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ABSTRACT

Computation of fundamental groups of Galois covers recently led to the construction
and analysis of Coxeter covers of the symmetric groups [L. H. Rowen, M. Teicher and
U. Vishne, Coxeter covers of the symmetric groups, J. Group Theory 8 (2005) 139–169].
In this paper we consider analog covers of Artin’s braid groups, and completely describe
the induced geometric extensions of the braid group.
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1. Introduction

The purpose of this paper is to introduce and study quotients of connected Artin
groups, with their action on the space of directed paths in the unit disk. We start
by explaining some of the motivation, coming from algebraic geometry.

Let X be a projective surface, with a generic projection of degree n to CP
2.

Let S denote the branch curve. The fundamental group π1(CP
2 − S) has a natural

monodromy map to Artin’s braid group Bn.
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Applying van Kampen’s theorem, one may find a standard set of generators
Γ1, . . . ,Γm for π1(CP

2 − S), and the associated presentation, endowed with an
epimorphism π1(CP

2 − S)→Sn, where each Γj maps to a transposition. We then
have a short exact sequence

1−→π1(XGal)−→π1(CP
2 − S)/

〈〈
Γ2
j

〉〉−→Sn−→ 1,

where XGal is the Galois cover of X with respect to the given generic projection.
Here

〈〈
Γ2
j

〉〉
stands for the normal closure of 〈Γ2

j〉. Even with this presentation, it is
still quite difficult to compute π1(CP

2−S), or even π1(CP
2−S)/

〈〈
Γ2
j

〉〉
, e.g. to the

level of deciding whether or not the latter is virtually solvable. Many special cases
were computed by Moishezon, Teicher and others (see, for example, [10, 11]).

A more general approach was recently suggested in [1, 2]. Let X0 be the degen-
eration of X into a union of planes, and S0 be the union of the lines of intersection.
Take T to be the dual graph, in which the vertices correspond to planes in X0,
and the edges correspond to lines in S0. One can associate a Coxeter group C(T )
to T , with a natural cover C(T )→Sn. Furthermore, a certain quotient CY(T ), still
covering Sn, can be computed explicitly; this was done in [12], and we sketch the
main results in Sec. 2 below. This method was successfully implemented for the case
X = T× T (where T is the projective torus), where the van-Kampen presentation
of π1(CP

2 − S) has 54 generators and more than 1700 relations. Using an explicit
description of CY(T ) (for an appropriate graph T ), this group was shown to be
virtually nilpotent of class 3 [3].

In this paper we study a group AY(T ) analogous to CY(T ), which naturally
projects onto Bn (for the definition see Sec. 3). This group appears (implicitly) in
a description of presentations of the braid group arising from planar graphs [13].

For certain surfaces X , one would then obtain a commutative diagram

AY(T ) ��

��

π1(CP
2 − S) ��

��

Bn

��
CY(T ) �� π1(CP

2 − S)/
〈〈

Γ2
j

〉〉
�� Sn

In particular, the kernel of π1(CP
2 − S)→Bn is a quotient of the kernel

AY(T )→Bn, which we compute here in detail. Let us also mention that the defining
relations of AY(T ) appear in a similar context in [8]. A description of the fundamen-
tal group of the discriminant complement of a versal unfolding of a Brieskorn–Pham
polynomial xl1+1

1 + · · · + xln+1
n was given in [9], and one finds there too the same

defining relations. Our goal in this paper is mostly group theoretic, so we do not
pursue applications to algebraic geometry any further.

Another quotient of the standard braid group, with respect to the normal sub-
group generated by the commutator [σ1, σ

2
2σ3σ

−2
2 ], was computed by Teicher (see

[14]), and shown to be an extension of the symmetric group by a solvable group.
We thank Prof. Teicher for useful conversations on this and other topics.
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Note. Throughout the paper, composition of functions is performed in the usual
order, namely (f ◦ g)(x) = f(g(x)); however the action of Sn or the braid group Bn
is reversed: (στ)(u) = τ(σ(u)).

The paper is organized as follows. In Sec. 2 we review the construction of Cox-
eter covers of the symmetric group and the main results from [12]: to a connected
undirected graph T one associates a Coxeter group C(T ) whose quotient CY(T )
is a semidirect product of Sn and a subgroup of Fmn for m the rank of π1(T ).
Section 3 is devoted to the definition and basic properties of the groups A(T )
and AY(T ), where T is an arbitrary planar graph (given with an embedding in
the plane). The defining relations of AY(T ) are defined from the local neighbor-
hoods of the graph. One interesting feature of this particular construction is that
AY(T ′) is a retract subgroup of AY(T ) for any connected spanning subgraph T ′ ⊆ T
(Theorem 3.11).

In Sec. 4 we recall the action of the braid group on the disk and set the basic
notations.

In Sec. 5 we define geometric extensions of a group acting transitively on a
space. Using this special type of HNN extensions, we construct maximal quotients
of groups with respect to certain geometric data. Our main interest is in the maximal
quotient G(T ) of AY(T ) which is a geometric extension of Bn with respect to its
action on directed paths in the disk. These are precisely groups arising in the above
mentioned algebraic-geometry context.

Then, in Sec. 6 we compute G(T (1)) explicitly for the cycle graph T (1). After
discussing geometric extensions on quotient spaces in Sec. 7, we compute some
quotient groups of related actions. For example, it turns out that for the action of
A(T (1)) forgetting the direction of paths is equivalent to forgetting the whole path
except for its endpoints.

In order to apply the computation of G(T (1)) to the general case, we show in
Sec. 8 that AY(T ) depends on T only through combinatorial data, thus allowing
one to choose the graph structure at will. Likewise we show in Sec. 9 that the same
property holds for G(T ).

Finally, in Sec. 10, we compute G(T ) for an arbitrary planar graph: G(T ) =
Bn �Kn,m, where n is the number of vertices in T and m is the rank of
π1(T ). The kernel Kn,m is a central extension of a certain canonical subgroup
of Fmn , by the elementary Abelian group (Z/2Z)m. In particular the word prob-
lem in G(T ) is solvable, enabling practical computation of quotients that arise in
practice.

2. Coxeter Covers of the Symmetric Groups

This paper generalizes [12] from Coxeter covers of the symmetric groups to Artin
covers of the braid group. Therefore, let us quickly review some definitions and
main results of that paper.
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The standard way to associate a Coxeter group to a (simple) Dynkin diagram
is to associate a generator to each vertex, and impose the relations uv = vu when
two vertices are connected by an edge. Our definition is a dual one.

Definition 2.1. Let T be an undirected, simple graph on n vertices, with no loops.
We define the Coxeter group C(T ) as the abstract group whose formal generators
are the edges of T , with the relations u2 = 1 for every edge u ∈ T , uv = vu if u, v
are disjoint (i.e. no common vertex), and uvu = vuv if u, v share a common vertex.

Not every Dynkin diagram can be realized in this manner. For example, if a
generator x of C(T ) does not commute with generators y1, y2, y3, then the yi cannot
all commute with each other. In particular Coxeter groups of type Dn (whose
corresponding Artin groups are analyzed in [6]) cannot be realized.

There is a natural epimorphism of C(T ) to the symmetric group Sn, defined by
sending an edge whose endpoints are i and j to the transposition (i j). This map is
onto if and only if T is connected.

Next, one may define the quotient CY(T ) of C(T ), by adding the relation
[u, vwv] = 1 whenever u, v, w form the subgraph shown in Fig. 1 below. The map
C(T )→Sn splits through CY(T ). The main purpose of [12] is to compute the kernel
of CY(T )→Sn.

Let m denote the number of basic cycles in T (namely m is the rank of π1(T )).
Let Fm denote the free group on m letters, so Fnm is a direct product of n copies
of this group. Let Fm,n denote the kernel of the cumulative abelianization map
ab : Fnm→Z

m, defined by ab(w1, . . . , wn) =
∑

abi(wi), where abi is the usual
abelianization map from the ith component in F

n
m to Z

m. Thus we have a short
exact sequence

1−→Fm,n−→F
n
m−→Z

m−→ 1. (2.1)

Furthermore, let Am,n be the group generated by x
(i)
rs (i = 1, . . . , n, r, s =

1, . . . ,m) with the defining relations

x(i)
rr = 1, (2.2)

x(i)
rs x

(i)
st = x

(i)
rt , (2.3)

x
(i)
st x

(i)
rs = x

(i)
rt , (2.4)

and

[x(i)
rs , x

(j)
tu ] = 1 if r, s, t, u are distinct. (2.5)

It is shown in [12] that for n ≥ 5 we have a short exact sequence

1−→Fm,n−→CY(T )−→Sn−→ 1, (2.6)

and in fact that CY(T ) ∼= Sn �Fm,n, where Sn acts by permuting entries. Also, it
is shown that (again when n ≥ 5), Am,n ∼= Fm,n, where the isomorphism is given
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by x
(i)
rs = x

(i)
s

−1
x

(i)
r . The advantage of having this isomorphism is that the word

problem is obviously decidable in Fm,n (and so it is easy to define maps into this
group), while the explicit presentation of Am,n allows to define maps from it. In
Sec. 10 we will meet the analogs of these two groups.

Proposition 2.2. Assume n ≥ 5. Then Fm,n is the pullback of the diagram

? ��

��

Fm

��
Fn−1
m

�� Zm

where the map Fn−1
m →Zm is the cumulative abelianization as above, and the map

Fm→Zm is minus the abelianization.

Proof. It is well known that the solution to such a pullback diagram is the sub-
group {(w, t) ∈ Fn−1

m × Fm :
∑n−1

i=1 abi(wi) = −ab(t)}, and this is clearly Fm,n.

One can thus easily construct an epimorphism Fm,n→Fn−1
m .

3. The Local Quotient of Artin Groups

3.1. The definition

Let T be a planar graph on n points, by which we mean the graph is a properly
labeled union of paths which do not intersect except possibly at the endpoints.
The graph is not necessarily simple (namely two edges may share the same two
endpoints), but we assume throughout that T has no loops, namely every edge
connects two distinct vertices. By an isomorphism of graphs we mean a deformation
of (a compact domain in) the plane which carries one graph to the other.

We view T as the set of its edges. Throughout the paper, we denote [u, v] =
(uv)(vu)−1 and 〈u, v〉 = (uvu)(vuv)−1.

Definition 3.1. Let us define a group A(T ) with the edges of T as generators, and
the relations

[u, v] = 1 if u, v are disjoint in T , (3.1)

〈u, v〉 = 1 if u, v intersect in only one vertex. (3.2)

In the third possible case, namely if u and v share two vertices, then no relation is
assumed to hold between them.

Evidently, A(T ) is an Artin group [4], with exponents 2 and 3. It is connected;
almost always of large type; but never triangle-free, see [5]. The best known example
of such a group is when T is a single path connecting n vertices; then there are
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n − 1 generators with the usual braid relations, and in this case A(T ) ∼= Bn is
the standard braid group. In Theorem 3.11 (following Remark 3.4) we show that
when T is connected, there is a surjection A(T )→Bn. This is further studied in
Sec. 4, where we show that the map is given by sending a generator to the half-twist
induced by the corresponding path.

In [13] the author gives a presentation of the braid group Bn on (the edges of)
T , assuming T is simple. The presentation involves two families of relations apart
from those defining A(T ): one relation for every triple of edges with a common
vertex, and one relation for every cycle in the graph.

Motivated by examples from algebraic geometry (related to the computation of
the fundamental group of Galois covers, e.g. [1, 3]), we are interested in this paper in
“local” relations, with bounded support (bounded in terms of the graph distance);
thus we only assume the first family of relations. However since in general T is not
simple, we also add relations for pairs of edges intersecting in two vertices.

Definition 3.2. Let T be a planar graph. The group AY(T ) is the quotient of
A(T ) obtained by adding the following relations:

[w−1uw, v] = 1 if u, v, w are as in Fig. 1, (3.3)

〈w−1uw, v〉 = 1 if u, v, w are as in Fig. 2, (3.4)

[w−1uw, v−1xv] = 1 if x, u, v, w are as in Fig. 3, (3.5)

〈w−1uw, v−1xv〉 = 1 if x, u, v, w are as in Fig. 4. (3.6)

Remark 3.3. The defining relations of A(T ) are obtained by ranging over all the
embeddings of the subgraphs of Figs. 1–4 in T .

• u •

•
v

•
w

Fig. 1.

• u • •

v

• •

w

• •

w

• •

v

• •u

Fig. 2.
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• u • •

v

• •

w

•x • u • •

x

• •

w

• v •u• •

w

• •

v

•x

Fig. 3.

•
•

•
xu

• •

w

•v • •

w

• •

v

• • •xu

Fig. 4.

However, it suffices to take one labeling of each subgraph. More precisely, let S
be a subgraph of the above-mentioned forms, and let τ be a graph automorphism
of S (reflections are allowed). Then the relation induced by τ(S) is conjugate to
the relation induced by S in the group A(T ).

Proof. If u, v, w ∈ T and u, v have a common vertex, then

[u−1wu, v] = u−1[w, uvu−1]u

= u−1[v−1uv, w]−1u,

so u, v, w of Fig. 1 can be cyclically permuted. If u, v, w are as in the left-hand side
of Fig. 2, then 〈uwu−1, v〉 = 1 implies 〈u−1vu, w〉 = 1 by conjugating with u. If
x, u, v, w are as in Fig. 3, then xu = ux and so

[x−1wx, u−1vu] = x−1u−1[uwu−1, xvx−1]ux.

The other cases are similar.

The relations added here do not interfere with the interpretation of the elements
of A(T ) as braids. In other words, the map A(T )→Bn mentioned above induces
a well-defined map AY(T )→Bn. Moreover from [13] it follows that, assuming T is
simple, in order to obtain a presentation of the standard braid group Bn, one has to
add a single relation for every cycle in T ; in other words, the kernel of AY(T )→Bn
is the normal subgroup generated by certain cyclic words.

If T has no cycles then we have the following from [13]; the claim also follows
easily from Theorem 8.3.

Remark 3.4. If T is a (planar) tree, then AY(T ) ∼= Bn.

Notice that if T is a simple graph, only the relations of type (3.3) appear. We
also remark that adding the relations u2 = 1 for every u ∈ T , turns A(T ) into a

1250061-7
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A(T ) ��

��

AY(T ) ��

��

Bn

��
C(T ) �� CY(T ) �� Sn

Fig. 5.

Coxeter group. Moreover AY(T ) projects to the group CY(T ) described in Sec. 2
(for T simple), and we have the commutative diagram of Fig. 5.

3.2. Parabolicity

Our next goal is to provide a structural explanation for the defining relations of
AY(T ). We first define a useful partial action of the set of (non-oriented) paths in
the plane on itself, to be elaborated upon in Sec. 4. Since we consider paths which
are not contained in T , let us clarify what we mean by a path here. In the presence
of a planar graph T , a path is defined up to relative isotopy within the complement
of the union of the edges of the graph in the plane. When T is understood from the
context, we write ∼ for this homotopy relation. Let us record few identities in this
spirit.

Definition 3.5. Let x and y be (non self-intersecting) paths in the plane. Suppose
that either x and y do not intersect, or they intersect at a single endpoint, p. In the
first case we set x · y = y. In the second case, we define x · y as the path obtained
by traveling along x, circling p clockwise and then traveling along y (see Fig. 6).

Remark 3.6. Let T be a planar graph. We define a binary relation on the edges
of T , as follows: x � y when x and y intersect at one endpoint, p, and y follows x
consecutively in the clockwise order around p.

(1) Suppose x � y. Then we have the reflexivity relations

y · (x · y) ∼ (y · x) · y ∼ x
and

(x · y) · x ∼ x · (y · x) ∼ y.

• •
px • •

y
• •• •• •

x · y
• •

y · x
Fig. 6.
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(2) Suppose x � y and y � z, where x, z are disjoint. Then we have the associa-
tivity relation

x · (y · z) ∼ (x · y) · z.

The set of relations defining AY(T ) is best explained by the following construc-
tion, and the theorem that follows.

Definition 3.7. Let T be a planar graph. The graph T̂ is defined on the same
vertices. The edges of T̂ are either actual or virtual . The actual edges are edges of
T . For every ordered pair of edges x, y ∈ T intersecting at a single common vertex,
we have the virtual edge x · y.

By construction, for every edge x and a vertex p on x, the virtual edges x · y
(p ∈ y ∈ T ) do not intersect in a small neighborhood of p, see Fig. 7. Likewise for
the edges y · x (p ∈ y ∈ T ).

Although we assume throughout that T is planar, one can define A(T ) and
AY(T ) for any graph immersed in the plane (in general position), where the relations
are only between edges which do not intersect outside the set of vertices. The group
AY(T ) can now be understood as the maximal quotient of A(T ) to which the natural
map from A(T̂ ) is well-defined.

Theorem 3.8. Let T be a graph embedded in the plane. There is a well-defined
map A(T̂ )→AY(T ) sending a real edge x ∈ T̂ to x ∈ T, and a virtual edge x · y to
x−1yx.

Proof. There are three types of relations defining A(T̂ ): relations among real edges,
relations of the form [x · y, z] or 〈x · y, z〉, and relations of the form [x · y, z · u] or
〈x · y, z · u〉.

The relations from the first family are satisfied already in A(T ). If x · y and z

do not intersect, then either z is disjoint from x and y (and then [x−1yx, z] = 1 in
A(T )), or x, y, z form the graph of Fig. 1, in which case [x−1yx, z] = 1 in AY(T )
by relation (3.3). Similarly if x · y and z share a common vertex, then either x, y, z

• •
p

x

•
y1

• •
y2

•
y3

• •
p

•

• •

•

......................
.......................

................
............

..........
.........
........
.......
..•

x·y1

.............................................
.................................................................................•

x·y2
.........................................................................................................................•

x·y3

Fig. 7. Construction of T̂ .
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form a path or they are as in Fig. 2. In either case it is easy to see that 〈x−1yx, z〉
in AY(T ). The cases x = z and y = z are easy.

Finally consider two virtual edges x · y and z · u. If they do not intersect, the
proof is either trivial or relies on relation (3.5). When they do share a common
vertex, one uses relation (3.6); the only case that requires some care is to show
that 〈x · y, z · u〉 = 1 when x, z, u form a triangle and y connects a point inside
the triangle to the common vertex of x and u. Then we are done by relation (3.3)
applied to x, y and u. The cases where {x, y} ∩ {z, u} 
= ∅ are all easy.

Let D be a bounded connected component in the complement of T in the plane.
Let v0, v1, . . . , vn denote the edges on the boundary of D, traveling counterclock-
wise. Notice that we may have vi = vj if both “sides” of the same edge are contained
in D, as in Fig. 8. Every list of the form vi, vi+1, . . . , vj−1, vj with j ≥ i will be called
a planar path. When j > i, the path runs from the vertex on vi which is not on
vi+1 to the vertex on vj which is not on vj−1. Notice that a closed proper subpath
of v0, . . . , vn must circle a domain clockwise. For example, in Fig. 8, v4v5v6v7v8 is a
subpath; but v0v1v2v10 which circles a domain counterclockwise is not a subpath,
as the edges are not consecutively following the boundary of D. We define

L(vi · · · vj) = v−1
i · · · v−1

j−1vjvj−1 · · · vi, (3.7)

viewed as an element of A(T ) or AY(T ).

Lemma 3.9. Let v1, . . . , vn be a planar path in T, running from a vertex β to a
vertex γ. Assume β 
= γ.

Let x = L(v1 · · · vn). If the vertices of some y ∈ T are disjoint from β and γ,

then y commutes with x in AY(T ).

Proof. Let α 
= β, γ be a vertex on y. We first assume the other vertex of y does not
touch any of the vi. Since the path is enumerated consecutively, the edges touching
α come in pairs, vi1 , vi1+1, vi2 , vi2+1 up to viu , viu+1 where iu+1 ≤ n (and possibly
vij+1 = vij+1 for certain values of j). The case u = 0 is trivial, so assume u ≥ 1.
Note that y commutes with the vk with k < i1, and by relation (3.3), it commutes

•

1

•
3 9

•

10

•
0

•2

•
4

•

•

6
•

5

•
7

8

Fig. 8. A connected component with boundary.
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with v−1
i1
vi1+1vi1 . Also, vi1 commutes with x′ = L(vi1+2 · · · vn), by induction on u.

Therefore y commutes with

x = v−1
1 · · · v−1

i1−1(v
−1
i1
v−1
i1+1vi1)v

−1
i1

(v−1
i1+2 · · · v−1

n−1vnvn−1 · · · vi1+2)vi1

· (v−1
i1
vi1+1vi1)vi1−1 · · · v1

= v−1
1 · · · v−1

i1−1(v
−1
i1
v−1
i1+1vi1)v

−1
i1
x′vi1 · (v−1

i1
vi1+1vi1)vi1−1 · · · v1

= v−1
1 · · · v−1

i1−1(v
−1
i1
v−1
i1+1vi1)x

′(v−1
i1
vi1+1vi1 )vi1−1 · · · v1.

Next, suppose the other vertex of y also touches vertices on the path x. If no vi
touches the two ends of y, the proof is basically the same. Otherwise a very similar
argument can be used, with Eq. (3.5) replacing (3.3) — unless y = vi, which is also
an easy computation.

Note the identities

〈a, bcb−1〉 = b〈b−1ab, c〉b−1, (3.8)

〈bab−1, c〉 = b〈a, b−1cb〉b−1. (3.9)

Lemma 3.10. Let v1, . . . , vn be a planar path in T, running from β to γ. Suppose
y ∈ T has vertices α, β where α 
= β, γ. Then 〈y,L(v1 . . . vn)〉 = 1. (Note that we
do not assume β 
= γ.)

Proof. If n = 1 the claim repeats relation (3.2). First assume v1, . . . , vn is an open
loop. Then by induction 〈v1,L(v2 · · · vn)〉 = 1. Notice also that y commutes with
L(v2 · · · vn) by the previous lemma. Now, applying (3.8) and (3.9), we have

〈y,L(v1 · · · vn)〉 = 〈y, v1L(v2 · · · vn)v−1
1 〉

= v1〈v−1
1 yv1,L(v2 · · · vn)〉v−1

1

= v1〈yv1y−1,L(v2 · · · vn)〉v−1
1

= v1y〈v1, y−1L(v2 · · · vn)y〉y−1v−1
1

= v1y〈v1,L(v2 · · · vn)〉y−1v−1
1 = 1.

So suppose v1, . . . , vn is a closed path. Let β denote the intersection point of
y, v1 and vn. Let δ denote the other point on vn (note that this point may lay on
v1). Obviously δ is a point on vn−1. First assume that none of v2, . . . , vn−2 contain
δ. Then vn commutes with v2, . . . , vn−2 and

L(v2 · · · vn) = v−1
2 · · · v−1

n−2v
−1
n−1vnvn−1vn−2 · · · v2

= v−1
2 · · · v−1

n−2vnvn−1v
−1
n vn−2 · · · v2

= vnv
−1
2 · · · v−1

n−2vn−1vn−2 · · · v2v−1
n

= vnL(v2 · · · vn−1)v−1
n .
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In this case v2 does not contain δ, and so y, v1, vn satisfy the condition of Eq. (3.3),
and we have

〈y,L(v1 · · · vn)〉 = 〈y, v−1
1 L(v2 · · · vn)v1〉

= 〈y, v−1
1 vnL(v2 · · · vn−1)v−1

n v1〉
= v−1

1 vn〈v−1
n v1yv

−1
1 vn,L(v2 · · · vn−1)〉v−1

n v1

= v−1
1 vn〈v1yv−1

1 ,L(v2 · · · vn−1)〉v−1
n v1

= v−1
1 vnv1〈y, v−1

1 L(v2 · · · vn−1)v1〉v−1
1 v−1

n v1

= v−1
1 vnv1〈y,L(v1 · · · vn−1)〉v−1

1 v−1
n v1

which is trivial by induction.
Finally, let j < n− 1 be the maximal index for which vj contains δ. Then

L(v2 · · · vn) = v−1
2 · · · v−1

n−1vnvn−1 · · · v2
= v−1

2 · · · v−1
n−2vnvn−1v

−1
n vn−2 · · · v2

= v−1
2 · · · v−1

j vnL(vj+1 · · · vn−1)v−1
n vj · · · v2

= v−1
2 · · · vj−1(v−1

j vnvj)L(vj · · · vn−1)(v−1
j vnvj)−1vj−1 · · · v2

= (v−1
j vnvj)L(v2 · · · vn−1)(v−1

j vnvj)−1.

As before,

〈y,L(v1 · · · vn)〉 = 〈y, v−1
1 L(v2 · · · vn)v1〉

= 〈y, v−1
1 (v−1

j vnvj) · L(v2 · · · vn−1)(v−1
j vnvj)−1v1〉

= v−1
1 v−1

j vnvj

· 〈v−1
j v−1

n vjv1yv
−1
1 v−1

j vnvj ,L(v2 · · · vn−1)〉v−1
j v−1

n vjv1

= v−1
1 v−1

j vnvj〈v1yv−1
1 ,L(v2 · · · vn−1)〉v−1

j v−1
n vjv1

= v−1
1 v−1

j vnvjv1〈y, v−1
1 L(v2 · · · vn−1)v1〉v−1

1 v−1
j v−1

n vjv1

= v−1
1 v−1

j vnvjv1〈y,L(v1 · · · vn−1)〉v−1
1 v−1

j v−1
n vjv1,

where [v−1
j vnvj , v1yv

−1
1 ] = 1 either because of relation (3.3) for y, v1, vn if j > 3, or

because of relation (3.5) if j = 3.

If T ′ ⊆ T is a spanning subgraph (namely, with the same set of vertices), then
it is natural to compare the abstract group AY(T ′) to the “parabolic” subgroup
〈T ′〉 of AY(T ), generated by the edges u ∈ T ′.

Theorem 3.11. Let T ′ ⊆ T be a connected spanning subgraph. Then AY(T ′) is a
retract subgroup of AY(T ).
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Proof. Let φ : AY(T ′)→AY(T ) denote the map defined by φ(u) = u for u ∈ T ′.
We construct a map ψ : AY(T )→AY(T ′) such that ψφ = 1. It is enough to assume
T = T ′ ∪ {x}. Let β and γ denote the endpoints of x. Since T ′ is connected (and
has the same set of vertices as T ), there is a path v1, . . . , vn running from β to γ;
moreover T being a planar graph, we may assume x, v1, . . . , vn is the boundary of
a bounded domain in the complement of T , so that v1, . . . , vn is a planar path. Let
x̂ = L(v1 · · · vn) ∈ AY(T ′).

Define ψ : AY(T )→AY(T ′) by ψ(u) = u for every u 
= x and ψ(x) = x̂. It
remains to show that ψ is well defined, since clearly ψφ = 1. For that we need
to verify that under the action of ψ, all the relations in AY(T ) become trivial in
AY(T ′). If a relation does not involve x, the claim is trivial. Relations of type
(3.1) and (3.2) were treated in Lemmas 3.9 and 3.10, respectively. The proof for
relations (3.3)–(3.6) is very similar: x is of course one of the edges in the relation,
and since x, v1, . . . , vn is the boundary of a domain, the other edges must touch x
from the outside. The analysis is then very similar to that of the lemmas, and we
omit the details.

By Remark 3.4 we have the following special case.

Corollary 3.12. Let T0 ⊆ T be a spanning sub-tree. Then the subgroup 〈T0〉 gen-
erated by the edges of T0 is isomorphic to the braid group.

4. Action on the Disk

In this section we describe the classical action of the braid group on the fundamental
group of an n-punctured disk.

Let D denote the unit disk in C, and P ⊆ D be a subset of n points in the
interior of D. For convenience, we will assume the points P = {p1, . . . , pn} are
on the real line, in this order. Obviously π1(D − P ) is the free group on n = |P |
generators. Consider the group of diffeomorphisms B = Diff+(D − P, ∂D). Let
us define special elements in this group, denoted by σi (for i = 1, . . . , n − 1), as
follows. For a sufficiently small ε > 0, let N be the union of ε-disks with centers
in the line from pi to pi+1, and let N ′ be the similar union of 2ε-disks. The action
of σi is to rotate the boundary of N half a circle counterclockwise, exchanging the
positions of pi and pi+1, while preserving all the points outside of N ′. It can be
easily checked that these elements satisfy the defining relations of the braid group,
namely σiσj = σjσi for |i− j| > 1 and σiσi+1σi = σi+1σiσi+1, and in fact B is
generated by the σi and defined by these relations, and thus is isomorphic to Artin’s
braid group. Hence we denote B by Bn. Recall that when multiplying elements of
Bn, we compose diffeomorphisms from left to right, namely (στ)(u) = τ(σ(u)) for
σ, τ ∈ Bn and u a point or a path in D.

By a good path we mean the oriented image of a smooth injective γ : (0, 1)→D−
P which can be extended to a smooth γ : [0, 1]→D with γ(0) = pi and γ(1) = pj

1250061-13



2nd Reading

March 8, 2012 12:9 WSPC/S0218-2165 134-JKTR 1250061

M. Amram, R. Lawrence & U. Vishne

for some pi 
= pj ∈ P . Such a path gives rise to an element of Bn in the manner
described above (by setting two neighborhoods around γ). This element, which
is independent of the orientation only depends on the image of γ, is called the
half-twist induced by γ, and will be denoted by π(γ). We will usually omit π. For
example, σi is nothing but π(h) for h the straight line from pi to pi+1; by abuse of
notation, we will also denote this line by σi.

Definition 4.1. Let Ψ denote the set of good paths in D, up to continuous defor-
mation, and Ψ denote the set obtained from it by forgetting orientation.

Thus we have defined above a map π : Ψ→Bn. On the other hand, Bn acts on
Ψ, which induces an action of Ψ and Ψ on Ψ and Ψ, respectively. Let γ, δ ∈ Ψ.
If (the closures of) γ and δ do not intersect, then clearly (π(δ))(γ) = δ(γ) = γ.
Now assume that γ has endpoints pi and pj, and δ has endpoints pj and pk (i, j, k
distinct). By definition, (π(δ))(γ) = δ(γ) is the (good) path going from pi along γ
until coming close to pj, then circling pj counterclockwise, and continuing with δ

to its endpoint pk; see Fig. 9.
Now let θ ∈ Bn be arbitrary, and let γ, δ ∈ Ψ. Consider the good path θ(γ)

together with its neighborhoods N ⊆ N ′. A point outside N ′ is not moved by either
θ−1π(γ)θ or π(θ(γ)). On the other hand, γ is rotated half a circle counterclockwise
under both actions, and so

π(θ(γ)) = θ−1π(γ)θ. (4.1)

Acting with this element on θ(δ) we get

(π(θ(γ)))(θ(δ)) = (θ−1π(γ)θ)(θ(δ)) = (π(γ)θ)(δ) = θ(π(γ)(δ));

•
pi

•

γ

•
pkpj
•δ

•

δ(γ)

• • •

•

δ−1(γ)

• • •

Fig. 9. The action of π(δ) and π(δ)−1 on the good path γ.
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we record this distributivity law as

θ(π(γ)(δ)) = π(θ(γ))(θ(δ)). (4.2)

Corollary 4.2. For any γ, δ ∈ Ψ,
π(π(δ)(γ)) = π(δ)−1π(γ)π(δ). (4.3)

Proof. Take θ = π(δ) in Eq. (4.1).

A sequence of good paths γ1, . . . , γm is called a partial frame if every γi shares
exactly one endpoint with γi+1, and there are no other intersection points. If m =
n−1, this is called a frame. In particular, σ1, . . . , σn−1 is called the standard frame.

Remark 4.3. Bn acts transitively on partial frames of any given length, and in
particular on frames.

Proof. There is a diffeomorphism taking any given non-self-intersecting path to
any other non-self-intersecting path, and the union of paths composing a frame is
non-self-intersecting.

We will need the following refinement of this remark. We say that a good path
is simple if it does not intersect the real line except for the two endpoints.

Proposition 4.4. Any good path ω ∈ Ψ (see Definition 4.1) can be written in the
form π(γ1)±1 . . . π(γs)±1(γ0) for suitable simple paths γ0, γ1, . . . , γs, such that each
γi intersects only with γi+1 and γi−1.

Proof. By induction on the number of intersections of ω with the real line. Suppose
ω begins at some pi and travels first above the real line. Let pj denote the point
of P farthest from pi in the segment from pi to the first intersection of ω with the
real line. Take γ1 to be the simple path going above the real line from pi to pj ,
and ω′ is the path starting from pj following ω. Then ω = π(γ1)(ω′) if i < j and
ω = π(γ1)−1(ω′) if i > j. If j = i, deform ω so that it first travels below the real
line. Likewise, if ω first travels below the real line, then ω = π(γ1)−1(ω′) if i < j

and ω = π(γ1)(ω′) if i > j. The proof is complete since ω′ has less real points
than ω.

In connection with geometric actions on the disk, we will need the following well
known fact.

Remark 4.5. Let n ≥ 4. The centralizer of σ1 in Bn is generated by
σ1, σ3, . . . , σn−1 and the half-twist σ−1

2 σ−2
1 σ−1

2 σ3σ2σ
2
1σ2 (see Fig. 10). Conjugat-

ing, we obtain the centralizer of an arbitrary half-twist.
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• •••

Fig. 10. π(σ1) and π(σ−1
2 σ−2

1 σ−1
2 σ3σ2σ2

1σ2).

σi σ−1
i•

��
��

��
� •

���

���

• ���

���
•

��
��

��
�

Fig. 11. The braids associated to σi and σ−1
i (going downwards).

Recall the standard description of Bn as the group of braids on n strands,
where σi is viewed as exchanging strands i and i + 1 with i going above i + 1, as
in Fig. 11.

More generally, if γ ∈ Ψ has endpoints pi, pj , then π(γ) can be real-
ized as the braid obtained by traveling with strands i and j halfway along
γ, going beyond strands k whenever γ is above pk, and above the strand
when γ is below pk; when the strands i and j meet, they are exchanged with
the lower index strand going above the higher index one. For example, see
Fig. 12.

Example 4.6. It is easy to see that σ2(σ1) is the path connecting p1 and p3 and
going under p2. Computing in the braid group, this amounts to an exchange of
strands 1 and 3 going above strand 2. By Eq. (4.3), we know that π(σ2)(σ1) =
σ−1

2 σ1σ2, as illustrated in Fig. 13.

• •• •

•
��

���
�

����������������

• •
���

��
�

���

•

��
���

�

��
��

��
��

�

���
���

���

���
��

�

Fig. 12. A good path in the unit disk, and the induced braid.
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Fig. 13. π(π(σ2)(σ1)) versus the product π(σ2)−1π(σ1)π(σ2).

5. Geometric Extensions and Actions

5.1. Geometric extensions

Let S be an arbitrary group, acting transitively on a space Ω. Let α ∈ Ω. We
denote by S ∗Ω the HNN extension [7] of S with respect to the identity map on the
stabilizer Stab(α) ≤ S. Namely, S ∗Ω is the group generated by S and an element
x, subject to the relations

(C) if σ(α) = α, then σx = xσ.

As all stabilizers are conjugate, different choices of α yield isomorphic groups. More-
over, the action of S extends to an action of S ∗ Ω on Ω, by letting x act trivially.

If the projection S ∗ Ω→S defined by x �→ 1 factors through a group G, then
G = 〈S, x〉 and (C) holds. We call such a group a geometric extension of S.

Example 5.1. (1) When S acts sharply transitively on Ω, the condition (C) triv-
ially holds. In this case S ∗Ω is the free product S ∗ Z.

(2) If Ω = {•} is a singleton, then S ∗Ω = S×Z. In this case every other geometric
extensions has the form S × Zn for some n ∈ Z.

(3) More generally if S0 ≤ S is a subgroup and S acts by left multiplication on the
quotient space Ω = S/S0, then S ∗ Ω is the HNN extension of S with respect
to the identity map on S0.

Recall that a monomorphism ι :S→G is a retraction if there is an epimorphism
ψ :G→S such that ψ ◦ ι = 1S . Then S is called a retract subgroup of G. Letting
ι :S→S ∗ Ω be the inclusion map, ε :S ∗ Ω→S defined by ε|S = 1S and ε(x) = 1
satisfies ε ◦ ι = 1S , so S is a retract of G = S ∗ Ω.

Let ι :S→H be a retraction with the epimorphism ε :H→S satisfying ε◦ι = 1S .
Suppose H is generated by S and an element x, and suppose that the natural epi-
morphism from the free product S ∗ 〈x〉 to S, defined by x �→ 1, factors through H .
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Clearly K = Ker(ε) is the normal subgroup of H generated by x, and H = SK.
It is also easy to see that K = 〈x〉S , the subgroup generated by all the conju-
gates {σxσ−1 :σ ∈ S}. As hinted in Sec. 1, our aim in this paper is to find a
good description of K in a certain geometric setting. Since S will be large, the
set {σxσ−1 :σ ∈ S} is too large for this purpose.

5.2. Geometric actions

Definition 5.2. Let H be a group with a subgroup S acting transitively on a
space Ω and let α ∈ Ω and x ∈ G be distinguished elements. We say that the
system (H,S,Ω, x, α) is a geometric action, if the embedding S ↪→ H is a retraction,
H = 〈S, x〉, and the condition (C) holds.

This is the case if and only if the epimorphism ε1 :S ∗ Ω→S factors through
ε :H→S, so in particular H is a geometric extension of S.

Let (H,S,Ω, x, α) be a fixed geometric action. For ω ∈ Ω, let σ ∈ S be an
element such that σ(ω) = α. We claim that

xω = σxσ−1 (5.1)

is a well-defined element of K, i.e. independent of the choice of σ. Indeed, if σ′(α) =
σ(α) = ω, then σ−1σ′(α) = α and so σ−1σ′ commutes with x by the condition (C);
recall that we compose functions from the left. Notice that xα = x.

Remark 5.3. For every ω ∈ Ω and τ ∈ S, we have that

τ−1xωτ = xτ(ω). (5.2)

Corollary 5.4. The kernel K = ker(ε :H→S) is generated (rather than normally
generated) by the elements {xω :ω ∈ Ω}.

The notion of geometric action can easily be extended to a system
(H,S,Ω, X, {αx}x∈X) where: S ≤ H is a retract subgroup acting transitively on Ω;
X ⊆ H is a (usually finite) subset such that H = 〈S,X〉; there is an epimorphism
ε :H→S defined by σ �→ σ for σ ∈ S and x �→ 1 for every x ∈ X ; and for every
x ∈ X there is a fixed element αx ∈ Ω such that condition (C) holds. No extra
relation is assumed among the generators in X .

5.3. Maximal geometric quotients

In order to handle more general groups in terms of geometric actions, we make the
following definition.

Definition 5.5. Let (H,S,Ω, X, {αx}x∈X) be a geometric action.
We define G = G(H,S,Ω, X, {αx}x∈X) as the quotient group of H with respect

to the normal subgroup generated by the commutators

{[σ, x] : x ∈ X, σ ∈ Stab(αx) ⊆ S}.
Finally, let K(H,S,Ω, X, {αx}x∈X) denote the kernel of the epimorphism G→S.
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ClearlyG = G(H,S,Ω, X, {αx}) is the largest quotient ofH which is a geometric
extension of S (with respect to the given action on Ω).

Similarly to Example 5.1, we have the following example.

Example 5.6. Let (H,S,Ω, X, {αx}) be a geometric action.

(1) If S acts sharply transitively on Ω, then the stabilizers are trivial, and so
G(H,S,Ω, X, {αx}) = H .

(2) If Ω is a singleton then G(H,S,Ω, X, {αx}) ∼= S × 〈X〉, where 〈X〉 is the sub-
group of H generated by X .

(3) Let ∼ be an equivalence relation on Ω, consistent with the action of S. Then
there is a well-defined action of S on Ω/∼, and G′ = G(H,S,Ω/∼, X, {[αx]}) is a
quotient ofG = G(H,S,Ω, X, {αx}). For every x ∈ X , let Γx be a set of elements
of S such that for every β ∼ αx, τ(αx) = β for some τ ∈ Γx. Then Stab([αx]) =
Stab(αx) · Γx. Therefore, the kernel of the epimorphism G→G′ is generated,
as a normal subgroup, by the set of commutators {[τ, x] :x ∈ X, τ ∈ Γx}.

Proposition 5.7. Notation as in Definition 5.5, let G be the group
G(H,S,Ω, X, {αx}). Then, the system

(G,S,Ω, X, {αx})
is a geometric action. In particular, we have that G = K �S where K =
K(H,S,Ω, X, {αx}) is the kernel, and the action is given in (5.2).

Proof. It remains to show that the map S→G defined by projecting σ ∈ S ≤ H

modulo the relations is a retraction. Let ε :H→S be the epimorphism defined by
ε(x) = 1 for x ∈ X , and let ι :S→H be the embedding, so that ε ◦ ι = 1S. Let
ψ :H→G be the natural epimorphism.

The map ε′ :G→S defined by σ �→ σ and x �→ 1 preserves the commutation
relations and so is well defined, and ε′◦ψ = ε. Let ι′ = ψ◦ ι. Then ε′ ◦ ι′ = ε′ ◦ψ◦ ι =
ε ◦ ι = 1S .

We will later need ways of comparing two geometric extensions.

Lemma 5.8. Let (H,S,Ω, X, {αx}) and (H ′, S′,Ω, Y, {βy}) be two geometric
actions.

Let ψ :H→H ′ be an isomorphism, inducing an isomorphism S→S′ which com-
mutes with the action (namely ψ(σ)(ω) = σ(ω) for ω ∈ Ω). Suppose that for every
x ∈ X there are τ ∈ S′ and y ∈ Y such that ψ(x) = τ−1yτ and βy = τ−1(αx).
Then ψ induces an isomorphism

G = G(H,S,Ω, X, {αx})→G′ = G(H ′, S′,Ω, Y, {βy}).

Proof. Since G is defined as the quotient of H with respect to the relations [σ, x] =
1 for every x ∈ X and σ ∈ Stab(x), and G′ is defined similarly as a quotient of H ′,
it is enough to prove that ψ transfers such relations to suitable relations in G′.
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Let x ∈ X , and let σ ∈ S be an element such that σ(αx) = αx. Write
ψ(x) = τ−1yτ for y ∈ Y and τ ∈ S′, and βy = τ−1(αx). Then (τψ(σ)τ−1)(βy) =
(τψ(σ)τ−1)(τ−1(αx)) = τ−1(ψ(σ)(αx)) = τ−1(σ(αx)) = τ−1(αx) = βy (acting
from left to right), and so

[ψ(σ), ψ(x)] = [ψ(σ), τ−1yτ ] = [τψ(σ)τ−1, y] = 1.

6. The Case of a Single Cycle

Consider the graph T (1) composed of the standard frame and one undirected path u
connecting p1 and pn from above, as in Fig. 14. We let α denote the path u directed
from p1 to pn.

We assume n ≥ 4. By definition, A(T (1)) is generated by elements corresponding
to the paths σ1, . . . , σn−1 and u, and we use this notation for the generators as
well. By Theorem 3.11, the subgroup 〈σ1, . . . , σn−1〉 of A(T ) satisfies only the braid
relations, and we denote this subgroup by Bn.

Let α denote the element

α = L(σ1 · · ·σn−1) = σ−1
1 σ−1

2 . . . σ−1
n−2σn−1σn−2 . . . σ2σ1 ∈ Bn. (6.1)

We have that π(α) = α ∈ Bn ⊆ A(T (1)). Set x = uα−1. Since A(T (1)) is generated
by Bn and u, we also have that A(T (1)) = 〈Bn, x〉, where, by the proof of Theo-
rem 3.11, we have an epimorphism A(T (1))→Bn which is the identity on Bn and
sends x �→ 1.

Recall that by Remark 4.3, Bn acts transitively on Ψ (defined in Definition 4.1).
In this section we study the largest quotient of A(T (1)) which acts geometrically on
Ψ, namely the group

G = G(A(T (1)), Bn, Ψ, x, α) (6.2)

of Definition 5.5. Notice that for the current graph T (1), A(T (1)) = AY(T (1)).

Remark 6.1. By Definition 3.1, A(T (1)) is the group generated by u and
σ1, . . . , σn−1, with the relations:

[σi, σj ] = 1 for |i− j| > 1,
σiσi+1σi = σi+1σiσi+1 for i = 1, . . . , n− 2,

[u, σi] = 1 for i = 2, . . . , n− 2,

��
α

• ••
σ1

•
σ2

• ... •
σn−1

Fig. 14. The graph T (1) of Sec. 6.
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��

• •• • • ... •.................................
...
.......
......
...........
...............

.......................................................................................................
......

σ1σ
−1
n−1(u)

Fig. 15. A path acting trivially on α.

and

σ1uσ1 = uσ1u, (6.3)

σn−1uσn−1 = uσn−1u. (6.4)

Since α is conjugate to σ1, we can conclude the following from Remark 4.5.

Remark 6.2. The stabilizer of α in the action of Bn on Ψ is generated by
σ2, . . . , σn−2, σn−1σ

−1
1 ασ1σ

−1
n−1 (see Fig. 15), and α2. Note that α reverses the

orientation of α.

Since G is the quotient of A(T (1)) = 〈Bn, u〉, obtained by letting x = uα−1

commute with Stab(α), we have the following summary.

Summary 6.3. The group G = 〈Bn, x〉 is defined by the relations:

σ1xασ1 = xασ1xα, (6.5)

σn−1xασn−1 = xασn−1xα, (6.6)

[x, σi] = 1 (i = 2, . . . , n− 2), (6.7)

[x, σn−1σ
−1
1 ασ1σ

−1
n−1] = 1, (6.8)

[x, α2] = 1. (6.9)

Writing x�α instead of x, the commutation relations become

σix�α = x�ασi (1 < i ≤ n− 2), (6.10)

σn−1σ
−1
1 ασ1σ

−1
n−1x�α = x�ασn−1σ

−1
1 ασ1σ

−1
n−1, (6.11)

α2x�α = x�αα
2, (6.12)

while Eqs. (6.5) and (6.6) translate to

σ1x�αασ1 = x�αασ1x�αα, (6.13)

σn−1x�αασn−1 = x�αασn−1x�αα. (6.14)

Equations (6.10)–(6.12) are equivalent to the assumption on geometric action, in
particular condition (C) of Sec. 5, which implies that xω of Eq. (5.1), defined as
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σxσ−1 for some σ ∈ Bn such that σ(ω) = α, is well defined for every ω ∈ Ψ.
Relation (6.13) is equivalent to

σ1x�ασ
−1
1 = x�αασ1x�ασ

−1
1 α−1,

and applying Eq. (5.2), this becomes

xσ−1
1 (�α) = x�α · xα−1(σ−1

1 (�α)). (6.15)

Likewise relation (6.14) translates to

xσ−1
n−1(�α) = x�α · xα−1(σ−1

n−1(�α)). (6.16)

Slightly generalizing Remark 4.3, it is easy to see that Bn acts transitively on
oriented triangles whose three vertices are in the set P of the n vertices of T (1),
and which contain no other points from P in the interior. The three directed paths
σ−1

1 (α), α and α−1(σ−1
1 (α)) of (6.15) form such a triangle (left-hand side of Fig. 16),

and so conjugating by a generic element of Bn, we arrive at the relation

xb = xa · xc
whenever a, b, c ∈ Ψ are directed paths as in the left-hand side of Fig. 17. In a
similar manner, conjugating (6.16) (whose corresponding triangle is depicted in the
right-hand side of Fig. 16) we obtain the same relation whenever a, b, c ∈ Ψ are
directed paths as in the right-hand side of Fig. 17 (note the reverse order of a and
c!).

These two situations can be combined into one equation.

Corollary 6.4. If −→a ,−→c ∈ Ψ form a partial frame (namely they go in the same
direction, connecting three points, but it does not matter which one comes first),

��

• •
��

•�� •• • ... •

��

• •

��

• • �� ••• ...•

Fig. 16. The paths of Eqs. (6.15) and (6.16) form two triangles.

• ��c • •��a

��
b

• ��a • •��c

��b

Fig. 17. Relations (6.15) and (6.16).
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then

xa(−→c ) = x−→a x−→c (6.17)

and

xa−1(−→c ) = x−→c x−→a , (6.18)

where a is the good path that obtained by forgetting the direction of −→a .

Since c(−→a ) = a−1(−→c ), we can switch a and c in Eq. (6.17) to obtain

xa−1(−→c ) = x−→c x−→a . (6.19)

This equation motivates the following notation: if −→a ∈ Ψ is a directed path
and the direction cannot be confused, then we write a instead of x−→a . For example,
Fig. 18 demonstrates that if a, c form a partial frame, γ = a(c) goes above the
frame and δ = c(a) goes below the frame, then xγ = xaxc while xδ = xcxa.

Applying Proposition 4.4, we conclude that every xω can be written as a product
of the x−→σi

and x←−σi
.

Corollary 6.5. The kernel of the epimorphism G→Bn is generated by the x−→σi

and x←−σi
for i = 1, . . . , n− 1.

Let us apply these computations to the triangles in Fig. 19, where for the mean
time we denote the path pointing from the endpoint of c to the starting point of a
by e. The other two values (namely ce and ea) were computed from the triangles
that e forms with c and with a.

• ��a • •��c

��ac

��
ca

Fig. 18. Basic relations.

•
��a

• ��
ce

• •
��c

• •��
ea

��
ac

		e

Fig. 19. A complete triangle.
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All this was done using the upper triangle in Fig. 18 (going counterclockwise).
Going clockwise we obtain

ce · ea = e,

ac · ce = c,

ea · ac = a.

It follows that e = c−2a−1c (which, we recall, is a short notation for xe =
x−2
c x−1

a xc). Let us denote z = [c, a] = cac−1a−1. Substituting the value of e in the
first equation we get cc−2a−1cc−2a−1ca = c−2a−1c, namely ca−1c−1a−1ca = a−1c,
which is equivalent to za = az. The third equation becomes c−2a−1caac = a,
namely ca2c = ac2a or zac = acz. Since za = az, we obtain zc = cz, namely z

commutes with both a and c (again, this is a shorthand for “[xc, xa] commutes with
both xa and xc”). It is useful to rewrite Fig. 19 following the recent discoveries: see
Fig. 20. We summarize this as follows.

Corollary 6.6. If −→a ,−→c ∈ Ψ form a partial frame, and ←−a ,←−c denote the inverse
paths, then x←−a = zx−1−→a and x←−c = zx−1−→c , where z = [x−→c , x−→a ].

Taking a = −→σ i and c = −→σ i+1 (i = 1, . . . , n − 2), we find that x←−σi
=

[x−→σi+1
, x−→σi

]x−1−→σi
; similarly for a = −→σn−1 and c = −→σn−2 we have x←−σn−1

=
[x−→σn−1

, x−→σn−2
]x−1−→σn−1

. We can thus improve Corollary 6.5.

Corollary 6.7. The kernel K of G→Bn is generated by the x−→σi
for i =

1, . . . , n− 1.

Now consider the situation in Fig. 21, where c1 denotes the inverse path of
a, and a1 denotes the inverse path of c. By the above computation, we see that

•
��a

• ��
za−1

• •
��c

• •��
zc−1

��
ac

		zc−1a−1

Fig. 20. Figure 19, repeated.

•
��a

• ��
za−1

• •
��c

• •��
zc−1

= •
��z′c′−1

• ��
c′

• •
��

• •��
a′

Fig. 21. Proof that commutators have order 2.
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• ��
a

• •
		 u

• •��
c

• •��
e

��
ac

��
ce

��ace

Fig. 22. Proof that ae = ea.

the inverse path of a equals za−1 (i.e. x←−a = zx−→a ) and the inverse path of c
equals zc−1. Likewise, the inverse path of c1 equals z1c1−1, where z = [c, a] and
z1 = [c1, a1]. Comparing, we obtain a1 = zc−1, c1 = za−1 and a = z1c1

−1. Thus
z = c1a = ac1 = z1, since a and c1 = za−1 commute. On the other hand, z1 =
[c1, a1] = [za−1, zc−1] = [a−1, c−1] = [c, a]−1 = z−1. So we proved z2 = 1.

Next, consider the diagram in Fig. 22. The values ac and ce are easily computed
from the triangles completing a, c and c, e, respectively. In the same manner we
obtain the value ace from the triangle of a, ce. From the triangle a, c, ac we compute
that u = [c, a]a−1. Likewise from the triangle a, ce, ace we get u = [ce, a]a−1. Thus
[c, a] = [ce, a] and ae = ea.

Finally, consider the diagram in Fig. 23. Considering the leftmost triangle, we
get from Fig. 20 that u = [c, a]c−1. On the other hand for the rightmost triangle,
the same argument gives u = [e, c]c−1. Therefore [c, a] = [e, c]. By Remark 4.3,
it follows that as long as a, c form a partial frame, z = [c, a] is independent of
a and c.

This situation can be summarized as follows.

Proposition 6.8. Let ω, ω′ ∈ Ψ be two directed paths with the same starting and
ending points. Then xω′ = z(ω, ω′) · xω where z(ω, ω′) = 1 if the number of points
of P crossed when ω′ is deformed into ω is even, and z(ω, ω′) = z if this number is
odd.

Proof. By induction on the number of points, and without loss of generality, we
may assume that ω is the path denoted as ac in Fig. 18, and ω′ is the path denoted
ca there. But then xω = xaxc and xω′ = xcxa, so that xωx−1

ω′ = [xa, xc] = z.

• ��
a

• •
		u

• •��
c

• •��
e

�� ��

Fig. 23. Proof that all non-trivial commutators in a frame are equal.
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Corollary 6.9. If ω ∈ Ψ and θ ∈ Ψ is a good path such that θ(ω) has the same
starting and ending points as ω (in particular θ and ω have disjoint endpoints),
then xθ(ω) = xω.

This follows from Corollary 6.8 by induction on the number of intersection
points of θ and ω. For comparison, notice that xσ1(−→σ1) = x←−σ1

= z · x−→σ1
, so the

equality does not hold if the starting and ending points are exchanged. Likewise,
let xσ2

1(−→σ2) = z · x−→σ2
, and indeed σ2

1 is not a half-twist.

Definition 6.10. Let K ′ denote the group generated by y1, . . . , yn−1 and z, with
the defining relations

[yi, yj ] =

{
1 if |i− j| > 1,

z if |i− j| = 1,

z is central and z2 = 1.

Thus K ′ is a central extension of Zn−1 by Z/2.
An action of Bn on K ′ is defined as follows. For every 1 ≤ t ≤ n− 1, σt(z) = z,

and

σt(yr) =



zy−1
t r = t,

ytyr r = t+ 1,

yr |r − t| > 1.

(This can be verified to be well defined using the braid relations.)

Recall that by Corollary 5.4, G is a semidirect product of Bn = {σ1, . . . , σn−1}
and the normal subgroup K = 〈xω〉ω∈�Ψ, with the action given by Eq. (5.2). We can
now summarize this section as follows.

Theorem 6.11. Let T (1) be the graph of Fig. 14, and G be the group defined in
Eq. (6.2), acting geometrically on Ψ. Then G is a semidirect product of Bn =
{σ1, . . . , σn−1} and the normal subgroup K = 〈x−→σ1

, . . . , x−→σn−1
〉, and K ∼= K ′, as

Bn-groups (see Definition 6.10), via the correspondence x−→σi
↔ yi. In particular, the

generator x maps to the product y1y2 · · · yn−1.

Notice that since z is the only non-trivial commutator in K ′, it is in fact central
in G. In Theorem 7.1 we realize G/〈z〉 as a geometric action on the space of non-
directed paths.

7. Geometric Actions on Quotient Spaces

The action of the braid group Bn on the space Ψ of directed paths, as given in
Sec. 4, naturally induces an action on the space Ψ of non-directed paths. Likewise,
there are the obvious actions on the set P 2 of ordered pairs of points, and on the
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set P 2 of (non-ordered) pairs of points. These are induced from the natural action
of the symmetric group, Sn.

In Sec. 6 (in particular, Theorem 6.11), we computed the group G(Ψ) =
G(A(T (1)), Bn, Ψ, x, α), for T (1) the graph with a single cycle, as in Fig. 14. The
purpose of this section is to present the groups obtained in a similar manner for
quotients of Ψ, namely Ψ, P 2 and P 2. For that, we apply Example 5.6(3).

Let G(Ψ) = G(A(T (1)), Bn,Ψ, x, u), where u is the undirected path, whose
directed version is α in Fig. 14.

Theorem 7.1. Let M ⊆ Zn be the subgroup of zero-sum vectors. Then,

G(Ψ) ∼= Bn �M

via the action of Bn induced from that of Sn on M .

Proof. The space Ψ is the quotient of Ψ with respect to forgetting direction of
arrows.

By Example 5.6(3), G(Ψ) is the quotient of G(Ψ) with respect to the normal
subgroup generated by all the commutators [x, γ] for γ ∈ Γx. Here, Γx is a subset of
Bn acting transitively on the equivalence class of α, which is {α, α}, where αis the
directed path α, reversed. Since α(α) = α, we may choose Γx = {1, α}. It follows
that G(Ψ) = G(Ψ)/〈[x, α]〉.

Recall the notation for xω(ω ∈ Ψ) from Sec. 6; in particular the generator x
itself is identified as x = x�α. Now, [α, x] = αx�αα

−1x−1
�α = xα�x

−1
�α = z, by (5.2) and

Corollary 6.6.
From Definition 6.10 it is clear that K ′/〈z〉 ∼= M as Bn-sets, so we are done by

Theorem 6.11.

Next, we compute G( P 2) = G(A(T (1)), Bn, P 2, x, u). Set p = (1, n), the ordered
pair of endpoints of α. If ω ∈ Bn, then obviously ω2(p) = p, so 〈ω2〉 ⊆ Stab(p). On
the other hand, since Bn modulo squares equals Sn, and the stabilizer of p under
the action of Sn is the symmetric group S2,...,n−1, we clearly have that Stab(p) =
〈ω2, σ2, . . . , σn−2 :ω ∈ Bn〉.

Corollary 7.2. G( P 2) = G(Ψ).

Proof. G( P 2) is obtained from G(Ψ) by taking the quotient with respect to the
commutators [x, τ ] for every τ ∈ Stab(p). On the one hand, x commutes with
σ2, . . . , σn−2 already in G(Ψ). On the other hand, the action of ω2 on α does not
change the endpoints, and so [ω2, x] = ω2x�αω

−2x−1
�α = xω2(�α)x

−1
�α , which is either

1 or z by Proposition 6.8. By the same proposition, [σ2
1 , x] = z, and therefore

〈[x, τ ] : τ ∈ Stab(p)〉 = 〈z〉. It follows that G( P 2) = G(Ψ)/〈z〉 which is G(P 2) by
the previous theorem.
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Clearly Stab({1, n}) = Stab(p) · Stab(α), where p = (1, n) as above, and α is
the undirected path as above. From the above corollary we immediately conclude
for G(P 2) = G(A(T (1)), Bn, P 2, x, u) the following corollary.

Corollary 7.3. G(P 2) = G( P 2) = G(Ψ).

8. Reduction from Geometry to Combinatorics

Let T be a planar graph, and let x, y be edges with one common vertex. We say
that x, y, x′ form a virtual triangle in T if the other two vertices of x and y are
disjoint; x′ is an edge connecting them; x′ does not intersect any edge of T ; and
the triangle bounded by x, y, x′ does not contain any vertex of T .

If x, y, x′ are edges of a virtual triangle in T , which are ordered counterclockwise,
as in Fig. 24, we say that they form an ordered virtual triangle. We denote the
respective vertices by p, q, r (which are distinct by assumption).

Consider the categories of connected graphs and groups, with the standard
morphisms. The functors we consider here are maps from graphs to groups, send-
ing morphisms to morphisms. A functor F sends the edges of a graph T to ele-
ments in the group F (T ). We say that the functor is tight , if F (T ) is generated
by (the images under F of) the edges of T . Thus A and AY are examples of tight
functors.

A tight functor has the triangulation property if, for every two planar graphs T
and T ′ such that T ′ is obtained from T by deleting an edge x and inserting an edge
x′, where x, y, x′ is an ordered virtual triangle with y ∈ T ∩ T ′, the map defined by
t �→ t for x′ 
= t ∈ T ′ and x′ �→ x−1yx defines an isomorphism F (T ′)→F (T ). Equiv-
alently, t �→ t for x 
= t ∈ T and x �→ y−1x′y defines an isomorphism F (T )→F (T ′).
(The direction is always counterclockwise: the first edge is mapped to the result of
the second acting on the third.)

Theorem 8.1. The functor AY has the triangulation property.

Proof. Let T ′′ denote the union T ∪ T ′. By Theorem 3.11, there are well defined
maps φ, φ′, ψ, ψ′ as in Fig. 25, while ψφ and ψ′φ′ are the identity maps on the
groups AY(T ) and AY(T ′), respectively.

By their definitions, given in the proof, the composition ψφ′ sends u �→ u for
every u 
= x, x′ in T ′′, and ψφ′(x′) = ψ(x′) = L(xy) = x · y = x−1yx. Likewise

•

x

p

•

•

y
q

.................................
x′

r

Fig. 24.
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AY(T ′′)

ψ′


									

ψ ��










AY(T ′)
� �

φ′
��									

AY(T )
� �

φ











Fig. 25.

ψ′φ sends u �→ u for u 
= x, x′, and ψ′φ(x) = y−1x′y. It follows that (ψ′φ)(ψφ′)
acts as the identity on every generator u 
= x′ in AY(T ′). Moreover, (ψ′φψφ′)(x′) =
(ψ′φ)(x · y) = (ψ′φ)(x) · (ψ′φ)(y) = (y ·x′) · y = y−1x′−1

yyy−1x′y = y−1x′−1
yx′y =

y−1x′−1
x′yx′ = x′, so ψ′φψφ′ is the identity on AY(T ′). Likewise ψφ′ψ′φ is the

identity on AY(T ), proving that ψ′φ is the required isomorphism.

Remark 8.2. Let θ ∈ Bn be an arbitrary element, and let T ′ = θ(T ) be the
graph obtained from a planar graph T by the action of θ on the edges, as in Sec. 4.
Then AY(T ) ∼= AY(T ′) (indeed, AY(T ) is defined abstractly, depending only on the
isomorphism class of T as a planar graph).

Let Tn denote the set of connected planar graphs on the vertices {1, . . . , n}. We
say that T, T ′ ∈ Tn are equivalent, if, for suitable edges x, y, z ∈ T ∪ T ′ which form
a minimal triangle (namely, a triangle with no vertices in the interior), we have
that T − T ′ = {y}, T ′ − T = {z}. We can now define an equivalence relation on
Tn, by allowing sequences of triangular steps. Theorem 8.1 provides, for equivalent
graphs T and T ′, the isomorphism AY(T ) ∼= AY(T ′).

Theorem 8.3. Every two connected planar graphs on the set of vertices {1, . . . , n},
with the same number of edges, are equivalent.

Proof. We first claim that T is equivalent to a “fat tree”, namely a graph whose
minimal cycles all have (graph) length 2, corresponding to multiple edges. We induct
on the number of (bounded) connected components of the complement of T in a
fixed disk, for which the length of the boundary is more than 2. This number is
zero if and only if T is a fat tree.

Let v0, . . . , vn denote the edges composing the boundary of a component D,
enumerated counterclockwise, as in Fig. 8. Notice that although the same edge
may be present twice in this list, every vi has a well defined starting point, which
we denote by pi. Clearly p0 is the endpoint of vn. Let i be minimal with respect to
the property that pi, pi+1, . . . , pn−1 
= p0. Clearly 0 < i ≤ n−1. But since pi−1 = p0

is the endpoint of vn, vi−1, . . . , vn form a cycle in the graph, so we may assume
i = 1, namely p0 is not on any of v1, . . . , vn−1.

By successive triangulation, we can now replace vn by v′n−1 = vn−1 · vn (see
Definition 3.7), then v′n−1 by v′n−2 = vn−2 · (vn−1 · vn), etc., until v′2 is replaced by
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v′1 = v1 · (v2 · · · (vn−1 · vn) · · ·), which has the same endpoints as v0. This process
defines a sequence of graphs T(n−1), . . . , T(1) equivalent to T = T(n), where the
cycle v0, . . . , vn of T is replaced by v0, . . . , vi−1, v

′
i in T(i). Passing from T(n) to

T(1) reduces the number of domains with long boundaries in the complement, as
asserted.

Now suppose T is a fat tree. Let pi1 , . . . , pim be the vertices connected by a
partial frame of maximal length, and assume m < n. Since T is connected, there is
some pr (r 
= i1, . . . , im) connected by an edge to some pik (1 < k < m). Choose the
pair pr, pik with k maximal. Via triangulation, the edge connecting pr and pik can
be replaced by an edge connection pr and pik+1 , giving rise to an equivalent graph;
this can be repeated for all the parallel edges, in case the tree was fat at this edge.
Inducting on k we eventually get a longer partial frame. Inducting on the length of
the partial frame, we may eventually assume T is a fat path.

Finally, triangulating further, we can collect all multiple edges to a fat edge
connecting the endpoints of the frame, resulting (up to isomorphism of planar
graphs) in the (undirected) graph of Fig. 28; and this graph only depends on n and
the original number of edges.

Corollary 8.4. Let T be a planar graph on n vertices. Then AY(T ) depends only
on n and the first homology of T .

Theorem 8.1 can be used to give a functorial interpretation to the relations
defining the groups AY(T ). For tight functors F1 and F2, we say that F1 is larger
than F2 if, for every graph T , the map from F1(T ) to F2(T ), sending F1(u) to
F2(u) for every u ∈ T , is onto. Our main interest is in functors smaller than A (of
Definition 3.1).

Theorem 8.5. The functor AY (defined in Definition 3.2) is the largest with the
triangulation property among all the tight functors smaller than A.

Proof. The proof is similar in spirit to that of Theorem 3.8. By Theorem 8.1, all
we need to show is that the triangulation property (for quotients of A(T )) implies
the relations of Definition 3.2.

• u •

•
v

•
w

•

x • u • •

v

• •

w

•

x

Fig. 26. T1 and T2.
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•
u

• •
v

• •
w

•x•

y

•

z

•

•

•

x
u

• •

w

•
v

y

z

Fig. 27. T3 and T4.

Let T1 denote the graph on the left of Fig. 26, and consider its subgraphs
{u,w, x} and {u, v, w}. In A({u,w, x}) we have the relation [u, x] = 1, so the
triangulation property provides [u, v−1wv] = 1 in the group associated to {u, v, w}.
This is relation (3.3).

Next, consider the graph T2, on the right-hand side of Fig. 26. Since 〈x, v〉 = 1
in A({x, v, u}), we obtain the relation 〈w−1uw, v〉 = 1 is A({u, v, w}), which is one
case of relation (3.4); the other case is proved similarly.

Since [y, z] = 1 in A({x, y, u, z}) (viewed as a subgraph of T3, on the left-
hand side of Fig. 27), we have the relation [w−1uw, v−1xv] = 1, as in relation (3.5).
Finally, the fact that 〈y, z〉 = 1 in A({y, v, w, z}), viewed as a subgraph of T4, implies
by the triangulation property that 〈v−1xv, w−1uw〉 = 1, which proves relation (3.6).

Since AY satisfies the parabolic subgroup property, which implies the triangu-
lation property (see the proof of Theorem 8.1), we conclude the following.

Corollary 8.6. The functor AY is the largest tight functor smaller than A, which
has the parabolic subgroup property.

9. Geometric Braid Groups

Let T be a planar graph on n ≥ 4 vertices. In this section we apply the ideas of
Sec. 5 to define a quotient of the group AY(T ) which extends the action of the braid
group on the unit disk in a manageable way. One of the main results in this section
is that, although the definition makes use of the choice of a spanning sub-tree, the
outcome is independent of this choice.

Let T0 ⊆ T be a spanning sub-tree. By Corollary 3.12, the subgroup 〈T0〉 of
AY(T ) is isomorphic to the braid group Bn, and so it acts on the set Ψ of directed
good paths as in Sec. 6. Fix a direction for every u ∈ T −T0, and let αu denote the
corresponding element of Ψ.

Fix u ∈ T − T0. There is a unique planar path w1, . . . , ws ∈ T0 connecting the
vertices of u (or rather αu). Let

αu = L(w1 · · ·ws) ∈ 〈T0〉,
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where the operator L was defined in (3.7). As in the case of the circle (Sec. 6),
π(u) = αu ∈ 〈T0〉 ⊆ AY(T ), and we take x(u) = uα−1

u .

Definition 9.1. We set

G(T, T0) = G(AY(T ), 〈T0〉, Ψ, {x(u)}u∈T−T0
, {αu}u∈T−T0

), (9.1)

where the operator G was defined in Definition 5.5.

Since 〈T0〉 ∼= Bn, G(T, T0) is the largest quotient of AY(T ) acting geometrically
on Ψ in a way that extends the action of Bn.

Let T be a planar graph, and let T ′ be the graph obtained from T by a triangu-
lation step as in Sec. 8, namely there are edges a, a′ such that T ∪ {a′} = T ′ ∪ {a},
and a, b, a′ form a minimal triangle.

Let T0 be a spanning sub-tree of T , and let T ′0 denote the spanning sub-tree
of T ′ obtained from T0 by the same triangulation step, namely: if a ∈ T0 then
T ′0 = T0 − {a} ∪ {a′}; otherwise T ′0 = T0.

Lemma 9.2. With T0 ⊆ T and T ′0 ⊆ T ′ as above, we have that
G(T, T0) ∼= G(T ′, T ′0).

Proof. By Theorem 8.1, we have an isomorphism ψ : AY(T ) ∼= AY(T ′), defined by
a �→ b−1a′b for a suitable b ∈ T ∩ T ′. The action of AY(T ) and AY(T ′) on Ψ
(through the spanning sub-trees {T0} and {T ′0}, respectively) commutes with ψ.

Take H = AY(T ), S = 〈T0〉 and X = T − T0; and H ′ = AY(T ′), S′ =
〈T ′0〉 and Y = T ′ − T ′0 in Lemma 5.8, we see that ψ induces an isomorphism
G(T, T0)→G(T ′, T ′0) (if a 
∈ T0 then take τ = b in the lemma; otherwise τ = 1).

Let T (m) denote the graph on n vertices depicted in Fig. 28, with the n − 1
standard edges σ1, . . . , σn−1 at the bottom, and m edges, labeled u1, . . . , um and
numerated from bottom to top, connecting the extreme points. Let T (m,0) =
{σ1, . . . , σn−1} denote the standard spanning sub-tree. In this case the αu all
coincide.

Lemma 9.3. For any spanning sub-tree T ′0 of T (m), we have that

G(T (m), T ′0) ∼= G(T (m), T (m,0)).

.

• •

.

• •

.

• ••
σ1

•
σ2

• ... •
σn−1

Fig. 28. The graph T (m).
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•• •.. • • ... •

Fig. 29. The graph T̃ (m).

Proof. For k = 1, . . . , n − 1 and j = 1, . . . ,m, let Sk,j denote the spanning sub-
tree of T (m) obtained by removing σk from T (m,0), and adding the edge uj. Also
let S0,0 = T (m,0). The Sk,j are the only spanning sub-trees of T (m).

Let T̃ (m) denote the graph obtained from T (m) by rotation counterclockwise, as
depicted in Fig. 29, with m parallel paths replacing σ1. Let φ denote the isomor-
phism of planar graphs from T (m) to T̃ (m), and let S̃k,j denote the image of Sk,j
under φ. Clearly, S̃k,j are the only spanning sub-trees of T̃ (m).

By definition, the groups G(T (m), Sk,j) are quotients of AY(T (m)). The action of
φ on the graphs induces an obvious isomorphism of groups AY(T (m))→AY(T̃ (m)),
which carries G(T (m), Sk,j) to G(T̃ (m), S̃k,j).

For every j = 1, . . . ,m, there is a series of triangulation steps that trans-
forms T̃ (m) to T (m), which carries S̃0,0 to T1,j. By Lemma 9.2, this proves
G(T (m), T (m,0)) = G(T0, S0,0) ∼= G(T̃ (m), S̃0,0) ∼= G(T (m), T1,j).

Also, for every k = 1, . . . , n − 2 and j = 1, . . . ,m, there is a series of triangu-
lation steps that transforms T̃ (m) into T (m), carrying S̃k,j to Sk+1,j . This proves
G(T (m), Sk,j) ∼= G(T̃ (m), S̃k,j) ∼= G(T (m), Sk+1,j). Together with the previous con-
struction, we covered all possible spanning sub-trees, proving the claim.

Theorem 9.4. Let T be a planar graph with spanning sub-tree T0. The group
G(T, T0) only depends on n and the first homology of T .

Proof. Following the proof of Theorem 8.3, we can transform T , by a series of tri-
angulation steps, into T (m) for a suitable m. In this process T0 becomes some span-
ning sub-tree T ′0 of T (m). By Lemma 9.2, G(T, T0) ∼= G(T (m), T ′0). By Lemma 9.3,
G(T (m), T ′0) ∼= G(T (m), T (m,0)), which only depends on n and m.

Corollary 9.5. The group G(T, T0) is independent of T0.

10. The General Case

Let n ≥ 5. Our aim in this section is to compute G(T, T0), defined in Definition 9.1,
for an arbitrary planar graph T and spanning sub-tree T0. In light of Theorem 9.4,
we may assume T is the graph T (m) of Fig. 28, for a suitable m ≥ 0, with spanning
sub-tree T0 = T (m,0) = {σ1, . . . , σn−1}. In this case the αu of the definition all
coincide with the element α given in Eq. (6.1), and we can apply the results of
Sec. 6 more easily.
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10.1. A presentation of G

In order to compute G = G(T (m), T0), we need to establish a presentation. As noted
in Remark 3.4,

〈T0〉 ∼= Bn. (10.1)

By definition, the other defining relations of A(T (m)) are, for every j = 1, . . . ,m
and 1 < � < n− 1,

〈σ1, uj〉 = 1, (10.2)

〈σn−1, uj〉 = 1, (10.3)

[σ�, uj ] = 1. (10.4)

To obtain a presentation of AY(T (m)), we must add, for every 1 ≤ i < j ≤ m,

〈σ1uiσ
−1
1 , uj〉 = 1, (10.5)

〈σn−1ujσ
−1
n−1, ui〉 = 1, (10.6)

[σ1uiσ
−1
1 , σn−1ujσ

−1
n−1] = 1. (10.7)

Write ui = x(i)α, defining new elements x(i), i = 1, . . . ,m. By definition G is
the geometric quotient of AY(T (m)) with respect to the action on the disk, and so
we add the relations

[x(j), σ�] = 1, (10.8)

[x(j), σn−1σ
−1
1 ασ1σ

−1
n−1] = 1, (10.9)

[x(j), α2] = 1, (10.10)

for every j = 1, . . . ,m and 1 < � < n− 1 (see Remark 4.5).
Relations (10.2)–(10.10), together with (10.1), provide a presentation of G.

Relations (10.2)–(10.4) were treated in Sec. 6; they allow us to define x(j)
ω as in

Eq. (5.1). The relations satisfied by {x(j)
ω :ω ∈ Ψ}, for fixed j, are summarized in

Theorem 6.11. The remaining difficulty is in the interaction of the x(j)
ω for distinct

values of j. In order to simplify relations (10.5)–(10.7), we substitute ui = x(i)α,
and obtain:

〈σ1x
(i)
α ασ−1

1 , x(j)
α α〉 = 1,

〈σn−1x
(j)
α ασ−1

n−1, x
(i)
α α〉 = 1,

[σ1x
(i)
α ασ−1

1 , σn−1x
(j)
α ασ−1

n−1] = 1,

for 1 ≤ i < j ≤ m and 1 < � < n− 1.
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To simplify these further, recall the action of Bn on the x(j)
ω by conjugation,

described in Eq. (5.2). We rewrite the relations in these terms, applying Remark 5.3:

x
(i)

σ−1
1 (�α)

· x(j)

(σ1α−1σ−1
1 )(�α)

· x(i)

(σ−1
1 α−1σ1α−1σ−1

1 )(�α)
= x

(j)
�α · x(i)

(σ−1
1 α−1)(�α)

· x(j)

(α−1σ−1
1 )(�α)

,

x
(j)

σ−1
n−1(�α)

· x(i)

(σn−1α−1σ−1
n−1)(�α)

· x(j)

(ασ−1
n−1α

−2σ−1
n−1)(�α)

= x
(i)
�α · x(j)

(σ−1
n−1α

−1)(�α)
· x(i)

(α−1σ−1
n−1)(�α)

,

x
(i)

σ−1
1 (�α)

· x(j)

(σ−1
n−1σ1α−1σ−1

1 )(�α)
= x

(j)

σ−1
n−1(�α)

· x(i)

(σ−1
1 σn−1α−1σ−1

n−1)(�α)
.

Acting with σ1ασ
−1
1 σn−1 . . . σ3 on the first equation, we obtain the relation

x
(i)←−σ2
· x(j)−→ω · x

(i)←−σ1
= x

(j)−→σ1
· x(i)←−

ω′ · x
(j)−→σ2
, (10.11)

where −→ω and
←−
ω′, as well as the other directed paths, are depicted in Fig. 30.

Similarly, acting on the second equation with σn−1 . . . σ2σn−1 . . . σ3σ
−1
1 , we obtain

the relation

x
(j)−→σ2
· x(i)←−ω · x

(j)−→σ1
= x

(i)←−σ1
· x(j)−→

ω′ · x
(i)←−σ2
. (10.12)

Finally, since (σ−1
n−1σ1α

−1σ−1
1 σn−1)(α) = α, the third equation is equivalent to

[x(i)−→σ1
, x

(j)−→σ3
] = 1, (10.13)

namely (by the transitive action on Ψ), x(i)
ρ and x

(j)
ρ′ commute whenever they are

based on disjoint paths ρ and ρ′.

Proposition 10.1. If n ≥ 5, then for each i, zi = [x(i)−→σ1
, x

(i)−→σ2
] is central in G.

Proof. By Proposition 6.8, [x(i)
ω , x

(i)
ω′ ] is the same element of the group, whenever

ω and ω′ form a partial frame. This implies zi that commutes with Bn. Now, for
every generator x(j)

ω′′ , we may choose the partial frame to be disjoint from ω′′ (taking

•
��
−→σ1

• 		←−σ1

• •
��

−→σ 2

• •��←−σ 2

��−→ω

		
←−ω

��
−→
ω′

��←−
ω′

Fig. 30. Notation for the basic relations.
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the three endpoints of the partial frame differing from the two endpoints of ω′′, as
n ≥ 5), so we are done by Eq. (10.13).

Applying the basic relations from Sec. 6, in particular Corollary 6.6, as well as
Proposition 10.1, relations (10.11) and (10.12) become

x
−(i)−→σ2
· x(j)−→σ1

· x(j)−→σ2
· x−(i)−→σ1

= x
(j)−→σ1
· x−(i)−→σ2

· x−(i)−→σ1
· x(j)−→σ2

, (10.14)

x
(j)−→σ2
· x−(i)−→σ1

· x−(i)−→σ2
· x(j)−→σ1

= x
−(i)−→σ1
· x(j)−→σ2

· x(j)−→σ1
· x−(i)−→σ2

, (10.15)

where x−(i)−→σ1
is a shorthand for x(i)−→σ1

−1
. These relations can be brought to the form

[x(j)−→σ2
, x
−(i)−→σ1

] = [x−(j)−→σ1
, x

(i)−→σ2
], (10.16)

[x−(i)−→σ2
, x

(j)−→σ1
] = [x(i)−→σ1

, x
−(j)−→σ2

]. (10.17)

10.2. The kernel of G → Bn: A first presentation

Let

K = K(AY(T ), Bn, Ψ, {xu}, {αu}) (10.18)

be the group defined in Definition 5.5, namely K = Ker(G→Bn). The computation
done so far can be summarized as follows.

Proposition 10.2. The group K has the following presentation. The generators
are x(i)

ω for i = 1, . . . ,m and ω ∈ Ψ; and zi for i = 1, . . . ,m.
The relations are:

(i) zi are central and zi2 = 1;
(ii) if ω1 and ω2 form a partial frame, then [x(i)−→ω1

, x
(i)−→ω2

] = zi;

(iii) if ω1 and ω2 are disjoint, then [x(i)−→ω1
, x

(j)−→ω2
] = 1 for every i, j; and

(iv) if ω1 and ω2 intersect in one vertex, then

[x(i)−→ω1
, x
−(j)−→ω2

] = [x−(i)−→ω2
, x

(j)−→ω1
]

for every i, j.

Proof. Relations (i) and (ii) come from Sec. 6. Relation (iii) was obtained at
(10.13). If i = j, then relation (iv) follows from (ii); moreover, taking the inverse in
relation (iv) switches the roles of i and j, and so we may assume i < j. There are
two cases to consider: if the head of ω1 touches the tail of ω2, then we are done by
taking ω1 = σ1 and ω2 = σ2 in (10.17); if the head of ω2 touches the tail of ω1, we
are done by taking ω1 = σ2 and ω2 = σ1 in (10.16).
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10.3. A finite presentation for the kernel

The presentation of the previous subsection, which has a geometric flavor, has
infinitely many generators and infinitely many relations. In Corollary 6.7 we saw
that every x(i)−→ω can be expressed in terms of the x(i)

r = x
(i)−→σr

, r = 1, . . . , n−1, so that
K is finitely generated. We now show that K is in fact finitely presented.

Proposition 10.3. The group K defined in (10.18) has the following presentation.
Generators: x(i)

r for i = 1, . . . ,m, r = 1, . . . , n− 1, and zi for i = 1, . . . ,m.
Relations: for i, j = 1, . . . ,m and r, s = 1, . . . , n,

(i) zi are central and zi2 = 1;
(ii) [x(i)

r , x
(i)
r+1] = zi for 1 ≤ r < n− 1;

(iii) [x(i)
r , x

(j)
s ] = 1 if |r − s| > 1;

(iv) [x(i)
r x

(i)
r−1, x

(j)
r x

(j)
r+1] = 1 for 1 < r < n− 1; and

(v) [x(i)
r , x

−(j)
r+1 ] = [x−(i)

r+1 , x
(j)
r ] for 1 ≤ r < n− 1.

Proof. The presentation claimed here can be compared to that of Proposition 10.2
by identifying x(i)

r of the current one with x
(i)−→σr

of the previous one. Clearly, every

relation in the current presentation is assumed to hold for the x(i)−→σr
(relations (i), (ii),

(iii) and (v) follow from 10.2(i)–10.2(iv), and (iv) follows from 10.2(iii) by taking
ω1 = σr(−→σ r−1) and ω2 = σr(−→σ r+1)). On the other hand, every class of relations in
Proposition 10.2 has a representative in the current presentation. The presentation
of Proposition 10.2 is invariant under the action of Bn, being phrased in terms of
paths.

Therefore, it is enough to show that the current presentation is invariant
under the action of Bn, induced from the identification x

(i)
r = x

(i)−→σr
. Similarly to

Definition 6.10, the action is defined, for every i, by σt(zi) = zi and

σt(x(i)
r ) =




x
(i)
t x

(i)
t−1, r = t− 1,

zix
−(i)
t , r = t,

x
(i)
t x

(i)
t+1, r = t+ 1,

x
(i)
r , |r − t| > 1.

(10.19)

One can easily check that this action, which reduces to the standard identification
of Bn as a subgroup of the automorphism group of the free group (if all zi are sent
to 1), is, for each i, a well defined action of Bn on the free group generated by the
x

(i)
r and zi, modulo zi being central.

The action respects (i) and (ii) — this is easy to check. The only difficulty in
case (iii) is for r = t− 1 and s = t+ 1, where we have

[σt(x
(i)
t−1), σt(x

(j)
t+1)] = [x(i)

t x
(i)
t−1, x

(j)
t x

(j)
t+1] = 1
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by relation (iv). Similarly,

[σ−1
t (x(i)

t−1), σ
−1
t (x(j)

t+1)] = [x(i)
t−1x

(i)
t , x

(j)
t+1x

(j)
t ],

which equals [x(i)
t x

(i)
t−1, x

(j)
t x

(j)
t+1] = 1 by relations (ii) and (i).

Next, we need to show that relation (iv) is preserved under the σt (and σ−1
t ,

which can be resolved in the same manner). If t ≤ r − 3 or t ≥ r + 3, the action is
trivial and there is nothing to prove. For t = r − 2 we obtain

[σr−2(x(i)
r )σr−2(x

(i)
r−1), σr−2(x(j)

r )σr−2(x
(j)
r+1)] = [x(i)

r x
(i)
r−1x

(i)
r−2, x

(j)
r x

(j)
r+1],

where x(i)
r x

(i)
r−1x

(i)
r−2 = (x(i)

r x
(i)
r−1) · x(i)

r−2 commutes with x
(j)
r x

(j)
r+1 by relations (iv)

and (iii). The case t = r + 2 is dealt with in a similar manner.
For t = r − 1 we obtain

[σr−1(x(i)
r )σr−1(x

(i)
r−1), σr−1(x(j)

r )σr−1(x
(j)
r+1)]

−1

= [zxx(i)
r , x

(j)
r−1x

(j)
r x

(j)
r+1]

−1

= [x(j)
r−1x

(j)
r x

(j)
r+1, x

(i)
r ]

= x
(j)
r−1x

(j)
r x

(j)
r+1x

(i)
r x
−(j)
r+1 x

−(j)
r x

−(j)
r−1 x

−(i)
r

= x
(j)
r−1x

(j)
r x(i)

r [x−(i)
r , x

(j)
r+1]x

−(j)
r x

−(j)
r+1 x

−(i)
r

(v)
= x

(j)
r−1x

(j)
r x(i)

r x
(i)
r+1x

−(i)
r+1 [x(i)

r+1, x
−(j)
r ]x−(j)

r x
−(j)
r+1 x

−(i)
r

(iv)
= x(i)

r x
(i)
r+1x

(j)
r−1x

(j)
r x

−(i)
r+1 [x(i)

r+1, x
−(j)
r ]x−(j)

r x
−(j)
r+1 x

−(i)
r

= x(i)
r [x(i)

r+1, x
(j)
r−1]x

−(i)
r

(iii)
= 1,

where the proof for t = r + 1 is similar. For later use, we record the identity

[x(j)
r−1x

(j)
r x

(j)
r+1, x

(i)
r ] = 1 (10.20)

which was proved as part of the computation above. Finally, applying σr to relation
(iv) transfers x(i)

r x
(i)
r−1 and x(j)

r x
(j)
r+1 to zix

(i)
r−1 and zjx

(j)
r+1, which clearly commute.

It remains to act on relation (v). Clearly, the action of σt is trivial if t < r − 1
or t > r + 2. If t = r − 1, then x

(i)
r is mapped to x(i)

r−1x
(i)
r while x(j)

r+1 is fixed; but
x

(i)
r−1 commutes with x

(j)
r+1 by relation (iii), so the commutator relation holds. The

same proof applies for t = r + 2. For t = r + 1 we have

[σr+1(x(i)
r ), σr+1(x

−(j)
r+1 )][σr+1(x

−(i)
r+1 ), σr+1(x(j)

r )]−1

= [x(i)
r+1x

(i)
r , zjx

(j)
r+1][zix

(i)
r+1, x

(j)
r+1x

(j)
r ]−1
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= [x(i)
r+1x

(i)
r , x

(j)
r+1][x

(i)
r+1, x

(j)
r+1x

(j)
r ]−1

= x
(i)
r+1x

(i)
r x

(j)
r+1x

−(i)
r x

−(i)
r+1 x

(j)
r x

(i)
r+1x

−(j)
r x

−(j)
r+1 x

−(i)
r+1

= x
(i)
r+1x

(j)
r+1[x

−(j)
r+1 , x

(i)
r ][x(j)

r , x
−(i)
r+1 ]−1x

−(j)
r+1 x

−(i)
r+1 = 1

by relation (v). A similar computation handles the case t = r, and we are done.

10.4. A second presentation for the kernel

In order to simplify the presentation of K, we make the following substitution. For
i = 1, . . . ,m and r = 1, . . . , n− 1, set

a(i)
r = x

(i)
n−1 · · ·x(i)

r ;

to simplify the notation, we also set a(i)
n = 1. It easily follows that

x(i)
r = a

−(i)
r+1 a

(i)
r , (10.21)

so that K is generated by the a(i)
r .

Proposition 10.4. The group K has the following presentation. Generators: a(i)
r

for i = 1, . . . ,m, r = 1, . . . , n, and zi for i = 1, . . . ,m.
Relations: a(i)

n = 1 for every i = 1, . . . ,m. Furthermore, for i, j = 1, . . . ,m,

(i) zi are central and zi2 = 1;
(ii) [a(i)

r+2, a
(i)
r ][a(i)

r , a
(i)
r+1][a

(i)
r+1, a

(i)
r+2] = zi for 1 ≤ r ≤ n− 2;

(iii) [a(j)
s+1, a

(i)
r ][a(i)

r , a
(j)
s ][a(j)

s , a
(i)
r+1][a

(i)
r+1, a

(j)
s+1] = 1 if 1 ≤ r, s ≤ n − 1 and

|r − s| > 1;
(iv) [a(j)

r+2, a
(i)
r−1][a

(i)
r−1, a

(j)
r ][a(j)

r , a
(i)
r+1][a

(i)
r+1, a

(j)
r+2] = 1 for 2 ≤ r ≤ n− 2; and

(v) for 1 ≤ r ≤ n− 2, we have

[a(j)
r+1, a

(i)
r ][a(i)

r , a
(j)
r+2][a

(j)
r+2, a

(i)
r+1] = [a(j)

r+1, a
(i)
r+2][a

(i)
r+2, a

(j)
r ][a(j)

r , a
(i)
r+1].

Proof. This follows by substitution in the previous set of relations, where we used
the identity

[α−1β, γ−1δ] = α−1γ−1[γ, β][β, δ][δ, α][α, γ]γα. (10.22)

Note that in relation (iv) we substituted x
(j)
r+1x

(j)
r rather than x

(j)
r x

(j)
r+1; but

x
(j)
r , x

(j)
r+1 commute.

Proposition 10.5. Fix 1 ≤ i, j ≤ m. The elements [a(i)
r , a

(j)
s ], for 1 ≤ r, s < n,

r 
= s, are all equal.
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• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
• • • • • • ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦

Fig. 31. An illustration of the proof of Proposition 10.5, for n = 7. A black bullet symbol in the

(r, s) coordinate stands for γ
(ij)
rs ; white bullets represent γ

(ij)
rs = 1.

Proof. Write γ
(ij)
r,s = [a(i)

r , a
(j)
s ]. Relation 10.4(iii) translates to the equality

γ
−(ij)
r+1,sγ

(ij)
r+1,s+1 = γ

−(ij)
r,s γ

(ij)
r,s+1 whenever |r − s| > 1. Since γ(ij)

n,s = 1 for every s,

reverse induction shows that γ(ij)
r,s+1 = γ

(ij)
r,s for every r > s+ 1. In a similar way, by

first taking s = n, we have

γ
(ij)
r+1,s = γ(ij)

r,s for 2 ≤ r + 1 < s ≤ n. (10.23)

These equalities are illustrated by connecting bullets representing equal elements,
at the left-hand side of Fig. 31.

Relation 10.4(iv) translates to

γ
−(ij)
r−1,r+2γ

(ij)
r−1,rγ

−(ij)
r+1,rγ

(ij)
r+1,r+2 = 1 for 1 < r < n− 1. (10.24)

Relation (10.23) implies that γ(ij)
r−1,r+2 = γ

(ij)
r,r+2 = γ

(ij)
r+1,r+2, and so (10.24) gives

γ
(ij)
r−1,r = γ

(ij)
r+1,r for 1 < r < n− 1. Switching i and j in relation 10.4(iv), we obtain

in a symmetric way γ
(ij)
r,r−1 = γ

(ij)
r,r+1 for 1 < r < n − 1. In this manner we obtain

the curved connections shown in the right-hand side of Fig. 31, again connecting
bullets that represent equal elements.

Finally, put r = n− 2 in relation 10.4(v); noting that a(i)
n = a

(j)
n = 1, we obtain

[a(j)
n−1, a

(i)
n−2] = [a(j)

n−2, a
(i)
n−1],

namely, γ(ij)
n−2,n−1 = γ

(ij)
n−1,n−2, which is the double-dotted line in the diagram. The

(non-empty) off-diagonal bullets in Fig. 31 are now in one connected component,
proving the statement.

Corollary 10.6. For every 1 ≤ i ≤ m and 1 ≤ r, s < n, r 
= s, we have

[a(i)
r , a(i)

s ] = zi. (10.25)

Proof. By the proposition, [a(i)
r , a

(i)
s ] = γ(ii) is independent of r, s, as long as r 
= s.

Switching r and s, it follows that γ(ii) = γ−(ii).
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Taking r = 1 in relation 10.4(ii) results in the relation

[a(i)
3 , a

(i)
1 ][a(i)

1 , a
(i)
2 ][a(i)

2 , a
(i)
3 ] = zi.

By Proposition 10.5 (which does apply when i = j), this implies (γ(ii))3 = zi, so
γ(ii) = zi by the first remark.

10.5. The structure of K

The results of Proposition 10.5 and Corollary 10.6 can be summarized as follows.

Corollary 10.7. The group K is generated by a
(i)
r for i = 1, . . . ,m, r = 1, . . . ,

n− 1, subject to the relations

(i) [a(i)
r , a

(j)
s ] = [a(i)

r′ , a
(j)
s′ ] for any r 
= s and r′ 
= s′ and any i, j = 1, . . . ,m.

(ii) zi = [a(i)
r , a

(i)
s ] (independent of r 
= s) is central and has square equal to 1, for

any i.

Corollary 10.8. If A is the normal subgroup of K generated by [a(i)
r , a

(j)
s ] for r 
= s,

then K/A ∼= 〈a(1)
1 , . . . , a

(m)
1 〉 × · · · × 〈a(1)

n−1, . . . , a
(m)
n−1〉, which is a direct product of

n− 1 copies of the free group Fm.

Recall from Sec. 2 that Fm,n is defined as a certain subgroup of Fnm, where Fm

denotes the free group on m generators; also recall the group Am,n ∼= Fm,n defined
there.

Theorem 10.9. The group K is a central extension of Fm,n by (Z/2Z)m.

Proof. Let A0 denote the subgroup of K generated by the commutators A0 =
〈[a(i)

r , a
(i)
s ]〉 (i = 1, . . . ,m, r 
= s). Clearly A0 is a central subgroup of exponent 2

and rank at most m.
Let a1, . . . , am denote the generators of Fm. We define a map K→Fnm by

a(i)
r �→ (1, . . . , 1, ai, 1, . . . , 1, a−1

i ) (10.26)

(non-trivial entries in the rth and nth places). This clearly maps K onto Fm,n. For
any r 
= s, 1 ≤ r, s < n, the commutator [a(i)

r , a
(j)
s ] maps to (1, . . . , 1, [a−1

i , a−1
j ]),

which is independent of r and s. In particular [a(i)
r , a

(i)
s ] maps to the identity ele-

ments, and so the induced epimorphism K/A0→Fm,n is well defined. This could
also be deduced from Proposition 2.2 by constructing appropriate maps from K to
F
n−1
m and to Fm.

To show that this is an isomorphism, we define a map Am,n→K/A0 by x(i)
rs �→

a
−(i)
s a

(i)
r . To see that this is well defined, we need to verify the defining equations

in K/A0: Eq. (2.2) is trivial. Equation (2.3) translates to

a−(i)
s a(i)

r a
−(i)
t a(i)

s = a
−(i)
t a(i)

r ,

which follows from the fact that [a(i)
s , a

(i)
r ], [a(i)

s , a
(i)
t ] and [a(i)

t , a
(i)
r ] are central, and

have trivial product (in fact in K the product is zi); Eq. (2.4) is checked similarly.
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By Proposition 10.5, if u, t 
= r, s, then

[a(j)
u , a(i)

r ][a(i)
r , a

(j)
t ][a(j)

t , a(i)
s ][a(i)

s , a(j)
u ]

= [a(j)
t , a(i)

r ][a(i)
r , a

(j)
t ][a(j)

t , a(i)
s ][a(i)

s , a
(j)
t ] = 1,

this proves Eq. (2.5), which is

[a−(i)
s a(i)

r , a−(j)
u a

(j)
t ] = 1,

by Eq. (10.22).
It remains to show that rank(A0) = m. Let R = k ⊕ V1 ⊕ V2 where k is a field

of characteristic 2, V1 is the k-vector space spanned by the m(n− 1) variables α(i)
r ,

and V2 is the k-vector space spanned by m variables γi(i = 1, . . . ,m). Make R into
an associative, non-commutative k-algebra by asserting that α(i)

r α
(j)
s equals γi if

j = i and r < s, and zero otherwise; and that V1V2 = V2V1 = V2V2 = 0.
Now define a map φ :K→R× by a(i)

r �→ 1 + α
(i)
r . It is a standard and easy fact

that [a(i)
r , a

(j)
s ] �→ 1 + α

(i)
r α

(j)
s + α

(i)
r α

(j)
s . For i 
= j we have [a(i)

r , a
(j)
s ] �→ 1, while

[a(i)
r , a

(i)
s ] �→ 1 + γi whenever r 
= s; therefore, the map is well defined. Finally, the

subgroup A0 is mapped onto 1 + V2, which is clearly of rank m.

Let R1 be the multiplicative subgroup 1 + V1 + V2 of the ring R defined in
the proof above. Note that R1 is a central extension of 1 + V1

∼= (Z/2Z)m(n−1) by
1 + V2

∼= (Z/2Z)m.

Corollary 10.10. K is a pull-back of the diagram

? ��

��

Fm,n

��
R1 �� (Z/2Z)m.

In particular, the word problem is solvable in K.

10.6. Summary: the structure of G

By definition, the groupG = G(T (m), T (m,0)) defined in (9.1) is a semidirect product

G = Bn �Km,n,

where the action of Bn = {σ1, . . . , σn−1} ⊆ G on

Km,n = 〈a(i)
r , zi : i = 1, . . . ,m; r = 1, . . . , n〉

is given in (10.19), noting that x(i)
r are defined in (10.21), and a presentation for

Km,n is given in Corollary 10.7. Combining the short exact sequence

1→Km,n→G→Bn→ 1

with the short exact sequence (2.6), we obtain the commutative diagram given in
Fig. 32. The right-hand column is the standard cover Bn→Sn, whose kernel Pn is
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(Z/2Z)m � � ��
� �

��

� � �� Pmn ��
��

��

Pn��

��
Km,n

� � ��

��

G ��

��

Bn

��
Fm,n

� � �� CY (T ) �� Sn

Fig. 32.

the group of pure braids. In the left-hand column,Km,n is a central extension, where
the epimorphism Km,n→Fm,n was defined in (10.26), and the monomorphism of
(Z/2Z)m into Km,n is to the subgroup 〈z1, . . . , zm〉 ⊆ Km,n, for zi of (10.25). The
map AY(T )→CY(T ), appearing in the middle column of Fig. 5, induces an epimor-
phism from G to CY(T ), whose kernel is denoted here by Pmn . By Proposition 10.1,
Pmn is a central extension of Pn by (Z/2Z)m.

From the short exact sequence (2.1) and the fact that the word problem is
solvable in Bn, we obtain the following corollary.

Corollary 10.11. The word problem is solvable in G.
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