
MIXING AND COVERING IN THE SYMMETRIC
GROUPS

UZI VISHNE

Abstract. We discuss mixing and covering theorems in the sym-
metric groups. We present an example of a covering without mix-
ing, and study the conjugacy class [2n/2] of symmetric group Sn,
which demonstrates mixing without covering. We derive some new
character identities from computation of [2n/2]2 ,and also compute
[2n/2]3, filling a hole between theorems of Brenner [3] and Dvir
[6]. This computation also motivates a certain classification of 3-
colored 3-regular graphs.
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1. Preliminaries

Products of conjugacy classes in a group may be approached from
two directions: covering, which is a set-theoretic notion, and mixing,
which is related to distributions on the group.

Let G be a finite nonabelian simple group. For two conjugacy classes
C,D ⊆ G, the set CD = {cd : c ∈ C, d ∈ D} is a union of conjugacy
classes. Define powers of classes by C1 = C, Cn+1 = CCn. It is known
[1, 1.1] that for any class C ⊆ G there is a minimal number υ(C) such
that Cυ = G. A theorem of the form Cυ = G is called a covering
theorem. Dvir [6] proves that for any class C ⊆ An (n ≥ 6), υ(C) ≤ n

2
.

Since we will state some of the results in Sn and others in An, some
remarks on the connection between the groups are in order. A conju-
gacy class C of Sn which is contained in An is nonexceptional if C
is a also a conjugacy class in An, and exceptional otherwise. In the
latter case the class is a union of two conjugacy classes in An. Excep-
tional classes have all cycles of different odd lengths. When we treat
powers of a certain class C ⊆ Sn, we denote by A∗

n the subgroup An if
C ⊆ An, and the complement Sn − An otherwise. Thus C ⊆ A∗

n.
We now focus on classes with υ(C) small.
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The condition υ(C) = 2 for C ⊂ An was studied in [2]. Sample
results are: υ([n]) = υ([(n

2
)2]) = 2, υ([3n/3]) > 2. We will return to

these examples later.
Brenner [3] proves the only known criteria for C4 = An. Let µ(C)

denote the number of cycles of an element of C.

Theorem 1.1 ([3]). Let C be a nonexceptional class in An (n ≥ 5).
If n− 2µ(C) ≥ −1, then C4 = An.

Dvir [6, 9.3] proves that Brenner’s condition is actually sufficient
for C3 = A∗

n, except for the case C = [2n/2]. The third power of all
nonexceptional classes with n− 2µ(C) ≥ −1 is thus known, except for
C = [2n/2]. We fill this gap in sections 4-6.

The second approach to products of conjugacy classes is related to
the group algebra. For a conjugacy class C ⊆ G, denote by Ĉ the
sum of elements of C in the group algebra C[G]. The set {Ĉ} is a
standard basis for the center Cent(C[G]), and the multiplication may
be computed via Burnside’s formula

(1) Ĉ1Ĉ2 =
|C1||C2|
|G|

∑
D⊆G

(∑
χ

χ(C1)χ(C2)χ(D
−1)

χ(1)

)
D̂,

where the outer sum is over all the conjugacy classes and the inner one
is over all irreducible characters. Using orthogonality of characters,
this formula may be easily generalized to

(2) Ĉ1...Ĉm =
|C1|...|Cm|

|G|
∑
D⊆G

(∑
χ

χ(C1)...χ(Cm)χ(D
−1)

χ(1)m−1

)
D̂.

Questions about covering are concerned only with the non-zero co-
efficients in (2).

We call x ∈ C[G] a distribution element, if x =
∑
αgg, where ∀g :

αg ≥ 0 and
∑

g∈G αg=1. A distribution element induces a distribution

on G, with Prob(g) = αg. If x,y are two distribution elements, then
their product xy is a distribution element, inducing the convolution of
the distributions induced by x and y.

The uniform element U = 1
|G|
∑
g is a distribution element, with the

property Ux = x for any x ∈ C[G].
The difference x − y is an element in the augmentation ideal IG =

{
∑
αgg :

∑
αg = 0}. Thus, a norm on IG may be thought of as a

distance measure between distributions.

Definition 1.2 (normalized l2 norm on G). For x =
∑
αgg ∈ IG,

define ∥x∥2 = |G| ·
∑
α2
g.
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Multiplying the standard l2 norm by |G| has the following reasoning.
Suppose x is uniform on a p-portion of the group. Then the distance
from the uniform distribution ∥x − U∥2 = 1−p

p
is independent of |G|,

as seems suited.
See [4, pp. 24-25] for a short survey on distance measures between

distributions.

Fix a conjugacy class C, and consider the process of sampling c1, ..., cκ
from C at random, and computing the product c1...cκ. The resulting

distribution is described by the distribution element ( Ĉ|C|)
κ. A theorem

which connects ( Ĉ|C|)
κ to the uniform distribution U is called a mixing

theorem.
It can be seen that ∥( Ĉ|C|)

κ − U∥2 → 0 as κ→ ∞.

But good mixing can occur even for constant κ. To describe this
more accurately, let Gn be a sequence of groups (usually |Gn| → ∞),
and Let Cn ⊆ Gn be a sequence of conjugacy classes. (We allow Cn to
be classes in supergroups G′

n ⊇ Gn, e.g. Sn ⊇ An). We say that κ is the

mixing time for {Cn} if it is minimal for ∥( Ĉn

|Cn|)
κ−Un∥ → 0 as n→ ∞.

A typical sequence would be Gn = An, and Cn some conjugacy class of
Sn defined by a generic rule. For example, the classes of transpositions
Cn = [2, 1n−2] were studied in depth by Diaconis and Shahshahani [5].
The mixing time of classes sequences is known in only a few cases. See
[8, chap. 2] for details.

Lulov, in [8], considers the classes [rn/r], and proves that the mixing
time for this sequence of classes is κ = 2 for r ≥ 3, and κ = 3 for r = 2.

The theme of this paper is a comparison between covering and mix-
ing theorems for sequences of classes. If a random process (such as
multiplying elements sampled from a conjugacy class) can reach any
element of the group, we may wonder if the process is uniform. On the
other hand, it is interesting to understand almost-uniform distributions
with probability-zero elements.

We can compare Lulov’s mixing results to what is known about cov-
ering properties of the classes [rn/r]. Note that the size of these classes
is increasing with r, so it is natural to expect υr = υ([rn/r]) and κr,
the mixing time of [rn/r], to decrease with r. According to [8] and [2],
we have:

υ2 = 4, υ3 > 2, υ4 = υn
2
= υn = 2

κ2 = 3, κ3 = κ4 = ... = κn = 2

Conjecture 1.3. υ3 = 3, υ5 = υ6 = ... = υn
3
= 2
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This paper is organized as follows. In section 2 we give an example of
a sequence of products with the covering property, but with no mixing.

In section 3 we compute [̂2n/2]
2

, deriving some new character identities.
We consider the behavior of the cycles number under this distribution,
and compare it to the cycles number under the uniform distribution.
We also reprove that [2n/2]4 = An. In sections 4–6 we describe the
classes contained in [2n/2]3: In section 4 we show that almost all classes
are contained in [2n/2]3, using technical lemmas that are proved in
section 5. In section 6 we show that the classes omitted in section 4
are indeed not contained in [2n/2]3. Chapter 7 is devoted to graph-
theoretic applications.

2. Covering without mixing

Sequences of classes which have no finite mixing time are easy to
find. For example, this is the case with bounded-support sequences,
such as Cn = [2, 1n−2]. But this type of non-mixing is easily explained
by the fact that bounded-support sequences cannot cover either (since
for large n almost all points do not move).

In this section we give an example with best cover but worst mix.
More precisely, we present a sequence {Cn} of classes all with υ(Cn) =

2, such that ∥( Ĉn

|Cn|)
κ − U∥ ̸→ 0 for any κ.

If x =
∑

g αgg is a distribution element, then χ(x) =
∑

g αgχ(g)

may be thought of as the expectation of χ(g) where g’s distribution is
determined by x. We start with a general result connecting the norm
on IG to expectancies of the irreducible characters. This result could be
derived from the Plancharel identity too. Recall the basic orthogonality
relations,

(3)
∑
C⊂G

|C|ψ1(C)ψ2(C) = |G|δψ1,ψ2

(4)
∑
χ

χ(C)χ(D−1) =
|G|
|C|

δC,D

By χ(C) we mean χ(c) for any c ∈ C.

Theorem 2.1. Let x be a central distribution element on a group G.
Then

∥x− U∥2 =
∑
χ ̸=1

|χ(x)|2.
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Proof. Write x =
∑

C αCĈ. By (4),∑
χ

χ(x)χ(D−1) =
∑
C

|C|αC
∑
χ

χ(C)χ(D−1) = |G|αD,

so αD = 1
|G|
∑

χ χ(x)χ(D
−1). Now compute

∥x∥2 = |G|
∑
C

|C|α2
C =

1

|G|
∑
ψ1,ψ2

ψ1(x)ψ2(x)
∑
C

ψ1(C
−1)ψ2(C

−1) =

=
∑
ψ1,ψ2

ψ1(x)ψ2(x)δψ1,ψ2
=
∑
χ

|χ(x)|2.

�
Corollary 2.2. If ∥x− U∥ → 0, then χ(x) → 0 for all χ ̸= 1.

Consider the process of multiplying random elements sampled from
the classes C1, ..., Cκ. We now compute χ(p) for the corresponding
distribution element p.

Theorem 2.3. Let C1, ..., Cκ be conjugacy classes, χ an irreducible
character. Then

χ

(
Ĉ1Ĉ2...Ĉκ

|C1||C2|...|Cκ|

)
=
χ(C1)χ(C2)...χ(Cκ)

χ(1)κ−1

Proof.

χ

(
Ĉ1Ĉ2...Ĉκ

|C1||C2|...|Cκ|

)
= χ

(
1

|G|
∑
D

∑
ψ

ψ(C1)...ψ(Cκ)ψ(D
−1)

ψ(1)κ−1
D̂

)

=
1

|G|
∑
ψ

ψ(C1)...ψ(Cκ)

ψ(1)κ−1

∑
D

|D|ψ(D−1)χ(D)

=
χ(C1)...χ(Cκ)

χ(1)κ−1
.

�
Note the case κ = 1, where 2.3 is the obvious χ( Ĉ|C|) = χ(C).

We apply 2.3 to the symmetric group, with the character χ0 induced
by the standard representation. Recall that χ0(σ) equals the number
of fixed points of σ, minus 1.

Theorem 2.4. Let {Cn ⊂ Sn}. If {Cn} has a finite mixing time, then
χ0(Cn)
n1−ϵ → 0 for some ϵ > 0.
In particular, if χ0(Cn) ≥ δn for some δ > 0, then {Cn} has no finite

mixing time.
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Proof. Let κ be the mixing time for {Cn}, that is, ∥( Ĉn

|Cn|)
κ −Un∥ → 0,

and take ϵ = 1
κ
. Using 2.2 and 2.3 we have

χ0(Cn)

χ0(1)1−ϵ
= κ

√
χ0(Cn)κ

χ0(1)κ−1
= κ

√√√√χ0

(
(
Ĉn
|Cn|

)κ

)
→ 0.

�

A similar lower bound for the mixing time in the variation norm
∥
∑

g αgg∥1 = supA⊆G|
∑

g∈A αg| was obtained in [10, 3.1], where char-
acter bounds are used to give an upper bound for the mixing time as
well.

Note that by the “upper bound lemma” of [5], ∥x∥1 ≤ ∥x∥.

As for the promised covering-but-not-mixing sequence, take Cn =
[3n, 1n] ⊂ A4n.

By [2, 6.12] C2
n = A4n, while by 2.4 Cn has no finite mixing.

3. The second and forth powers of [2n/2]

In this section we compute [̂2n/2]
2

and [2n/2]
4
. We assume throughout

that n is an even number.
To get some feeling of the size of [2n/2] we start with a numerical

fact.

Remark 3.1. |[2n/2]| = n!

2
n
2 (n

2
)!
, so |[2n/2]|2

|Sn| = 2−n
(
n
n/2

)
≈
√

2
πn
.

If λ = [1a1 , 2a2 , ...] ⊆ Sn
2
is a conjugacy class, denote by 2λ =

[12a1 , 22a2 , ...] ⊆ Sn the ”double” conjugacy class.

Theorem 3.2. [2n/2]
2
equals the union of classes of the form 2λ, λ ⊆

Sn
2
.

We actually prove a more exact statement. Recall that CentG(C)
is the centralizer of an element from C in the group G. The choice of
element is irrelevant for the size of the centralizer.

Theorem 3.3. [̂2n/2]
2

=
∑

λ⊆Sn/2
2−µ(λ)

|CentSn (2λ)|
|CentSn/2

(λ)| 2̂λ.

Proof. Denote C = [2n/2]. Let G2 denote the collection of all (loopless)
2-colored 2-regular graphs on n points. Name the two colors ”red” and
”blue”. We establish one correspondence between C × C and G2, and
another between G2 and the union of the classes 2λ of Sn, λ ⊆ Sn

2
.
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Let σ1, σ2 ∈ [2n/2]. Construct a 2-colored graph on n points, by
connecting the couples i, σ1(i) with red edges, and the couples i, σ2(i)
with blue edges. The resulting graph is 2-regular since vertex i is
connected only to the two vertices σ1(i),σ2(i). Obviously this map
C × C → G2 is bijective.

Now define a map from G2 to
∪
(2λ), as follows. Let g ∈ G2 be

a graph. Clearly g is the union of even-length cycles. Map g to the
product σ1σ2 for the corresponding (σ1, σ2) ∈ C × C. Fix a cycle of
length 2m, and number the points from 0 to 2m−1, such that 0 ↔ 1 is
a blue edge. Then σ1σ2 shifts k 7→ k + 2 for even k, and k 7→ k − 2 for
odd k. As a permutation, it has two cycles of length m in the action on
{0, ..., 2m − 1}. This is true for any cycle of g, so σ1σ2 ∈ 2λ for some

λ ⊆ Sn
2
. This proves [̂2n/2]

2

=
∑

λ⊆Sn
2

αλ2̂λ (which is theorem 3.2).

To compute the coefficients, fix some σ ∈ 2λ = [n2α1
1 , ..., n2αt

t ]. We
count the graphs g ∈ G2 that correspond to σ. For any i, the 2αi cycles

of length ni of σ can be coupled in (2αi)!
2αiαi!

ways. In any couple, the two
cycles may be attached in ni ways, and this attachment determines a
cycle of length 2ni in a graph. Multiplying the numbers of ways to get

graphs we get
∏t

i=1
(2αi)!
2αiαi!

nαi
i , which is the number of ways σ ∈ 2λ can

be expressed as a multiplication σ1σ2, σ1, σ2 ∈ [2n/2]. So this is the

coefficient of 2̂λ.
To finish we note that |CentSn(2λ)| =

∏
(2αi)!n

2αi
i and |CentSn

2
(λ)| =∏

αi!n
αi
i , so 2−µ(λ)

|CentSn (2λ)|
|CentSn/2

(λ)| = 2−
∑
αi

∏
(2αi)!n

2αi
i∏

αi!n
αi
i

=
∏ (2αi)!

2αiαi!
nαi
i . �

Example 3.4. We demonstrate the theorem in the case n = 8. Sn
2
=

S4 has the five classes [4], [3, 1], [22], [2, 12], [14], and

[̂24]
2

=
1

2

|CentS8([4
2])|

|CentS4([4])|
[̂42] +

1

4

|CentS8([3
2, 12])|

|CentS4([3, 1])|
[̂32, 12] +

+
1

4

|CentS8([2
4])|

|CentS4([2
2])|

[̂24] +
1

8

|CentS8([2
2, 14])|

|CentS4([2, 1
2])|

[̂22, 14] +

+
1

16

|CentS8([1
8])|

|CentS4([1
4])|

[̂18] =

= 4[̂42] + 3[̂32, 12] + 12[̂24] + 6[̂22, 14] + 105[̂18].

Counting elements in both sides of the equation in theorem 3.3, we
get the following nice result.

Corollary 3.5.
∑

λ⊆Sn
2−µ(λ)|λ| = (2n)!

22nn!
.
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Proof. For convenience, we prove this identity for n
2
instead of n. Using

|CentG(C)| = |G|
|C| for G = Sn and for G = Sn

2
we get

n!2

2n(n
2
)!2

= |[2n/2]|2 =
∑

λ⊆Sn/2

2−µ(λ)
|CentSn(2λ)|
|CentSn/2

(λ)|
|2λ| =

=
∑

λ⊆Sn/2

2−µ(λ)
n!/|2λ|
(n
2
)!/|λ|

|2λ| = n!

(n
2
)!

∑
λ⊆Sn/2

2−µ(λ)|λ|.

�

This last corollary, as well as the obvious
∑

λ⊆Sn
|λ| = n!, are the

instances α = 1
2
and α = 1 of the following.

Proposition 3.6 ([9, 4.3(8)]). For any α,∑
λ⊆Sn

αµ(λ)|λ| =
∑

σ∈Sn
αµ(σ) = α(α + 1)(α + 2)...(α+ (n− 1)).

Comparing theorem 3.3 to Burnside’s formula produces an interest-

ing character identity. The coefficient of 2̂λ in [̂2n/2]
2

, which is by

Burnside |[2n/2]|2
|Sn|

∑
χ
χ([2n/2])2χ(2λ)

χ([1n])
, was computed in theorem 3.3. We

get

Corollary 3.7. For any class λ ⊆ Sn
2
,

∑
χ

χ([2n/2])2χ(2λ)

χ([1n])
= 2n−µ(λ)

|CentSn(2λ)|
|CentSn/2

(λ)|
1(
n
n/2

) .
Example 3.8.

• Take λ = [n
2
], the class of maximal length cycles in Sn

2
. Then∑

χ

χ([2n/2])2χ([(n
2
)2])

χ([1n])
= 2n−1n

( n
n/2)

.

• Assume n
2
is even, and take λ = [2n/4] ⊆ Sn

2
. Then 2λ = [2n/2]

and
∑

χ
χ([2n/2])3

χ([1n])
= 2n

(n/2
n/4)
( n
n/2)

(n
4
)!. For example,

∑
χ
χ([24])3

χ([18])
=

28
(42)
(84)

2! = 3·29
5·7 . If n

2
if odd, then [2n/2] is an odd class and∑

χ(
χ([2n/2])3

χ([1n])
) = 0

A hook formula for |χ([2n/2])|, for any character χ (and more gener-
ally for |χ([rn/r])| for any r dividing n), was recently given by Fomin
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and Lulov [7]. They also give the bound |χ([2n/2])| < c · n 1
4

√
χ([1n])

for c = (π
2
)1/4 + ξ.

Let U be the uniform distribution on Sn, and denote en(α) = EU(α
µ(σ)),

the expectancy of αµ(σ) where σ is uniformly distributed.
Theorem 3.6 is equivalent to the statement en(α) =

(
α+n−1

n

)
.

Using 3.3 we can give a similar result for the distribution p2, where

p = [̂2n/2]

|[2n/2]| is the uniform distribution on [2n/2].

Proposition 3.9. Ep2(α
µ(σ)) = 2n(n

2
)!en

2
(α

2

2
).

Proof. If q =
∑
ασσ is a distribution element and f is a function

defined on the group, then the expectancy Eq(f) is
∑
ασf(σ). If q =∑

αλλ̂ is uniform on conjugacy classes and f is a class function, then
Eq(f) =

∑
αλ|λ|f(λ). By theorem 3.3

p2 =
[̂2n/2]

2

|[2n/2]|2
=

1

|[2n/2]|2
∑
λ⊆Sn

2

2−µ(λ)
|CentSn(2λ)|
|CentSn/2

(λ)|
2̂λ

so, as in the proof of corollary 3.5,

Ep2(α
µ(σ)) =

1

|[2n/2]|2
∑

λ⊆Sn/2

2−µ(λ)
|CentSn(2λ)|
|CentSn/2

(λ)|
· |2λ|α2µ(λ) =

=
2n(n

2
)!

n!

∑
λ⊆Sn/2

|λ|(α
2

2
)µ(λ) = 2n

(n
2

)
!en

2

(
α2

2

)
.

�
Expectancy over p2 can be used to give another proof for Lulov’s re-

sult [8, 6.2], that the mixing time of [2n/2] is greater than 2: Ep2((−1)µ(σ)) =
1, while EU((−1)µ(σ)) = 0. (This is also obvious from 3.1).

A related result is the following ([2, 5.02]): Let C ⊂ Am. Then for
large enough n, υ(C ⊕ [2n]) > 2.

We end this section with

Theorem 3.10. [2n/2]4 = An.

Proof. Denote by N the set on which An acts. Let σ ∈ An, then σ
must have an even number of cycles of even length. Likewise, since n
is even, the number of odd-length cycles is also even. It follows that
one can write N = N1 ∪ ... ∪ Nt, a disjoint partition, with |Ni| even
and σ restricted to ni the product of two cycles.
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We show that σ′ = (x1 ... xk)(yk+1 ... y2m) ∈ [2m]4. Indeed,

(x1yk+1)(ymy2m) · (x1x2...xkyk+1...ym−1y2m)(ymym+1...y2m−1) =

= (yk+1...ym−1ymym+1...y2m)(x1...xk) = σ′,

the permutations we used belong to [22, 12m−4], [m2] ⊆ [2m]2.
With this we finish the proof, since [2m]⊕ [2m

′
] ⊆ [2m+m′

]. �
Note that 3.10 is a special case of Brenner’s theorem mentioned in

the introduction.

4. [2n/2]3

Let S denote the collection of all conjugacy classes in all the symmet-
ric groups Sn. Define a direct sum operation on S by [1a1 , ..., kak ] ⊕
[1b1 , ..., kbk ] = [1a1+b1 , ..., kak+bk ]. Under this operation S becomes an
(N-graded) semigroup with cancellation. We define a division rela-
tion, C|D iff there exist E ∈ S such that D = C ⊕ E. This (unique)
E is denoted C−1D.

From now on A∗
n is the coset of An in Sn that contains [2n/2].

We mark some important subsets of S. Write A∗ for the collection
of classes in all A∗

n, even n, and F for the union of all [2n/2]3. Note
that F ⊆ A∗ are subsemigroups of S.

Denote by E the collection of classes

E = {[35, 1], [3, 11+4k], [4, 3, 13+4k], [5, 13+4k], [3, 2, 11+4k], [3, 2k, 1], [5, 3, 2k] : k ≥ 0}.
It is easy to check that E ⊆ A∗. Denote by En the set of members of

E which are classes in Sn. Note that En contains 4 classes for n ≥ 8,
n ̸= 16, while |E16| = 5, E6 = {[3, 2, 1]}, E4 = {[3, 1]} and E2 is empty.

We will show F = A− E , that is,

Theorem 4.1. Let n be even, C ⊆ A∗
n. Then C ⊆ [2n/2]3 iff C ̸∈ En.

In this section we prove that A− E ⊆ F .

We now introduce a certain equivalence relation on the set of natural
numbers. This relation induces an epimorphism from S to a semigroup
Ŝ, which will be useful in the sequel.

Denote Π = {1̂, 2̂, 3̂, 4̂, 5̂, 6̂, 7̂, 9̂}, where 1̂ = {1}, 2̂ = {2}, 3̂ = {3},
4̂ = {k ≡ 4 (mod 4) : k ≥ 4}, 5̂ = {5}, 6̂ = {k ≡ 6 (mod 4) : k ≥ 6},
7̂ = {k ≡ 7 (mod 4) : k ≥ 7}, 9̂ = {k ≡ 9 (mod 4) : k ≥ 9}. Π is a
partition of N.

We use the standard notation for conjugacy classes of Sn, with mem-
bers of Π instead of numbers. If a1, ..., at ∈ Π, [a1, ..., at] = {[n1, ..., nt] :
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ni ∈ ai}. If P is such set of classes, write nx = nx(P ) for the number
of appearances of x̂ in P . Of course, the numbers nx(P ) determine P .

Denote by Ŝ the collection of classes [a1, ..., at], ai ∈ Π. Ŝ is a
partition of S, and the map from C ∈ S to the corresponding class in
Ŝ is a semigroup epimorphism. Ŝ is a semigroup with cancellation too,
and the division relation may be defined on Ŝ as well.

Let P ∈ Ŝ. Then
(5) n1 + n3 + n5 + n7 + n9 ≡ 0 (mod 2)

since classes in P act on an even number of points, and

(6) (n1 + n5 + n9)− (n3 + n7) ≡ 2n4 (mod 4)

since a class C ∈ P , C ⊂ A∗
n, have the same sign as [2n/2].

In section 5 we prove several results of the form ”P ⊆ F” for P ∈ Ŝ.
We use these results to prove the following lemmas.

Lemma 4.2. Let P ∈ Ŝ, and assume n3(P ) is odd. Then one of the
following holds.

(a) There exist P0|P , P0 ⊆ F , such that n3(P
−1
0 P ) is even, and,

moreover, P−1
0 P ̸= [5̂, 1̂m] (m ≥ 1), or

(b) n6 = n7 = n9 = 0, and also n1 + n5 = 1 or n3 = 1.

Proof. First assume n6 + n7 + n9 > 0.

• n9 > 0:
– P = [9̂, 5̂, 3̂, 1̂m], m ≥ 1: m ≥ 3 by (6), so take P0 =
[9̂, 5̂, 3̂, 1̂3] (∈ F by 5.9).

– Otherwise: Take P0 = [9̂, 3̂] (by 5.4).
• n9 = 0, n7 > 0:

– n1, n5 ≥ 1:
∗ P = [7̂, 5̂2, 3̂, 1̂m], m ≥ 2: Take P0 = [7̂, 3̂, 1̂2] (5.9).
∗ Otherwise: Take P0 = [7̂, 5̂, 3̂, 1̂] (5.9).

– n5 = 0 or n1 = 0:
∗ n4 > 0: Take P0 = [7̂, 4̂, 3̂] (5.6).
∗ n4 = 0:

· n1 + n5 ≥ 2: Take P0 one of [7̂, 5̂2, 3̂],[7̂, 3̂, 1̂2]
(5.9).

· Otherwise: by (6), n3+n7 ≥ 4, and n3 is odd by
assumption. Take P0 one of [7̂, 3̂

3] or P0 = [7̂3, 3̂]
(5.5).

• n7 = n9 = 0, n6 > 0:
– n5 = 1 or n1 = 0: n1 + n5 is odd by (6), so in any case
P0 = [6̂, 5̂, 3̂] divides P . P0 ∈ F by 5.9.
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– Otherwise: Take P0 = [6̂, 3̂, 1̂] (5.9).

We may now assume n6 = n7 = n9 = 0. Assume (b) does not hold,
that is n3 ≥ 3 and n1 + n5 ≥ 3.

• n5 ≤ 3: take P0 = [5̂n5 , 3̂3, 1̂3−n5 ] (5.10).
• n5 = 4: n1 ≥ 1 (since n1 + n5 is odd), so take P0 = [5̂2, 3̂3, 1̂]
(5.10).

• n5 > 4: take P0 = [5̂3, 3̂3] (5.10).

�

Lemma 4.3. Assume P ̸= [5, 1m] (m ≥ 1), and n3(P ) is even. If
n5(P ) is odd, than there exist P0|P , P0 ⊆ F , such that n3(P

−1
0 P ) and

n5(P
−1
0 P ) are both even.

Proof. Separate to cases.

• n7 > 0: Take P0 = [7̂, 5̂](∈ F by 5.4). We may now assume
n7 = 0, so n1 + n9 is odd.

• n3 > 0: Then n3 ≥ 2, so take P0 = [5̂, 3̂2, 1̂] (5.10) or P0 =
[9̂, 5̂, 3̂2] (5.9). Assume n3 = 0.

• n5 ≥ 3: Take P0 = [5̂3, 1̂] or P0 = [9̂, 5̂3] (by 5.5). Assume
n5 = 1.

• n4 > 0: Take P0 = [5̂, 4̂, 1̂] or P0 = [9̂, 5̂, 4̂] (5.6). Assume
n4 = 0.

• n9 > 0: By (6) n1+n9 ≥ 3, so take P0 = [9̂, 5̂, 1̂2], P0 = [9̂2, 5̂, 1̂]
or P0 = [9̂3, 5̂] (5.5). Assume n9 = 0.

Since P ̸= [5̂, 1̂m], n2 + n6 > 0, so take P0 = [5̂, 2̂, 1̂3] (5.10) or
P0 = [6̂, 5̂, 1̂3] (5.9). �

Lemma 4.4. Assume n3(P ) and n5(P ) are even. Then P ⊆ F .

Proof. We show that there exist P0|P such that P0 ⊆ F , and n3(P
−1
0 P ),

n5(P
−1
0 P ) are even. The proof is then finished by induction on n1 +

...+ n9.
Assume, on the contrary, that no such P0 exist. Then each of the

following holds.

• n7 is even, for if n7 is odd than by (5) n1 + n9 is also odd, so
take P0 = [7̂, 1̂] or P0 = [9̂, 7̂] (5.4).
By (5) n1 + n9 must now be even too.

• n1 + n5 + n9 ≤ 2, by 5.5 and the assumption that n5 is even.
• n3 + n7 ≤ 2, by 5.5.
• n2 = n6 = 0 by 5.2.
• n4 ≤ 1 by taking P0 = [4̂2] (5.3).
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• n4 = 0, for if n4 = 1 then by (6) exactly one of n1+n5+n9 and
n3 + n7 equals 2; by 5.6 one may take P0 one of [4̂, 1̂2], [9̂, 4̂, 1̂],
[9̂2, 4̂], [5̂2, 4̂], [4̂, 3̂2], [7̂2, 4̂].

So far we see that n1+n5+n9 = n3+n7 ≤ 2. Note that n1+n5+n9,
n3 + n7 are both even.

Suppose n1+n5+n9 = n3+n7 = 2. Then P is one of [9̂2, 7̂2], [9̂2, 3̂2],
[7̂2, 5̂2], [7̂2, 1̂2], [9̂, 7̂2, 1̂] (in F by 5.4), [3̂2, 1̂2], [5̂2, 3̂2] (5.10), or [9̂, 3̂2, 1̂]
(5.9). �

Proof of theorem 4.1, the A− E ⊆ F part. Wemay assume P ̸= [5, 1m].
If n3 is odd and the condition 4.2(a) is satisfied, or n3 is even, then by
lemmas 4.2-4.4 P can be decomposed as a direct sum P = P0⊕P1⊕P2

with P0, P1, P2 ∈ F , and we are done.
Now assume n3 is odd and 4.2(b) holds. In any of the following cases

we find P0|P such that P−1
0 P does not have this property, so we are

again in the first case.

• n4 ≥ 2. Then take P0 = [5̂, 4̂2, 3̂] or P0 = [4̂2, 3̂, 1̂] (5.8).
• n4 = 1, By (6) n1 + n5 ≡ n3 + 2 (mod 4). Recall that by
assumption n3 = 1 or n1 + n5 = 1.

– n5 > 0: take P0 one of [5̂, 4̂, 3̂, 1̂2],[5̂2, 4̂, 3̂, 1̂], [5̂3, 4̂, 3̂] or
[5̂, 4̂, 3̂3] (5.7).

– n5 = 0:
∗ n3 = 1 and n1 ≡ 3 (mod 4): If n2 ≥ 1 take P0 =
[4̂, 3̂, 2̂, 1̂3] (by 5.7. the case n2 = 0 is in E).

∗ n1 = 1 and n3 ≡ 3 (mod 4): Take P0 = [4̂, 3̂3, 1̂]
(5.7).

• n4 = 0. By (6) n1 + n5 ≡ n3 (mod 4), and by assumption
n3 = 1 or n1 + n5 = 1.

– n3 = 1: The cases n1+n5 = 1 are in E , so assume n1+n5 ≥
5.

∗ n5 > 0: Take P0 one of [5̂5, 3̂], [5̂4, 3̂, 1̂], [5̂3, 3̂, 1̂2],
[5̂2, 3̂, 1̂3], [5̂, 3̂, 1̂4] (5.10).

∗ n5 = 0: necessarily n1 ≥ 5, so take P0 = [3̂, 2̂2, 1̂5]
(by 5.10), unless n2 = 0, 1, cases which are in E .

The cases n1 +n5 = n3 = 1 are in E , so we assume n3 ≥ 5.
– n1 = 0, n5 = 1. Take P0 = [5̂, 3̂5] (5.10).
– n1 = 1, n5 = 0.

∗ n2 > 0: Take P0 = [3̂5, 2̂, 1̂] (5.10).
∗ n2 = 0: If n3 ≥ 9 take P0 = [3̂9, 1̂] (by 5.10. n3 = 5
is in E).

�



14 UZI VISHNE

5. Computations in [2n/2]3

In this section we provide the list of classes in F used in the proof
of lemmas 4.2-4.4.

We deal with collections P ∈ Ŝ, where we should prove P ⊂ F .
Sometimes we prove more than that: let F0 be the union of all [2n/2] ·
[(n

2
)2]. By 3.2, F0 ⊆ F , and some of the claims in this section are of

the form P ⊂ F0.
Permutations are multiplied from the left (like composition of func-

tions).
If σ acts on a set containing a letter x, write lσ(x) for the length of

the cycle in σ containing x.

Insertion lemma 5.1. Let τ ∈ [2n/2], σ ∈ [(n
2
)2], so that π = τ ·σ ∈ F0

by definition.
Let [a1, a2, . . . , ak] be the class containing π.
a. If the cycle of length a1 is not contained in one cycle of σ, then

for any m, [a1 + 4m, a2, . . . , ak] ⊂ F0.
b. If the cycles of length a1, a2 are not contained both in the same

cycle of σ, then for any m, [a1 + 2m, a2 + 2m, a3, . . . , ak] ⊂ F0.

Proof. Write σ = (. . . AB . . . )(. . . CD . . . ), so

π : A 7→ τ(B), C 7→ τ(D).

Let x, y, z, u be new four letters, and take

τ ′ = τ · (xy)(zu),
σ′ = (. . . AxzB . . . )(. . . CyuD . . . ),

π′ = τ ′ · σ′.

Then
π′ : A 7→ y 7→ z 7→ τ(B), C 7→ x 7→ u 7→ τ(D),

so π′ has the cycle structure of π except for the cycles containing A
and B, each one of them now longer by 2 (4 if this is the same cycle).

These new cycles are again not contained in the same cycle of σ (e.g.
y and z are in the same cycle of π′ but not of σ), so the procedure can
be carried out m times, as required. �

Using the insertion lemma we can expand any computation of the
form τ · σ = π to a claim of more general type.

Lemma 5.2. If n ≡ 2 (mod 4), then [n] ∈ F0.

Proof. Start with (12) ·Id = (12). Note that 1 and 2 belong to different
cycles of the identity, so by the insertion lemma we get [2 + 4m] ∈
F0. �
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This is equivalent to [2̂], [6̂] ⊂ F0.

Lemma 5.3. If n,m are even, n ≡ m (mod 4), then [n,m] ∈ F .

Proof. (12)(34) · (13)(24) = (14)(23). Insertion lemma on one cycle
handles the case n ≡ m ≡ 2 (mod 4), while one insertion on both
cycles bring us to the n ≡ m ≡ 0 (mod 4) case. �

This is equivalent to [2̂2], [2̂, 6̂], [6̂2], [4̂2] ⊂ F . The rest of the lemmas
can be interpreted in this language as well.

Lemma 5.4. If n,m are odd, n ̸≡ m (mod 4), and {n,m} ̸= {1, 3}, {3, 5},
then [n,m] ∈ F .

Proof. Assume n ≡ 1 (mod 4), m ≡ 3 (mod 4). If n ≥ 9, use the
insertion lemma with

(18)(23)(4A)(59)(6B)(7C) · (13579B)(2468AC) = (1A6)(25B834C97).

If n ≤ 5 then m ≥ 7 by assumption, so use insertion on

(15)(28)(34)(67) · (1357)(2468) = (1784536)(2)

or

(1C)(29)(37)(45)(6A)(8B) · (13579B)(2468AC) = (12BA8)(394756C).

�
Lemma 5.5. If n1, n2, n3, n4 are odd, ni ≡ nj mod 4, and {n1, . . . , n4} ≠
{1, 1, 1, 5}, then [n1, n2, n3, n4] ∈ F .

Proof. If n1, . . . , n4 ≡ 3 (mod 4), use insertion on cycles of

(1A)(28)(3C)(47)(5B)(69)·(13579B)(2468AC) = (1C5)(2A3)(498)(6B7).

Assume n1, . . . , n4 ≡ 1 (mod 4), and n1 ≤ n2 ≤ n3 ≤ n4.

• n1 = n2 = n3 = 1. By assumption n4 ≥ 9, so use

(18)(2C)(3B)(46)(5A)(79)·(13579B)(2468AC) = (1A7B5C483)(2)(6)(9).

• 1 = n1 = n2 < n3 ≤ n4. Use insertion on

(13)(2C)(45)(67)(89)(AB)·(13579B)(2468AC) = (1569A)(2)(3)(478BC).

• 1 = n1 < n2 ≤ n3 ≤ n4. Use insertion on

(17)(23)(48)(AC)(5E)(Ba)(9D)(6F ) · (13579BDF )(2468ACEa) =
= (128C5)(3EB9a)(4F7D6)(A).

• 5 ≤ n1 ≤ n2 ≤ n3 ≤ n4. Use insertion twice on the cycles
(2)(3) of the case 1 = n1 = n2 < n3 ≤ n4, and continue from
that point.

�
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Lemma 5.6. If n,m are odd, n ≡ m (mod 4), and k ≡ 0 (mod 4),
then [k, n,m] ∈ F .

Proof. Consider

(13)(25)(46) · (152)(364) = (1234)(5)(6).

Using insertion on the cycles (5)(6), we get a member of [4, 32], on
which insertion can be applied again. Now use insertion on one cycle
to finish all cases with n,m > 1.

For the case m = 1, n ≥ 5 use insertion on

(15)(29)(36)(48)(7A) · (19745)(26A38) = (1234)(5)(6789A).

�
Lemma 5.7. Suppose n1, n2, n3, n4 are odd, n1+ · · ·+n4 ≡ 2 (mod 4),
and k ≡ 0 (mod 4). If {n1, . . . , n4} ≠ {3, 1, 1, 1} then [k, n1, n2, n3, n4] ∈
F .

Also [k, 3, 2, 1, 1, 1] ∈ F .

Proof. By assumption, 3 of the ni are equivalent to 1 mod 4 and one
to 3 mod 4, or vice versa.

Successive insertions in

(1A)(2E)(36)(48)(5B)(7D)(9C) · (1AD26E9)(38C74B5) =

= (1)(23456)(789A)(B)(CDE)

and the equality

(19)(27)(3D)(48)(5B)(6A)(CE) · (17BEC38)(2D5A496) =

= (1234)(567)(89A)(BCD)(E)

prove all cases with ni ≤ 5. The other cases may be seen by more
insertions, or by direct sum of 5.4 and 5.6.

For [k, 3, 2, 1, 1, 1] ∈ F use

(1A)(2B)(36)(47)(58)(9C) · (1B264A)(378C95) =

= (1234)(567)(89)(A)(B)(C).

�
Lemma 5.8. Suppose n,m are odd, n ̸≡ m (mod 4), and k1, k2 ≡ 0
(mod 4). Then [k1, k2, n,m] ∈ F .

Proof. Insert in

(1A)(27)(35)(4C)(6B)(89) · (17983C)(25B4A6) =

= (1234)(5678)(9)(ABC).

�
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Lemma 5.9. a. Let k ∈ 6̂. Then [k, 5, 3], [k, 3, 1], [k, 5, 13] ∈ F .
b. Let k ∈ 7̂. Then [k, 52, 3], [k, 5, 3, 1], [k, 3, 12] ∈ F .
c. Let k ∈ 9̂. Then [k, 32, 1], [k, 5, 32], [k, 5, 3, 13] ∈ F .

Proof. a. Insertion in

(15)(2A)(36)(48)(7E)(9C)(BD) · (1ADBE74)(26538C9) =
= (123456)(789AB)(C)(D)(E)

and in

(17)(26)(3A)(48)(59) · (16749)(2A385) = (123456)(789)(A).

b. Insertion in

(15)(26)(3C)(48)(79)(AB) · (169BA4)(2C3875) =
= (1234567)(89A)(B)(C).

c. Insertion in

(1c)(2e)(3a)(4B)(5F )(6D)(7A)(8C)(9E)(bd)·
·(1e2adb5D9c)(3B8E7C6A4F ) =

= (123456789)(ABCDE)(Fab)(c)(d)(e)

and insertion in

(1D)(2B)(3F )(4a)(58)(6E)(7A)(9C) · (1B9D6A2F )(3a48C75E) =

= (123456789)(ABC)(DEF )(a).

�
The last lemma collects some special cases left untreated.

Lemma 5.10. The following classes are all in F0:
a. [32, 12], [5, 32, 1], [52, 32].
b. [5, 2, 13].
c. [5i, 33, 13−i] (0 ≤ i ≤ 3), [5i, 3, 15−i] (1 ≤ i ≤ 5), [5, 35].
d. [35, 2, 1].
e. [3, 22, 15].
f. [39, 1].

Proof. a. Insert once and twice in

(18)(24)(35)(67) · (1438)(2576) = (123)(456)(7)(8).

b. Insert in (19)(24)(36)(58)(7A)·(14859)(26A73) = (12345)(67)(8)(9)(A).
c. Several insertions in

(14)(25)(36)(7A)(8B)(9C) · (152634)(7B9A8C) =

= (123)(4)(5)(6)(789)(ABC)
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and in

(18)(2B)(36)(4A)(59)(7C) · (1B26C7)(3A4958) =

(12345)(678)(9)(A)(B)(C).

d. Insert in

(1D)(2A)(38)(4a)(5E)(69)(7B)(CF )(bc)·

·(1A73D59BF )(286acb4EC)

= (123)(456)(789)(ABC)(DEF )(ab)(c).

e. Insert in

(1B)(29)(3C)(46)(5A)(78) · (192C3B)(4A5687) =

= (123)(45)(67)(8)(9)(A)(B)(C).

f. Insert in

(1m)(2b)(3B)(4j)(57)(6i)(8D)(9C)(Ad)(Ek)(Fl)(ah)(ce)(fg)·

·(1bega2B95ifA3m)(47DkF8Cdch6jEl) =

= (123)(456)(789)(ABC)(DEF )(abc)(def)(ghi)(jkl)(m).

�

6. Classes outside [2n/2]3

In this section we finish the proof of theorem 4.1, by showing that
none of the classes in E (as defined in section 4) is contained in [2n/2]3.

We first state that [35, 1] ̸⊆ [28]3. This can be checked by using

Burnside’s formula (2) to compute the coefficient of [̂35, 1] in [̂28]
3
,

which turns out to be zero.
Another way is to fix a representative π ∈ [35, 1], count through all

the |[28]| = 2027025 members τ ∈ [28], and use 3.2 to check whether
τ · π ∈ [28]2 (no, it is not).

We will now show that classes with many fixed points in E are not
contained in [2n/2]3.

The key is the following cute fact.

Lemma 6.1. Let π = σ1σ2σ3, σi ∈ [2n/2].
If, for some point x, ∀i : π(σi(x)) = σi(x), then π(x) = x.
More generally, if any 3 of the points {x, σ1(x), σ2(x), σ3(x)} are fixed

under π, then so is the forth.
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Proof. Construct a 3-regular graph, as in the proof of theorem 3.3: a
point y is connected to σi(y) in color #i.

From π(σ3(x)) = σ3(x) we see that σ2(x) and σ3(x) are connected
with color #1. From π(σ1(x)) = σ1(x) we see that σ1(x) and σ2(x) are
connected with color #3.

From π(σ2(x)) = σ2(x) we now see that σ1(x) and σ3(x) are con-
nected with color #2. By traveling on the resulting graph, we see that
π = σ1σ2σ3 takes x to itself.

The other cases are proved by similar arguments. �
Theorem 6.2. Let C = C0⊕ [1k] ⊆ [2n/2]3, where C0 is fixed-point free
on m points, m ≤ k.

Then C0 ⊕ [1m] ⊆ [2n/2]3.

Proof. Let π ∈ C ⊆ [2n/2]3. Construct the 3-regular graph as above.
Let A be the support of π (so |A| = m), and A ∪ B the connected
component containing A, A ∩B = ϕ.

We count connections from A to B. First, any point in A must have
at least one connection to another point in A (otherwise it would be a
fixed point by 6.1). Again by 6.1, a point in B cannot have exactly one
connection to A, so any point in B must have at least two connections
to A.

The points in A have 3|A| connections all together, so
3|A| ≥ |A|+ 2|B|,

and thus |B| ≤ |A| = m.
Write π = σ1σ2σ3, σi ∈ [2n/2]. The claim is proved by observing that

all permutations can be restricted to A ∪B. �
Corollary 6.3. [311+4k], [4, 3, 13+4k], [5, 13+4k], [3, 2, 11+4k] are not in
[2n/2]3 for any n.

Proof. By 6.2 we need only check the following claims: [3, 1] ̸⊆ [22]3,
[4, 3, 13] ̸⊆ [25]3, [4, 3, 17] ̸⊆ [27]3, [5, 13] ̸⊆ [24]3, [3, 2, 1] ̸⊆ [23]2,
[3, 2, 15] ̸⊆ [25]2.

This may be done directly. �

It remains to show that [3, 2m, 1], [5, 3, 2m] ̸⊆ [2n/2]3.
Let π = σ1σ2σ3, σi ∈ [2n/2]. By 3.2, the cycles of σ2σ3 come in pairs,

where the cycles of a pair have the same length.
We refer to the length of the cycle of a point x in π as the order of

x.
Note that if {x1, x2, . . . , xm} are order-2 points on the same cycle

of σ2σ3, with σ2σ3(xi) = xi+1 (1 ≤ i < m), then σ2σ3(σ1(xi+1)) =
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σ2
1σ2σ3σ1σ2σ3(xi) = σ1π

2(xi) = σ1(xi), so {σ1(xm), . . . , σ1(x2), σ1(x1)}
are on a cycle of σ2σ3.

This simple observation has quite important consequences. First of
all, if all points on a cycle of σ2σ3 have order 2, then the σ1-image of
this cycle is also a full cycle, and this pair of cycles may be omitted
from expressions like π = σ1σ2σ3 (as in 6.2).

Other corollaries are the following:
(a) If, on a cycle of σ2σ3, there is one point of order d > 2 and all the

rest are of order 2, then the image of the cycle is part of a larger cycle.
On this larger cycle there are at least two different points of order d.

(b) If x is a point of order 2 and x, π(x) belong to the same σ2σ3-
cycle, then on the section x → π(x) of the cycle there is an order-1
point, or at least two points of order d > 2. Note that this argument
can be applied to π(x) as well.

We can now prove

Theorem 6.4. [3, 2n/2−2, 1] ̸⊆ [2n/2]3.

Proof. Assume, on the contrary, that π = σ1σ2σ3 for σ1 ∈ [2n/2], σ2σ3 ∈
[2λ], while π ∈ [3, 2n/2−2, 1].

By the above remarks, we may assume that on each cycle of σ2σ3
there is some point of order ̸= 2. Let x be the point with π(x) = x.
If (σ2σ3)

−1(x) has order 3, then so is σ1(x) = π(σ2σ3)
−1(x), and these

two points are on the same cycle as x. Otherwise (σ2σ3)
−1(x) has order

2, so the assumptions of (b) above are satisfied, and again there are (at
least) two points of order 3 on this cycle.

In any case there is only one non-order-2 point left, so we may assume
that σ2σ3 has only two cycles. By (a) they cannot have the same length,
which contradicts theorem 3.2. �

By similar arguments (much more elaborated, though), we could
prove [5, 3, 2n/2−4] ̸⊆ [2n/2]3. With this theorem 4.1 is proved.

7. Graph-theoretic applications

In this section, the connection between graphs and powers of [2n/2]
is used to motivate a classification of regular colorable graphs.

If g is a graph, we denote by gV the set of vertices, and by gE the
set of edges (gE ⊆ gV × gV ).

An edge m-coloring of g is a function α : gE → {1, · · · ,m}, such
that edges e, f ∈ gE with common vertex satisfy α(e) ̸= α(f). α(e) is
the color of e.

Let Gm be the collection of m-regular loopless graphs.
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If g ∈ Gm is a graph and α is an m-coloring of g, then σi (i =
1, · · · ,m) is defined by transferring vertex x to its neighbor along an
edge with color i. Note that not all m-regular graphs are m-colorable.

For 3-regular graphs, we define the following invariant.

Definition 7.1. Let g ∈ G3 be a graph on n vertices, α a 3-coloring of
g. Then ψ(g, α) is the conjugacy class of Sn defined by

ψ(g, α) = [σ1σ2σ3].

We require ψ(g, α) to be independent of the order of colors. Indeed,

σ1σ2σ3 = σ1(σ2σ3σ1)σ
−1
1

and
σ1σ2σ3 = (σ3σ2σ1)

−1.

Since (123) and (13) generate S3, we see that ψ(g) is indeed invariant
under reordering the colors.

Example 7.2. Let G be a group generated by three elements a, b, c
of order 2. Then the Cayley graph of G is 3-regular with natural 3-
coloring, and ψ(G) = [r|G|/r] where r is the order of abc.

ψ may be used, for example, to prove that two given graphs are non-
isomorphic. More details can be obtained from considering various
colorings of the same graph.

Theorem 4.1 can be formulated in the following way:

Theorem 7.3. There exist (g, α) on n vertices with ψ(g, α) = C iff
C ⊆ A∗

n and C ̸∈ En.

Let (g, α) be a 3-colored 3-regular graph.
Let R be an equivalence relation on gV such that x ≡ y implies

σi(x) ≡ σi(y). The quotient graph (g/R, α) is defined as the graph
on gV /R with the induces coloring.

If g, g′ are disjoint colored graphs, then ψ(g ∪ g′) is the direct sum
ψ(g)⊕ ψ(g′). Another property is that ψ(g/R) is obtained from ψ by
raising some of the cycles in ψ(g) to certain powers.

Consider the infinite 3-regular tree. Every 3-colored 3-regular finite
graph is a quotient graph is this tree, so theorem 7.3 is a claim about
the quotients of the regular graph.

Likewise, we can interpret the Cayley graph situation in the light of
7.3. Let Γ be the Cayley graph of < a, b, c|a2 = b2 = c2 = 1, (abc)3 =
1 > - this is the generic situation of ψ(g, α) of exponent 3. We may
use 7.3 to describe the finite quotient graphs of Γ: they might have
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ψ(g) any class of exponent 3, except [3, 1m]. This may be rephrased as
condition on the number of triangles in the quotient graph.

Similar results can be obtained for the other families in E .
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