and every product of two cyclic algebras of degree 5 is a quotient of a Clifford algebra of a binary diagonal quintic form.

Theorem 6.9. Let k be a field of characteristic not 5 containing 5 th roots of unity.

Let A^{\prime} be a division algebra over an arbitrary extension K^{\prime} / k, which is either cyclic, or a product of two cyclic algebras, containing a noncentral element whose 5 th power is in k.

Then A^{\prime} is a scalar extension of a quotient of the Clifford algebra of some binary diagonal quintic form defined over an intermediate field $k \subseteq F \subseteq K^{\prime}$, such that F is generated by a single element over k.

Proof. Let $x \in A^{\prime}$ be an element such that $x^{5}=\alpha \in k^{\times}$. If $\operatorname{deg}\left(A^{\prime}\right)=5$ write $A^{\prime}=(\alpha, t)_{K^{\prime}}$ for $t \in K^{\prime}$; let $\beta=\alpha^{-3} t^{-2}+t$ and let $F=k(\beta)$ and $K=F(t)$. Let $z_{1} \in A^{\prime}$ be an element such that $z_{1}^{5}=t$ and $z_{1} x=\rho x z_{1}$, and reverse the computation in Theorem 6.8.(2) by taking $z_{3}=z_{1}^{-2} x^{-3}$, $y=z_{1}+z_{3}$ and $V=F x+F y$. Then $A=K\left[x, z_{1}\right]$ is a quotient of the Clifford algebra of V over F, and $A^{\prime}=K^{\prime} A$.

If $\operatorname{deg}\left(A^{\prime}\right)=5^{2}$, write $A^{\prime}=(\alpha, t) \otimes\left(t^{\prime}, t^{\prime \prime}\right)$ for $t, t^{\prime}, t^{\prime \prime} \in K^{\prime}$, and take $\beta=t+\alpha t^{-2} t^{\prime}+\alpha^{2} t^{-2} t^{\prime \prime}, F=k(\beta)$ and $K=F\left(\beta, t, t^{\prime}, t^{\prime \prime}\right)$. In a similar
manner, solving for z_{1}, w_{1} and w_{2} as in Theorem 6.8.(3), and letting $y=z_{1}+w_{1}+w_{2}, A=(\alpha, t)_{K} \otimes_{K}\left(t^{\prime}, t^{\prime \prime}\right)_{K}$ is a quotient of the Clifford algebra of $V=F x+F y$, and $A^{\prime}=K^{\prime} A$.

Remark 6.10. Let C be the Clifford algebra of an anisotropic 5-central space of type $\left\{\rho, \rho^{3}\right\}$ in an algebra A, and assume the exponentiation form is diagonal. Let $x, y, z_{1}, z_{3} \in C$ be as before. Let $C^{\prime}=C\left[z_{1}^{-5}\right]$. Let $w_{1}, w_{2} \in C^{\prime}$ be as before. Let $C^{\prime \prime}=C^{\prime}\left[w_{1}^{-5}\right]$. Let $v_{1}, v_{3} \in C^{\prime \prime}$ be as before. Then $C^{\prime \prime}\left[v_{1}^{-5}\right]$ and $C^{\prime \prime}\left[v_{3}^{-5}\right]$ are Azumaya.

The remark follows from Theorem 6.8 because the only quotients come from cases (4) and (5) and are central simple algebras of degree 5^{2}. However:

Corollary 6.11. The Clifford algebra of an anisotropic 5-central space of type containing $\left\{\rho, \rho^{3}\right\}$ is in general not Azumaya.

Indeed, one may choose the fields in Theorem 6.9 so that quotient division algebras exists both of degree 5 and 25 .

References

[1] L. E. Dickson, Linear associative algebras and abelian equations, Trans. Amer. Math. Soc. 15(1), 31-46, (1914).
[2] D. E. Haile, On the Clifford algebra of a binary cuibc form, Amer. J. Math. 106(6), 1269-1280, (1984).
[3] D. E. Haile, When is the Clifford algebra of a binary cubic form split?, J. Algebra 146(2), 514-520, (1992).
[4] D. E. Haile and S. Tesser, On Azumaya algebras arising from Clifford algebras, J. Algebra 116(2), 372-384, (1988).
[5] N. Heerema, An algebra determined by a binary cubic form, Duke Math. J. 21, 423-444, (1954).
[6] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, "The book of involutions", American Mathematical Society Colloquium Publications 44, American Mathematical Society, 1998.
[7] R. S. Kulkarni, On the Clifford algebra of a binary form, Trans. Amer. Math. Soc. 355(8), 3181-3208, (2003).
[8] R. S. Kulkarni, The extension of the reduced Clifford algebra and its Brauer class, Manuscripta Math. 112(3), 297-311, (2003).
[9] T. Y. Lam, "The Algebraic Theory of Quadratic Forms", W. A. Benjamin, Inc., 1973.
[10] E. Matzri, "Azumaya Algebras", Master's thesis, Bar-Ilan University, 2004.
[11] E. Matzri, L.H. Rowen and U. Vishne, Non-cyclic algebras with n-central elements, Proc. Amer. Math. Soc. 140(2), 513-518, (2012).
[12] Ph. Revoy, Algèbres de Clifford et algèbres extérieures, J. Algebra 46(1), 268277, (1977)
[13] N. Roby, Algèbres de Clifford des formes polynomes, C. R. Acad. Sci. Paris Se'r. I. Math. A 268, A484-A486, (1969).
[14] L.H. Rowen, "Ring Theory", Vol. II, Academic Press, New York, 1988.
[15] S. Tesser, Representations of a Clifford algebra that are Azumaya algebras and generate the Brauer group, J. Algebra 119(2), 265-281, (1988).
[16] J. H. M. Wedderburn, A type of primitive algebra, Trans. Amer. Math. Soc. 15(2), 162-166, (1914).

[^0]: 2010 Mathematics Subject Classification. Primary: 15A66; Secondary: 16K20, 11E76.

 Key words and phrases. generalized Clifford algebra; p-central space; cyclic algebra; eigenvector decomposition.

 This research was supported by the Binational US-Israel Science Foundation, grant \#2010/149.

