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Abstract. We develop the theory of ℓ-weak identities in order to provide
a feasible way of studying the central polynomials of matrix algebras. We

describe the weak identities of minimal degree of matrix algebras in any di-
mension.

1. Introduction

One basic question in PI-theory is to determine the polynomial identities (PI’s)

of the matrix algebra Mn(Q). Specht’s celebrated problem is whether every set of

polynomial identities of an algebra is finitely based, i.e., is a consequence of a

finite number of identities, solved affirmatively by Kemer in 1988 and 1990, cf. [K].

However, his solution is difficult to implement to obtain a finite (PI) base for the

identities of Mn(Q), in the sense that every PI of the algebra is a consequence of the

base identities. Indeed, a base is known only for Q and M2(Q). A multilinear poly-

nomial f(x1, . . . , xm) is an ℓ-weak identity of Mn(Q) if substitution of matrices

for xi sends f to zero whenever tr(x1) = · · · = tr(xℓ) = 0, and an ℓ-weak central

polynomial if such substitution sends f to a central element. Our overriding goal

here is to obtain partial information about bases, mostly in terms of weak identities

and weak central polynomials.

Section 2 provides a brief overview of polynomial identities. We define and

discuss ℓ-weak identities in Section 3, developing an inductive procedure to compute

spaces of ℓ-weak identities (see Remark 3.4). Aided by computer computations, we

obtain the following results.

(1) Explicit generators for the ℓ-weak identities of M2(F ) in degrees 3 and 4,

for any ℓ (Section 6).

(2) When charF ̸= 3 there are no weak identities of degree 5 for M3(F ) (Sub-

section 7.1).

(3) However, s4 is a weak central polynomial of M3(F ) over a field of charac-

teristic 3, so [s4, x5] is a 4-weak polynomial identity of degree 5 (Subsec-

tion 7.2).
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(4) We present dimensions and module decomposition for the ℓ-weak identity

spaces in degree 6 for M3(F ), correcting a minor omission in [DR] (Subsec-

tion 8.1).

(5) We obtain a trace identity of degree 4 for M3(F ) from the Okubo com-

position algebra, and deduce Halpin’s 4-weak identity of degree 6 from it

(Subsection 8.3).

(6) For n ≥ 4, there are no weak identities of Mn(F ) in degree 2n other than

the standard identity (Section 9).

2. Preliminaries

Let F be a field. The free (associative) F -algebra generated by noncommut-

ing variables x1, . . . , xm is denoted F{x1, . . . , xm}; we refer to the elements of

F{x1, . . . , xm} as polynomials.

Definition 2.1. A polynomial p ∈ F{x1, . . . , xm} is called a polynomial identity

(PI) of the F -algebra A if p(a1, . . . , am) = 0 for all a1, . . . , am ∈ A. We write id(A)

for the set of identities of A.

2.1. Identities, central polynomials and examples. The free algebra has no

nonzero identities, almost by definition. An algebra A is PI if id(A) ̸= 0. The

most basic examples of PI-algebras are the matrix algebra Mn(F ) for arbitrary n,

f.d. algebras over a field, and the Grassmann algebra G, cf. [BR, Definition 1.35].

Here is a notion closely related to PI.

Definition 2.2 (Central polynomials). A polynomial f(x1, . . . , xn) is A-central

if f(A) ⊆ Cent(A). A central polynomial f(x1, . . . , xn) is strictly A-central if

f /∈ id(A); in other words, 0 ̸= f(A) ⊆ Cent(A).

A polynomial p(x1, . . . , xn) is k-multilinear if each of the variables x1, . . . , xk
appears exactly once in each of the monomials of p. We omit the preamble if p is

multilinear in all of its variables. Let Pm be the subspace of multilinear polynomials

in F{x1, . . . , xm}, for m ≥ 1. Any PI f can be transformed into a multilinear PI

through the multilinearization process (see [BR]), and the process is reversible in

characteristic 0; likewise any central polynomial f can be transformed into a multi-

linear central polynomial through the multilinearization process, which is reversible

in characteristic 0. Thus in what follows we consider polynomials in Pm.

Example 2.3. (i) The polynomial x1 is central for any commutative algebra.

(ii) The polynomial [x1, x2] is central for the Grassmann algebra.

(iii) Let UT(n) denote the algebra of upper triangular matrices over a given

commutative base ring C. Any product of n strictly upper triangular n ×
n matrices is 0. Since [a, b] is strictly upper triangular, for any upper

triangular matrices a, b, we conclude that the algebra UT(n) satisfies the

identity

[x1, x2][x3, x4] · · · [x2n−1, x2n].
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(iv) (Wagner’s identity) The matrix algebra M2(F ) satisfies the identity g2 :=

[[x, y]2, z] or, equivalently, the central polynomial [x, y]2 and its multilin-

earization. (This is because the square of a trace-zero 2×2 matrix is scalar.)

(v) Fermat’s Little Theorem translates to the fact that any field F of q ele-

ments satisfies the identity xq − x. Its multilinearization is the symmetric

polynomial, but in going back we only get qxq which is identically zero.

(vi) The standard polynomial

sm :=
∑

π∈Sm

sgn(π)xπ(1) · · ·xπ(m)

is a PI of Mn(Q) precisely when m ≥ 2n.

(vii) By Razmyslov [Ra2] and Drensky [D1] {s4, g2} is a PI base for M2(F ). A

base for M3(Q) remains unknown.

The PI degree of an algebra A, denoted PIdegA, is the minimal degree of an

identity of this algebra. Thus PIdegMn(F ) = 2n, and PIdegG = 3.

2.2. Spechtian polynomials. A multilinear polynomial is i-Spechtian if it van-

ishes when 1 is substituted for xi. We write Spim for the subset of i-Spechtian

polynomials in Pm, and SpIm for the subset
∩

i∈I Sp
i
m of polynomials that vanishes

when 1 is substituted for xi, for any i ∈ I. In particular Sp∅m = Pm. We write

Spm = Sp{1,...,m}
m for the set of Spechtian polynomials (also called proper in the

literature). The polynomial s2k is Spechtian.

Definition 2.4. Define higher commutator inductively, as a commutator [f, g]

of either letters or higher commutators.

In the proof of [BR, Proposition 6.2.1], by specializing xi to 1, we see that a

polynomial f can be written as f1 + f2 where xi does not appear in f1 and f2 is

i-Spechtian. It follows that f is Spechtian if and only if it is a sum of products of

higher commutators.

We write idSp(A) for the subset of Spechtian identities of A and idm,Sp(A) for

Spm ∩ id(A).

In [BR, Corollary 6.2.2] it is shown that any base of identities can be comprised

of Spechtian identities.

3. weak identities

3.1. Weak and strong variables. We refine Definition 2.1 with respect to the

matrix algebra A = Mn(F ).

Definition 3.1. Let p(x1, . . . , xm) be an ℓ-multilinear polynomial. We say that p

is an ℓ-weak identity of A if it vanishes under every substitution of matrices of

trace 0 in x1, . . . , xℓ and arbitrary matrices in the other variables.

More generally, for I ⊆ {1, . . . ,m}, we say that p is an I-weak identity of A

if it vanishes under every substitution of matrices of trace 0 in {xi : i ∈ I} and
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arbitrary matrices in the other variables (in this context we say that xi, i ∈ I are

weak variables in p, while xi, i /∈ I are strong).

We write idIm = idIm(A) for the set of I-weak multilinear identities of degree m.

In particular, a 0-weak identity is simply an identity, namely id∅m = idm. On the

other extreme, if p is m-weak we omit the prefix and say that p is a weak identity.

For I ⊆ J we have that idIm ⊆ idJm and SpIm ⊇ SpJm.

Lemma 3.2. Assume charF does not divide n.

(1) idIm ∩ SpJm ⊆ idI\Jm for every I, J ⊆ X.

(2) idIm(A) ∩ Spm ⊆ idm for every I.

(3) A weak identity which is a Specht polynomial is in fact an identity.

Proof. (1) Let Mn(F )0 = {a ∈ Mn(F ) | tr(a) = 0}. Since Mn(F ) = F · 1 ⊕
Mn(F )0, the condition for an I-weak identity f ∈ idIm to be in idI\Jm is that

for every j ∈ I ∩ J , substitution xj 7→ 1 sends f to an identity.

(2) Take J = {1, . . . ,m} in (1).

(3) Take I = {1, . . . ,m} in (2) to obtain idmm(A) ∩ Spm = idm.

�

3.2. Modules of weak identities. Write idℓm for id{1,...,ℓ}m , the set of ℓ-weak iden-

tities. We clearly have

(1) idm(A) = id0m(A) ⊆ id1m(A) ⊆ · · · ⊆ idmm(A).

Following the Amitsur-Levitzki theorem [AmL], it is known that the minimal

identities appear in idm(Mn(F )) for m = 2n, where this space is 1-dimensional. As

a refinement, it is desirable to describe the chain (1), at least for the minimal m

for which it is nonzero.

Note that idℓm(A) is not a submodule of Pm, since a permutation could send a

weak indeterminate to a strong indeterminate.

Remark 3.3. The space of ℓ-weak identities is a module through the natural action

on weak and strong variables over the ring F [Sℓ × Sm−ℓ]∼=F [Sℓ]⊗F [Sm−ℓ], which

is semisimple when charF = 0, being a direct sum of matrix rings over F .

In particular idmm(A) and id0m(A) are Sm-modules, which can be described through

their irreducible decompositions.

The level of details in a description of idℓm(A) is a matter of taste. In increasing

level of details, such a description might include:

(1) An indication that the space is nonempty (for m minimal).

(2) The dimension of the space, possibly given by a computer program.

(3) Better still would be explicit identities, preferably ones that can be under-

stood and demonstrated to be identities (and not just computer verified).
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(4) Computations in the module idℓm(A) can be facilitated by generators and

relations. Or, more generally, the module can be endowed with a resolu-

tion of permutation modules (defined through the action on indices in a

generating set).

(5) A decomposition into irreducible submodules is not hard to obtain for

small m, although our experience ([V1] and [V2]) show that by itself it

is not very illuminating.

(6) Finally, it is desirable to explicitly exhibit the embedding πℓ−1
m (A) ↪→

πℓ
m(A).

In order to study the chain of weak identity spaces (1), we compare two consec-

utive chains.

Remark 3.4. The substitution map xℓ 7→ 1 defines a projection πℓ :Pm → Pm−1

(reducing the indices ℓ′ > ℓ by one), which induces the maps

id0m(A)

��

⊆ id1m(A)

��

⊆ · · · ⊆ idℓ−1
m (A)

��

⊆ idℓm(A)

��

⊆ · · · ⊆ idmm(A)

��

⊆ Pm

πℓ

��
id0m−1(A) ⊆ id1m−1(A) ⊆ · · · ⊆ idℓ−1

m−1(A) ⊆ Pm−1 = · · · = Pm−1 = Pm−1

Indeed, for every k < ℓ, if p ∈ idkm(A) then p(x1, . . . , xk, . . . , 1, . . . , xm) is a k-weak

identity of degree m− 1, so the downwards arrows are defined.

Even more is true:

Remark 3.5. Assume charF is prime to m. For ℓ ≤ m,

idℓ−1
m (A) = idℓm(A) ∩ π−1

ℓ (idℓ−1
m−1(A)).

Indeed, if p ∈ idℓm(A) and πℓ(p) ∈ idℓ−1
m−1(A), then as long as x1, . . . , xℓ−1 are weak

variables in p, xℓ is weak by the former assumption, and becomes strong by the

latter.

We thus have an inductive procedure to compute the chain (1): once the chain

was computed in degree m−1, the chain in degree m can be computed from idmm(A)

by reverse induction on ℓ. In order to apply the condition πℓ(p) ∈ idℓ−1
m−1(A), we

will need a hold on πℓ(id
ℓ
m(A)) ⊆ Pm−1, whose elements in general are not even

weak identities. For example, πℓ induces an embedding πℓ : id
ℓ
m(A)/idℓ−1

m (A) ↪→
Pm−1/id

ℓ−1
m−1(A) which bounds the dimension of idℓ−1

m (A) from below in terms of

previously known quantities:

dim(idℓ−1
m (A)) ≥ dim(idℓm(A))− [(m− 1)!− dim(idℓ−1

m−1(A))].

For the minimal degree we can state this procedure more explicitly:

Remark 3.6. Assume charF is prime to n. Assume m is the minimal degree of

a weak identity for A. Then for every ℓ < m,

idℓm(A) = {f ∈ idmm(A) |πℓ+1(f) = · · · = πm(f) = 0}.
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4. Central polynomials for matrices

The polynomials comprising a base of the T-ideal are hard to ascertain, unknown

even for M3(Q). So we look for minimal identities (e.g., s2n for Mn(Q)) and central

polynomials. Surprisingly, even the minimal possible degree of a nonidentity which

is a 1-weak identity (and thus provides a strict central polynomial, see Theorem 4.3

below) for Mn(F ) is not known in general.

Halpin found an example of a central polynomial:

Lemma 4.1 ([BR, Lemma 1.4.14]). The multilinearization of

sn−1([x, y], [x
2, y], . . . , [xn−2, y], [xn, y])

is an n2−n+2
2 -weak identity of Mn(F ), of degree

n2 − n+ 2

2
+ n− 1 =

n2 + n

2
=
n(n+ 1)

2
.

As explained in [BR, p. 37], this yields a 1-weak identity of total degree n2:

Remark 4.2. For 0 ≤ ℓ′ < ℓ, every ℓ-weak identity of degree m can be viewed

as an ℓ′-weak identity of degree m + (ℓ − ℓ′), by substituting xi 7→ [x′i, x
′′
i ] for

i = ℓ′ + 1, . . . , ℓ. In particular every ℓ-weak identity of degree m can be viewed as

an identity of degree m+ ℓ.

However, the 1-weak identity resulting from Halpin’s polynomial is not an iden-

tity of Mn(Q). We thus have the existence of strict central polynomials. Formanek’s

polynomial [For1] also has degree n2, and for some time this was thought the lowest

possible, but in 1983, 1985, Drensky and Kasparian [DK2] discovered by a com-

puter search a strict central polynomial for M3(Q) of degree 8, further explained

in terms of weak identities by Drensky and Kasparian in 1993. Drensky showed 8

is optimal for n = 3. The space of central polynomials of degree 8 is described in

[V1]: the rank of id8(M3(F )) is 43; the Drensky-Kasparian identity adds 2 to the

rank; and the full rank of c-id8(M3(F )) is 47.

In 1994 Drensky and Piacentini found a strict central polynomial for M4(Q) of

degree 13, also obtainable via weak identities. In 1995 Drensky [D2] discovered

a strict central polynomial for arbitrary Mn(Q) of degree (n − 1)2 + 4, which is

minimal for n = 3 and n = 4, but its uniqueness is still open for n = 4, and

minimality of degree is open for n > 4. We treat n = 3 in Section 8.

4.1. ℓ-weak central polynomials. Similarly to Definition 3.1, a polynomial p of

degree m is an ℓ-weak central polynomial of Mn(F ) if it takes central values

under the substitutions of x1, . . . , xℓ to matrices of trace zero and xℓ+1, . . . , xm
to arbitrary matrices. More generally, p is an I-weak central polynomial, for

I ⊆ {1, . . . ,m}, if it takes central values under substitution of matrices provided

that xi maps to a zero trace matrix for all i ∈ I.
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In particular, a 0-weak central polynomial is simply a central polynomial. On

the other extreme, if p is m-weak we omit the prefix and say that p is a weak central

polynomial.

Also let c-idℓm(A) be the space of ℓ-weak central polynomials of A, so that

(2) c-idm(A) = c-id0m(A) ⊆ c-id1m(A) ⊆ · · · ⊆ c-idmm(A)

contains (1) component-wise. A natural question is to ask what is the minimal m

for which idm(A) ⊂ c-idm(A).

By Razmyslov (cf. [BR, Lemma 1.4.16]), central polynomials can be obtained

from 1-weak identities, trading a weak variable in an identity for a strong variable

in a central identity. We can copy the proof to get a more general result.

Let p(x) =
∑
aixbi be a polynomial which is multilinear in x, where ai, bi are

monomials over F in some variables other than x. We denote p∗(x) =
∑
bixai,

which defines an involution. For new variables y, z, consider q(y, z) = p([y, z]) =∑
(aiyzbi − aizybi). Conjugating q(y, z) with respect to y, we have that q∗(y, z) =∑
(zbiyai − biyaiz) =

∑
[z, biyai] = [z, p∗(y)]. Therefore p(x) is a weak identity in

terms of x if and only if q(y, z) is identically zero, if and only if q∗(y, z) = [z, p∗(y)]

is identically zero, if and only if all values of p∗(y) are central. This procedure

respects restrictions, such as zero trace, on any other variable involved. We thus

proved a major result:

Theorem 4.3 (Razmyslov). For ℓ ≥ 1, there is a degree-preserving one-to-one

correspondence idℓm(A) → c-idℓ−1
m (A) between ℓ-weak identities and (ℓ − 1)-weak

central polynomials, given by f 7→ f∗ (pivoting around xℓ).

Consequently, we have a chain of isomorphisms between the components of the

chains (1) and (2), albeit with non-commuting squares:

id0m(A) ⊆ id1m(A)

∼=
��

⊆ · · · ⊆ idℓm(A)

∼=
��

⊆ idℓ+1
m (A)

∼=
��

⊆ · · · ⊆ idmm(A)

∼=
��

c-id0m(A) ⊆ · · · ⊆ c-idℓ−1
m (A) ⊆ c-idℓm(A) ⊆ · · · ⊆ c-idmm−1(A) ⊆ c-idmm(A)

Moreover, idℓm(A) is an (Sℓ × Sm−ℓ)-module, and c-idℓ−1
m (A) is an (Sℓ−1 ×

Sm−(ℓ−1))-module. The groups intersect in the common stabilizer of the pivot

variable xℓ, which is Sℓ−1 × S1 × Sm−ℓ, and the isomorphism of Theorem 4.3 is of

modules over this group.

5. The connection to the representation theory

We view idm(Mn(F )) as a module over Sm, and apply the representation theory

of the group to obtain symmetrical identities (the same considerations holds for

idℓm(Mn(F )) over Sℓ × Sm−ℓ).
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5.1. Identities and the group algebra. Given a multilinear polynomial∑
σ∈Sm

aσxσ(1) . . . xσ(m) ∈ Pm,

we may associate it with the element∑
σ∈Sm

aσσ

of the group algebra F [Sm].

The action of Sm on Pm translates to the usual multiplication in the group

algebra. A natural left action of Sm on F{x1, . . . , xm} is defined by σ(xi) = xσ(i),

which induces an action of Sm on Pm by

(σ · f)(x1, . . . , xm) = f(xσ(1), . . . , xσ(m))

for all σ ∈ Sm and f ∈ F{x1, . . . , xm}, making Pm a cyclic faithful Sm-module.

But F [Sm] is semisimple by Maschke’s Theorem (assuming charF = 0 or charF >

m), so the module Pm is semisimple, and decomposes as a direct sum of simple

submodules, some of which are generated by PIs of Mn(F ).

Each irreducible component of F [Sm] corresponds to a partition λ of m. We

denote the matrix subring corresponding to λ by Typeλ. We also denote the irre-

ducible module corresponding to λ by Irrλ. Notice that while Typeλ is a uniquely

defined subset of F [Sm] (and by identification, of Pm), Irrλ is only defined up to

isomorphism, as the decomposition of Typeλ into dim(Irrλ) copies of Irrλ is not

unique.

Remark 5.1. The set Spm of Spechtian polynomials of degree m is a submodule

of Pm.

Proof. It is closed under the action. �

Being submodules of Pm, idm,Sp(A) ⊆ idm(A) both are direct sums of minimal

left ideals.

Given a submodule L ≤ Pm, the corresponding subspace L̂ of F [Sm] is a left

ideal. Since F [Sm] is semisimple, L̂ may be written as

L̂ =
⊕
λ⊢m

(L̂ ∩ Typeλ).

We call each L̂ ∩ Typeλ the projection of L to λ.

5.2. Identities and representations. While we may be able to decompose the

weak identities ideal quite nicely using representation theory, it is not obvious that

each projection has an “elegant” representative. The following proposition proves

the existence of a relatively simple one.
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Proposition 5.2. Let L be a submodule of Pm. Suppose the projection of L on a

partition λ = (λ1, . . . , λr) ⊢ m is nonzero. Then there exists a nonzero multilinear

polynomial f(x1, . . . , xm) ∈ L which is fixed under the action of

H = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{λ1+···+λr−1+1,...,m}.

In other words, f is a multilinearization of a polynomial in r (noncommuting)

variables y1, . . . , yr, where the degree of yi in each monomial is λi.

Proof. Recall that Pm
∼=F [Sm]. Let L̂ be the left ideal of F [Sm] corresponding

to L, and let L̂λ = L̂ ∩ Typeλ be the projection of L on λ, which is a left ideal

of Typeλ.

Following the notation of [Hu, Section 3.3]), associate to λ the subgroups Pλ

and Qλ of Sm, fixing the rows and columns respectively in the standard tableau

corresponding to λ. We also set

aλ =
∑
σ∈Pλ

σ, bλ =
∑
σ∈Qλ

(−1)σ · σ, and cλ = aλbλ.

Then cλF [Sm] is an irreducible module Vλ of F [Sm], contained in the representation

type Typeλ. In particular, cλ ∈ Typeλ. The elements fixed under the action of the

above subgroup H of Sm are precisely the elements t such that aλt = |H|t. Since

a2λ = |H|aλ, we conclude that aλcλ = |H|cλ, and thus every element of the right

ideal cλTypeλ of Typeλ is fixed under H. Take any 0 ̸= f ∈ L̂λ ∩ cλTypeλ, which
exists because left and right ideals in the prime ring Typeλ intersect nontrivially. �

6. Weak identities and the case n = 2

Our goal in this section is to describe the minimal (and next to minimal) ℓ-weak

identities for the matrix algebra M2(F ), exemplifying the approach described in

Remark 3.5.

6.1. Polynomials of degree m = 2. Write a◦b = ab+ba. Although the PI-degree

of M2(F ) is 4, the Wagner identity provides a weak central polynomial of degree 2,

namely x1 ◦ x2. Nevertheless, the space of 1-weak central polynomials of degree 2

is trivial.

6.2. Weak identities of degreem = 3. The first nonzero instance of the chain (1)

occurs for m = 3. Let

ψi = [xi, xj ◦ xk],

where {i, j, k} is a permutation of the index set {1, 2, 3}. All the ψi are 3-weak

identities, and ψ3 is in fact 2-weak. We also observe that

(3) ψ1 + ψ2 + ψ3 = 0.

Therefore

(4) 0 = id03(M2(F )) = id13(M2(F )) ⊂ id23(M2(F )) ⊂ id33(M2(F )) ,
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where id33(M2(F )) = ⟨ψ1, ψ2, ψ3⟩ is 2-dimensional (∼=Irr ), and id23(M2(F )) = ⟨ψ3⟩
is 1-dimensional.

Anticipating the computation of idℓ4(M2(F )) through Remark 3.5, let us further

point out specific submodules of P3. For an even permutation i, j, k of 1, 2, 3, let

gi = xi[xj , xk], g′i = [xi, xj ]xk,

and G = ⟨g1, g2, g3⟩, G′ = ⟨g′1, g′2, g′3⟩ the generated submodules. Observing that

g1+ g2+ g3 = s3 = g′1+ g
′
2+ g

′
3 generates the intersection G∩G′, we conclude that

G∼=G′ ∼=Irr ⊕ Irr

(the latter component is the sign representation). It follows that G+G′ = Type ⊕
Type is the complement of ⟨

∑
xσ1xσ2xσ3⟩ = Type in P3.

6.3. Weak identities of degree m = 4. We now consider the chain

(5) id04(M2(F )) ⊂ id14(M2(F )) ⊂ id24(M2(F )) ⊂ id34(M2(F )) ⊂ id44(M2(F )).

For a permutation i, j, a, b of 1, 2, 3, 4, let

hij = xi[xa ◦ xb, xj ], h′ij = [xj , xa ◦ xb]xi,

on which S4 acts by the natural action on the indices. Both are weak identities,

immediate consequences of the Wagner identity ψj . Let H = ⟨hij | i ̸= j⟩ and

H ′ = ⟨h′ij | i ̸= j⟩ be the generated submodules of P4.

Proposition 6.1. The space of weak identities id44(M2(F )) has dimension 15,

isomorphic to 2Irr ⊕ 2Irr ⊕ Irr ⊕ Irr . It is generated as a module by s4,

h34 = x3[x1 ◦ x2, x4], and h′34 = [x4, x1 ◦ x2]x3.

Proof. We apply a computer program to find the dimension as described in [V1],

which is indeed 15. We then guess and verify easy-to-describe identities in this

space; and analyze the submodule they generate to the extent that its dimension

becomes apparent, until we obtain a set of generators.

For every i, it follows from (3) that
∑

j ̸=i hij =
∑

j ̸=i h
′
ij = 0. There are no

other relations, so dimH = dimH ′ = 8. But since 8 + 8 > 15, the spaces must

intersect. The intersection is most easily computed by passing to the dual space.

Elements
∑
ασσ ∈ H are characterized by the “right transposition condition”

αijkℓ + αiℓkj = 0 and the condition αij0j1j2 + αij1j2j0 + αij2j0j1 = 0. Likewise

H ′ is characterized by the “left transposition condition” αijkℓ + αjkiℓ = 0 and

the condition αi0i1i2j + αi1i2i0j + αi2i0i1j = 0. So H ∩ H ′ is characterized by the

transposition conditions, as well as αijkℓ = αjiℓk and α1234 + α2314 + α3124 = 0;

computation then indicates that dim(H ∩H ′) = 2. Indeed, acting with
∑

σ∈K4
σ,

where K4 is the Klein 4-group, we find the equality hij + hji + hkℓ + hℓk = h′ij +

h′ji + h′kℓ + h′ℓk for any partition ij|kℓ of the index set. These are three equalities,

each defining an element of H ∩H ′, whose sum is zero. Thus H ∩H ′ ∼=Irr . The
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characters of H,H ′ can be computed from the action on the basis, and knowing

the characters of S4 we conclude that H ∼=H ′ ∼=Irr ⊕ Irr ⊕ Irr (of dimensions

2+3+3). It follows that ⟨s4⟩∼=Irr cannot intersect H+H ′, so that H+H ′+ ⟨s4⟩

is of dimension 15, and thus equal to the full space of identities. �

Remark 6.2. The dimensions in the chain (5) are 1 < 3 < 8 < 12 < 15. The

ℓ-weak identity spaces are given as follows.

(3) The space id34(M2(F )) of 3-weak identities has dimension 12, spanned as

an S{1,2,3}-module by {[s3, x4], h43, h34, t}, where

t = [x1 ◦ [x2, x4], x3].

We have a direct sum decomposition, ⟨[s3, x4]⟩⊕ ⟨h43⟩⊕ ⟨h34⟩⊕ ⟨t⟩, with
the components isomorphic to Irr , Irr (as h43 + h42 + h41 = 0), Irr ⊕

Irr , and the regular representation, respectively. Namely, id34(M2(F )) is

twice the regular representation. We also note that [s3, x4] =
1
2 (1+ (123)+

(132))(34)t.

(2) The space id24(M2(F )) of 2-weak identities has dimension 8, spanned as

an S{1,2}S{3,4}-module by {s4, t, h34, q}, where q = [x1 ◦ x3, x2 ◦ x4] + [x2 ◦
x3, x1 ◦x4]. In fact, id24 = ⟨s4⟩⊕⟨t⟩⊕⟨h34⟩⊕⟨q⟩, of dimensions 1+4+2+1

respectively.

(1) id14(M2(F )) is the 3-dimensional space spanned as an S{2,3,4}-module by

(34)t = [x1 ◦ [x2, x3], x4]. This is a 1-weak identity, x1 ◦ [x2, x3] being

central when tr(x1) = 0. In fact, (34)t+(24)t+(23)t = s4, explaining how

id04 ⊂ id14.

(0) id04(M2(F )) = F · s4 is the well-known 1-dimensional space of degree 4

identities.

Remark 6.3. The spaces of ℓ-weak central polynomials of M2(F ) in degree 4, for

ℓ = 0, 1, 2, 3, 4, have dimensions 3, 8, 12, 15 and 18, respectively.

(The dimensions 3 < 8 < 12 < 15 follow from Remark 6.2 by Theorem 4.3; and

the dimension 18 for the space of weak central polynomials was found, once more,

by a computer program).

7. The weak PI-degree of M3(F )

This section is concerned with weak identities of degree 5 for M3(F ). We show

that there are none if charF ̸= 3, and describe the weak identities in degree 5 when

charF = 3.

7.1. Fields of characteristic not 3.

Proposition 7.1. The algebra M3(F ) has no weak identities of degree 5 when

charF ̸= 3.
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Proof. Suppose that

f(x1, . . . , x5) =
∑
σ∈S5

aσxσ(1) . . . xσ(5)

is a weak identity for M3(F ). Note that for all π ∈ S5,

f(xπ(1), . . . , xπ(5)) =
∑
σ∈S5

aσxπ(σ(1)) . . . xπ(σ(5)) =
∑
τ∈S5

aπ−1τxτ(1) . . . xτ(5),

so permutation of the variables acts on the coefficients from the right by aσ · π =

aπ−1σ. We write permutations by the cycle decomposition.

Substituting x1, . . . , x5 = e12, e23, e32, e23, e31, the resulting matrix satisfies

f(e12, e23, e32, e23, e31)1,1 = a1 + a(2,4).

Hence a(2,4) = −a1. Applying a permutation π ∈ S5 yields

(6) aπ(2,4) = −aπ

for every π ∈ S5.

Next, we substitute x1, . . . , x5 = e13, e31, e12, e23, e32, and the (1, 2) entry of the

resulting matrix is

a1 + a(2,5,3,4) + a(1,3,2,4) = 0.

Using (6) and acting with an arbitrary π ∈ S5, we get

(7) aπ − aπ(3,4,5) − aπ(1,3,2) = 0.

Tracing this equation over (3, 4, 5) (that is applying (3, 4, 5) and (3, 5, 4), then

summing the three equations) and applying (1, 2, 3) yields the equation

(8) a1 + a(1,4,5) + a(1,5,4) = 0.

We now substitute x1, . . . , x5 = e13, e32, e23, e22 − e33, e31. The (1, 1) entry of

the resulting matrix is

−a1 + a(3,4) − a(2,4,3) = 0.

Using (6), we see that

a1 − a(3,4) − a(2,3) = 0.

Applying (1, 3) yields the equation a(1,3,2) = a(1,3)(2,3) = a(1,3) − a(1,3,4). We

substitute this expression in (7) (with π = Id) to achieve

a1 − a(3,4,5) − a(1,3) + a(1,3,4) = 0.

By applying (1, 3) on the last equation, we get

a(1,3) − a(1,3,4,5) − a1 + a(3,4) = 0.

Summing up the last two equations, we get

−a(3,4,5) + a(1,3,4) − a(1,3,4,5) + a(3,4) = 0.

Applying (3, 4) means

a1 + a(1,4) − a(4,5) − a(1,4,5) = 0.
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Applying (1, 5) yields the equation

a(1,5) + a(1,4,5) − a(1,5,4) − a(1,4) = 0.

Subtracting the second equation from the first, we see that

a1 − 2a(1,4,5) + a(1,5,4) = −2a(1,4) + a(1,5) + a(4,5).

So, using (8),

3a(1,4,5) = 3a(1,4),

and a1 = a(4,5) since we assume charF ̸= 3. We may again apply π ∈ S5 to get

(9) aπ(4,5) = aπ.

We now see that using (6) and (9),

aπ(2,5) = aπ(2,4)(4,5)(2,4) = aπ,

but also

aπ(2,5) = aπ(4,5)(2,4)(4,5) = −aπ,
implying that aπ = 0 for all π ∈ S5. Hence f = 0, as required. �

Since there are identities of degree 6, we conclude that the “weak PI degree” of

M3(F ) is 6:

Corollary 7.2. The minimal degree of a weak identity of M3(F ) is 6.

In Section 8 we indicate that in degree 6 there are weak identities other than the

standard identity, so the “strict weak PI degree” of M3(F ) is 6 as well.

7.2. The case charF = 3. Proposition 7.1 holds when charF ̸= 3. Interestingly,

the situation is quite different in characteristic 3.

Proposition 7.3. Assume charF = 3. The standard identity s4 is a weak central

identity of M3(F ). In particular M3(F ) has 4-weak identity of degree 5, namely

[s4(x1, . . . , x4), x5].

Proof. The value of s4(x1, . . . , x4) under substitution of matrix units eij (i ̸= j) or

matrices of the form eii − ejj , results in either ±3eij (i ̸= j) or ±(1 − 3eii). Over

a field of characteristic 3, this implies all values of s4 under weak substitutions are

central. Hence [s4(x1, . . . , x4), x5] is a 4-weak identity.

(Incidentally, if even one variable is strong, the Z-span of s4(x1, . . . , x4) is the

zero-trace part of M3(Z); so [s4(x1, . . . , x4), x5] is not 3-weak). �

For any m, let ψm = [sm−1(x1, . . . , xm−1), xm]. Let F ⊕ N0 be the natural

representation of Sm, decomposed into the trivial module and its irreducible com-

plement.

Proposition 7.4. The Sm-module generated by ψm is:

(1) F [Sm]ψm
∼=N0⊗ sgn when m is odd.

(2) F [Sm]ψm
∼=(F ⊕N0)⊗ sgn when m is even.
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Proof. Fix σ = (1 2 3 . . .m). Since Sm−1 alternates ψm, the module is generated

by the cyclic permutations σjψm.

Every monomial appears in exactly two of the polynomials σjψm. When m is

odd, the signs are opposite. Therefore
∑
σjψm = 0 and there are no other relations,

so the module is N0⊗ sgn. When m is even, the signs are equal (opposite) when the

difference of the indices of the first and last variables is even (odd); so the σjψm

are linearly independent, and the module is N⊗ sgn. �

Going back to the case m = 5 when charF = 3,

(10) U = F [S5] · [s4(x1, x2, x3, x4), x5]

is 4-dimensional, isomorphic as an S5-module to the nontrivial irreducible compo-

nent of the natural representation, tensored with the sign character.

Proposition 7.5. Assume charF = 3. The space id55(M3(F )) of weak identities

of degree 5 has dimension 5. As an S5-module, the representation space is uniquely

an extension

0 −→ U −→ id55(M3(F )) −→ F −→ 0

where U is given in (10) and F denotes the trivial module.

Proof. The dimension is based on a Sage program. We find the 4-weak identity

φ = [x1[x2, x3 ◦ x4] + x2[x1, x3 ◦ x4]− x3[x4, x1 ◦ x2]− x4[x3, x1 ◦ x2], x5] +
+

∑
σ∈S4

xσ(1)[x5, xσ(2)xσ(3)]xσ(4),

generating id55(M3(F )) as a module; indeed, ψ5 = (1− (23))φ. Notice that (12)φ =

(34)φ = φ, showing that id55(M3(F ))/U is the trivial (and not the sign) module. �

A Sage computation also shows that (when charF = 3) id35(M3(F )) = 0, and

id45(M3(F )) is 2-dimensional, spanned by φ and ψ5. Again Fψ5 is the unique

irreducible S4-submodule, and (Fφ+ Fψ5)/(Fψ5) is the trivial S4-module.

8. Weak identities for M3(F ) in degree 6

Assuming charF = 0, in this section we describe the sets idℓ6(M3(F )) of ℓ-weak

identities of M3(F ) in degree 6, which by Corollary 7.2 is the minimal degree of

weak identities.

In [DR] the authors study weak identities (when all variables are weak, namely

the case ℓ = 6) of M3(F ). Decomposing the S6-module id66(M3(F )) into the rep-

resentation components, their computations indicate that there are four nonzero

summands, whose Young diagrams are , , and .

We correct a minor omission in the literature by observing the following:

Proposition 8.1. The space id66(M3(F )) has five nonzero components, namely the

above four, as well as .
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In the first subsection we supply complete details on the dimensions of the spaces

of weak identities, and in the second subsection we present explicit 4-weak identities

and use the Okubo algebra to prove that they indeed have this property.

8.1. Weak identities of M3(F ). We used a Sage program to find an F -basis

for each weak identity space idℓ6(M3(F )), and compute the intersection with each

representation ideal Typeλ. The dimensions of the intersections idℓ6(M3(F ))∩Typeλ
(for the partitions λ with nonzero intersection) are listed in the table below. In all

participating representations, id66(M3(F )) ∩ Typeλ happens to have rank 1, so the

dimension of the representation is equal to the dimension of the intersection at the

bottom line.

ℓ dim idℓ6(M3(F ))

0 1 0 0 0 0 1
1 1 0 0 0 0 1
2 1 0 0 0 0 1
3 2 0 0 1 0 1
4 6 1 1 3 0 1
5 15 4 4 6 0 1
6 35 9 10 10 5 1

It follows that there are no 2-weak identities except for the standard identity;

and there is a unique 3-weak identity modulo the standard identity (whose explicit

description, in an appealing form, remains a challenge). The bottom line proves

Proposition 8.1.

8.2. Halpin’s identity and its projections. For n = 3, Halpin’s identity from

Lemma 4.1 is

(11) f(x, z) = [[x, z], [x3, z]],

which (when multilinearized) is a 4-weak identity of M3(F ), namely we restrict x

to have zero trace.

Proposition 8.2. The (multilinearization of the) polynomials

(12) f ′(x, z1, z2) = [[x, z1], [x
3, z2]] + [[x, z2], [x

3, z1]],

and

(13) f ′′(x, z1, z2) = [x, z1] ◦ [x3, z2]− [x, z2] ◦ [x3, z1],

are the unique (up to scalar) 4-weak identities of degree 6 of M3(F ) corresponding

to the components and , respectively.

Proof. The representation type follows from symmetries, so uniqueness follows from

the line ℓ = 4 in the table above. It remains to show that these are indeed 4-weak

identities.
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Linearizing z in (11), we get the 4-weak identity f ′ defined in (12), which can

be decomposed as f ′ = f1 + f2 where f1(x, z1, x2) = [x, z1][x
3, z2] − [x3, z1][x, z2]

is the sum of monomials in which z1 precedes z2, and f2(x, z1, z2) = f1(x, z2, z1) is

the sum of monomials in which z2 precedes z1. By [DR, Theorem 1.3(ii)], both f1
and f2 are 4-weak identities for M3(F ). It is easy to verify that f ′′ = f1 − f2 is the

is the polynomial f ′′ defined in (13). �

8.3. Identities from the Okubo algebra. Some surprising identities of M3(F )

arise from the Okubo algebra, which we now describe. A nonassociative F -algebra

(A, ⋆) is a composition algebra if it is endowed with a nondegenerate quadratic

form N :A → F such that N(x ⋆ y) = N(x)N(y). The algebra is symmetric if it

further satisfies

(14) y ⋆ (x ⋆ y) = (y ⋆ x) ⋆ y = N(y)x.

A major example of a symmetric composition algebra is the Okubo algebra

[MVS], whose underlying vector space is the space M3(F )0 of zero-trace matrices.

Assuming F has a cubic root of unity which we denote ρ, the multiplication is

defined by

x ⋆ y =
1− ρ

3
xy +

1− ρ2

3
yx− 1

3
tr(xy).

(There is an analogous description for the case ρ ̸∈ F , which does not concern us

here). The norm form is N(x) = − 1
3s2(x), where s2(x) is the second coefficient of

the characteristic polynomial of x.

We can now prove the following trace identity:

Proposition 8.3. Assume x, y ∈ M3(F )0. Then

[x2, y2]− [y, xyx] = tr(xy)[x, y].

Proof. Write α = 1−ρ
3 and α′ = 1−ρ2

3 , so that α + α′ = 1 and α2 = α − 1
3 , and

therefore α2 + α′2 = αα′ = 1
3 . By assumption,

x ⋆ y = αxy + α′yx− 1

3
tr(xy).

Multiplying by y from left, we have

y ⋆ (x ⋆ y) = y ⋆ (αxy + α′yx− 1

3
tr(xy)) =

= αy(αxy + α′yx− 1

3
tr(xy))

+α′(αxy + α′yx− 1

3
tr(xy))y − 1

3
tr(y(αxy + α′yx− 1

3
tr(xy))) =

= (α2 + α′2)yxy + αα′(y2x+ xy2)− (α+ α′)
1

3
tr(xy)y − 1

3
tr(y(αxy + α′yx))

=
1

3
yxy +

1

3
(y2x+ xy2)− 1

3
tr(xy)y − 1

3
tr(αyxy + α′y2x).
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Since y ⋆ (x ⋆ y) = N(y)x, the above expression commutes with x. Hence

0 = [x, yxy + y2x+ xy2 − tr(xy)y] =

= xyxy − yxyx+ x2y2 − y2x2 − tr(xy)[x, y]

= −[y, xyx] + [x2, y2]− tr(xy)[x, y].

�

Taking y = [z, x] we get y ∈ M3(F )0 and tr(xy) = tr(x[z, x]) = tr([xz, x]) = 0

so Proposition 8.3 gives the 4-weak identity

[[z, x], x[z, x]x]− [x2, [z, x]2] = 0;

but we already know the 4-weak identities, and this is indeed Halpin’s identity (11):

Remark 8.4. We have the tautological identity

(15) [[z, x], x[z, x]x]− [x2, [z, x]2] = [[x, z], [x3, z]].

Indeed, let y = [x, z]. Then xy + yx = [x2, z], and the left hand side is equal to

[y, xyx]− [x2, y2] = y(xy + yx)x− x(yx+ xy)y

= y[x2, z]x− x[x2, z]y

= zx3zx+ xz2x3 − zxzx3 + x3zxz − x3z2x− xzx3z

= [zx3, zx]− [zx3, xz] + [x3z, xz]− [x3z, zx]

= [[x, z], [x3, z]].

9. Matrices of size n ≥ 4

In Sections 6 and 8 we have seen that Mn(F ) has properly weak identities of

degree 2n when n = 2, 3. Here we show that for n ≥ 4 the only weak identity of

Mn(F ) in degree 2n is the standard identity, slightly improving on Amitsur-Levizki

[AmL] who proved that s2n is the only identity of Mn(F ) in this degree.

An easy argument, similar to that of [GZ, Lemma 1.10.7], rules out identities of

degree 2n− 2:

Proposition 9.1. The minimal degree of a weak identity of Mn(F ) is ≥ 2n− 1.

Proof. There is a vector space embedding Mn−1(F ) ⊆ Mn(F )0 by sending a 7→
(a,− tr(a)), which preserves multiplication in the first component. It follows that

s2n−2 is the only possible identity of degree < 2n − 1. But the standard identity

s2n−2 is ruled out as a weak identity for Mn(F ) by the path 1 → 2 → · · · → n →
· · · → 2 → 1. �
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9.1. Shadows of identities. We begin by developing a simple decomposition tech-

nique for multilinear identities.

Definition 9.2. Let f ∈ Pm be a multilinear polynomial. Writing

f =
∑
i ̸=j

xifi,j(x1, . . . , x̂i, . . . , x̂j , . . . , xm)xj ,

for strong variables xi, xj, we call each fi,j a shadow of f .

As usual, x̂i denotes omission of xi from the list. Each fi,j is an (m − 2)-

multilinear polynomial (on the variables {x1, . . . , x̂i, . . . , x̂j , . . . , xm}). The action

of Sm on Pm induces an action on the shadows by

(16) (σf)σ(i),σ(j) = fi,j .

Proposition 9.3. Suppose f ∈ Pm is an I-weak identity for Mn(F ). Then the

shadow fi,j is an (I \ {i, j})-weak identity for Mn−1(F ).

In particular, if f ∈ Pm is a (weak) identity for Mn(F ), then each fi,j is a (resp.

weak) identity for Mn−1(F ).

Proof. The latter statement follows from the former by taking I = ∅ (resp. ℓ =

{1, . . . ,m}). We view Mn−1(F ) ⊆ Mn(F ) in the natural way, embedded in the

upper-left corner. Fix u, v = 1, . . . , n − 1, and substitute xi 7→ enu and xj 7→ evn.

By substituting matrices from Mn−1(F ) into the other variables, we see that

f(x1, . . . , enu, . . . , evn, . . . , xm)nn = fi,j(x1, . . . , x̂i, . . . , x̂j , . . . , xm)uv,

since any monomial is zero unless enu appears first and evn last in the product.

By assumption we are forced to assume the variables whose indices are in I

are weak, and this condition for the variables other than xi, xj remains on the

substitution in fi,j . �

For distinct i, j = 1, . . . ,m, let [i, j]ℓ denote the quantity |{1, . . . , ℓ} − {i, j}|.
Thus [i, j]ℓ ∈ {ℓ− 2, ℓ− 1, ℓ}. By Proposition 9.3, if f ∈ Pm is an ℓ-weak identity

for Mn(F ), then fi,j is an [i, j]ℓ-weak identity for Mn−1(F ).

Corollary 9.4. For every ℓ there is an injective map

idℓm(Mn(F )) ↪→
⊕
u̸=v

id
[u,v]ℓ
m−2 (Mn−1(F )).

In particular there are injective maps for identities,

id0m(Mn(F )) ↪→ id0m−2(Mn−1(F ))
m(m−1),

and for weak identities,

(17) idmm(Mn(F )) ↪→ idm−2
m−2(Mn−1(F ))

m(m−1).

Corollary 9.5. PIdeg∞(Mn(F )) ≥ 2 + PIdeg∞(Mn(F )). Indeed, if we have

idm−2
m−2(Mn−1(F )) = 0 then idmm(Mn(F )) = 0 by (17).

Proposition 9.6. The matrix algebra M4(F ) has no weak identities of degree 7.
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Proof. For fields of characteristic different than 3, M3(F ) has no weak identities of

degree 5 by Corollary 7.2, so M4(F ) has no weak identities of degree 7 by Corol-

lary 9.5. For the remaining case of fields of characteristic 3, the claim was verified

by a Sage program (computing over F3). �

Corollary 9.7. The weak PI degree of Mn(F ) is 2n for all n ≥ 3.

Proof. We have that PIdeg∞(Mn(F )) ≤ PIdeg(Mn(F )) = 2n by Amitsur-Levizki.

The lower bound 2n ≤ PIdeg∞(Mn(F )) is given for n = 4 in Proposition 9.6, and

follows for n > 4 by induction applying Corollary 9.5. �

9.2. Weak identities degree 2n. We will now strengthen this result, and show

that in the minimal degree 2n, the standard identity is the only weak identity,

namely id2n2n(Mn(F )) is one dimensional for all n ≥ 4.

Theorem 9.8. Let F be a field of characteristic zero. For n ≥ 4,

id2n2n(Mn(F )) = Fs2n,

where s2n is the standard identity.

Proof. We prove this theorem by induction. The case n = 4 was verified using a

Sage program (computing over Q).

Suppose the proposition is true for some n ≥ 4. We consider a weak identity

f ∈ id2n+2
2n+2(Mn+1(F )). Since this is an S2n+2-module, we may assume f lies in the

λ-component of id2n+2
2n+2(Mn+1(F )), for some partition λ = (λ1, . . . , λr) ⊢ 2n+ 2.

By (17) we have an embedding id2n+2
2n+2(Mn+1(F )) ↪→ id2n2n(Mn(F ))

(2n+2)(2n+1).

Let us denote the right-hand side by M . As an S2n+2-module, M is isomorphic

to the induced representation Ind
S2n+2

S2n
(sgn). The irreducible subrepresentations

of M are, by Frobenius reciprocity, those whose restriction from S2n+2 to S2n

is the sign representation of degree 2n, namely, by the Branching Theorem [GZ,

Theorem 2.3.1], the representations [3112n−1], [2212n−2], [2112n] and the sign rep-

resentation [12n+2].

By Proposition 5.2, we may assume that f is fixed under the action of

H = S{1,...,λ1} × S{λ1+1,...,λ1+λ2} × · · · × S{λ1+···+λr−1+1,...,2n+2}.

In particular, each shadow fi,j is symmetric under the stabilizer of i, j in H, namely

under Hij = {σ ∈ H |σ(i) = i, σ(j) = j}.
On the other hand, by Proposition 9.3, each shadow fi,j is a weak identity for

Mn(F ) of degree 2n. According to the induction hypothesis, this is only possible if

fi,j = αi,j · s2n(x1, . . . , x̂i, . . . , x̂j , . . . , x2n+2)

for some αi,j ∈ F , and so the shadow is antisymmetric. We conclude that if Hij

contains odd permutations, then necessarily fij = 0. In other words for fij ̸= 0 it

is necessary that removing i and j will leave no more than a single point in each

part of λ (reaffirming the list of possible partitions).
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CASE I. λ = [312n−1]. Here the only nonzero shadows fi,j of f must be those

where 1 ≤ i, j ≤ 3. Since f must be symmetric with respect to x1, x2, x3, their

coefficients αi,j must also be equal to each other, so up to multiplication by a

scalar, f has to be

f =
∑

1≤i,j≤3

xi · s2n(x1, . . . , x̂i, . . . , x̂j , . . . , x2n+2) · xj .

In other words, f is the multilinearization of

f̂(x, x4, . . . , x2n+2) = x · s2n(x, x4, . . . , x2n+2) · x.

Substitute x 7→ e11 − e22 and for the variables x4, x5, . . . , x2n+2 take the “ladder”

matrix units e12, e23, . . . , en,n+1, en+1,n, . . . , e32. By direct computation, one can

verify that

f̂(x, x4, . . . , x2n+2)1,2 = s2n(x, x4, . . . , x2n+2)1,2 = 3,

which proves that f̂ is not a weak identity for Mn+1(F ).

CASE II. λ = (2, 2, 12n−2). In this case, f is symmetric with respect to x1 and

x2 and with respect to x3 and x4. The possible nonzero shadows are fi,j where

i ∈ {1, 2} and j ∈ {3, 4}, or vice versa. A similar explanation shows that f is the

multilinearization of an identity of the form

f̂ = α · x · s2n(x, y, x5, . . . , x2n+2) · y + β · y · s2n(x, y, x5, . . . , x2n+2) · x

for some α, β ∈ F . Set

x, y, x5, . . . , x2n+2 = e12, e21, e13, e31, . . . , e1,n+1, en+1,1.

A simple calculation shows that s2n(e12, e21, e13, e31, . . . , e1,n+1, en+1,1) = n!e11 −∑n+1
k=2(n − 1)!ekk. Hence f̂(e12, e21, e13, e31, . . . , e1,n+1, en+1,1) = −α(n − 1)!e11 +

βn!e22, showing that α = β = 0.

CASE III. λ = (2, 12n). In a similar manner, one may see that f must be a

multilinearization of a weak identity of the form

f̂(x, x1, . . . , x2n) =
2n∑
i=1

αi x s2n(x, x1, . . . , x̂i, . . . , x2n)xi +

+
2n∑
i=1

βi xi s2n(x, x1, . . . , x̂i, . . . , x2n)x+

+ γ x s2n(x1, . . . , x2n)x.

Fixing 1 ≤ j < 2n, we substitute xj in place of xj+1 and keep all the other

variables in place. Most summands vanish, and the resulting polynomial is

(αj + αj+1)x s2n(x, x1, . . . , x̂j+1, . . . , x2n)xj +

+(βj + βj+1)xj s2n(x, x1, . . . , x̂j+1, . . . , x2n)x.

This must be a weak identity for Mn+1(F ). Since its multilinearization is symmetric

with respect to two pairs of variables, it lies in the component of (2, 2, 12n−2), hence
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must be zero by CASE II. This shows that αj+1 = −αj and βj+1 = −βj . But the

argument holds for all j, so αi = (−1)i−1α1 and βi = (−1)i−1β1.

Next we substitute x1 = x. Again, most terms become zero, and the result is

(α1 + β1 + γ)x s2n(x, x2, . . . , x2n)x.

This should be a weak identity for Mn+1(F ) lying in the component of (3, 12n−1),

and by CASE I must be zero. This proves that α1 + β1 + γ = 0.

We have therefore shown that our weak identity has the form

f̂ = α

2n∑
i=1

(−1)i−1 x s2n(x, x1, . . . , x̂i, . . . , x2n)xi +

+ β

2n∑
i=1

(−1)i−1 xi s2n(x, x1, . . . , x̂i, . . . , x2n)x−

− (α+ β)x s2n(x1, . . . , x2n)x =

= α
2n∑
i=1

x s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n)xi +

+ β
2n∑
i=1

xi s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n)x−

− (α+ β)x s2n(x1, . . . , x2n)x

for appropriate α, β ∈ F .

We substitute

x, x1, x2, . . . , x2n = e12 + e23, e12, e21, . . . , e1,n+1, en+1,1.

We know that s2n(x1, . . . , x2n) = n!e11−(n−1)!
∑n+1

k=2 ekk, so x s2n(x1, . . . , x2n)x =

−(n − 1)!e13. We next compute s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n). Consider the

directed graph Gi on the vertices 1, 2, . . . , n + 1, with an edge j → j′ if and

only if ej,j′ appears in the list x1, . . . , x̂i, . . . , x2n, e23 after the substitution above.

Any nonzero summand in the expression s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) corre-

sponds to an Eulerian path in Gi. We consider the following cases:

• i = 2ℓ − 1 is odd, in which case xi = e1,ℓ+1. Then deg−(1) − deg+(1) =

1, so any Hamiltonian path must end at 1. But if ℓ ̸= 2, we also have

deg−(ℓ + 1) − deg+(ℓ + 1) = 1, so Gi has no hamiltonian path. There are

two types of Hamiltonian paths in G3: those that begin with 2 → 3 → 1,

and those that begin with 2 → 1. One can see that each path of the

first type contributes +1 to the sum, and each path of the second type

contributes −1 to the sum. Since their number is identical, the result is 0.

• i = 3. We want to compute s2n(e12, e21, e23, e31, e14, . . . , en+1,1). Using the

same considerations, every Hamiltonian path must start at 2 and end at 1.

• i = 2ℓ is even, in which case xi = eℓ+1,1. But then deg−(1)−deg+(1) = −1,

and also deg−(3)− deg+(3) = −1 (or −2 if i = 4), which again shows that

Gi has no Hamiltonian path.
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To conclude, we know that s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) = 0 for all i.

Hence, for i > 1 we have

s2n(x1, . . . , xi−1, x, xi+1, . . . , x2n) = s2n(e12, x2, . . . , xi−1, e12, xi+1, . . . , x2n) +

+ s2n(x1, . . . , xi−1, e23, xi+1, . . . , x2n) = 0,

and for i = 1 we have

s2n(x, x2, . . . , x2n) = s2n(e12, x2, . . . , x2n) + s2n(e23, x2, . . . , x2n) =

= s2n(x1, x2, . . . , x2n) = n!e11 − (n− 1)!
n+1∑
k=2

ekk.

The appropriate summands are thus

x s2n(x, x2, . . . , x2n)x1 = (e12 + e23) s2n(x, x2, . . . , x2n) e12 = 0

x1 s2n(x, x2, . . . , x2n)x = e12 s2n(x, x2, . . . , x2n) (e12 + e23) = −(n− 1)!e13.

Therefore, the substitution above in f̂ yields a matrix whose (1, 3) component is

(n− 1)!α, hence α = 0. Similarly, one may show that β = 0, so f̂ = 0 as required.

In conclusion, we are left with the case where λ = (12n+2), which indeed corre-

sponds to the standard identity s2n+2. �
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