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Preface

Pick a finite dimensional algebra over a field F . Compute its (Ja-
cobson) radical, and factor it out. What you get is a direct sum of
ideals, each one a simple algebra. Each of these components is a full
matrix ring over a division algebra, finite dimensional over F .

Finite dimensional division algebras are the building blocks of ring
theory. Make a list of all the possible division rings, learn how to lift
properties back from the semiprimitive case to the general case, and
you can study Artinian rings in general.

Emerging from the general structure theory of rings, the study of
division algebras started from isolated constructions (like that of the
cyclic algebras by Dickson), and expanded during the thirties and for-
ties to results like the structure theory of p-algebras, the description of
division algebras of low degree (both by A. Albert), the connection to
cohomology (E. Noether), and the Albert-Brauer-Hasse-Noether theo-
rem, which had great influence on the development of field arithmetic.

The vivid activity nowadays studies division algebras in their own
right, counting on the machinery of generic matrices, the connections to
K-theory or field arithmetic, homology or algebraic geometry. There is
a counter play between division algebras and many current branches of
mathematics, such as involutions and quadratic forms, Galois theory,
local fields, Azumaya algebras, field arithmetic and number theory, and
many others.

If A is a simple algebra with center F , then F is a field, and we say
that A is central over F . Let K/F be a field extension, then A⊗FK is
central simple over K.

Suppose A/F is finite, then we have the equality of dimensions
[A⊗FK :K] = [K :F ]. By Wedderburn’s structure theorem, A =
Mm(D) where D is a central division algebra over F . Let K = F ,
the algebraic closure of F . Since there are no non-trivial finite dimen-
sional division algebras over F , A⊗FF is a matrix algebra over F , say
A⊗FF =Mn(F ). It follows that the dimension [A :F ] = [A⊗FF :F ] =

n2. The degree of A is defined by deg(A) =
√
[A :F ]. The index of

A is the degree of the underlying division algebra, ind(A) = deg(D).
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The best way to hold all the information on finite central simple
algebras over F in one object is by means of the the Brauer group.
Identify two algebras if they have the same underlying division algebra,
and define multiplication by [A][B] = [A⊗FB]. The Brauer group
Br(F ) is the set of all classes [A] for A finite-dimensional central simple
over F . Inversion of elements is by [A]−1 = [Aop] (where Aop is the
algebra with the same additive structure and reversed multiplication;
then A⊗Aop =M[A:F ](F )). Moreover, by means of the so-called Brauer

factor sets it can be shown that A⊗F ind(A) is a matrix algebra, so that
Br(F ) is a torsion group.

Suppose A is a division algebra. If B ⊆ A in an F -subalgebra,
then CA(CA(B)) = B, and [B :F ] · [CA(B) :F ] = [A :F ]. As a result,
the dimension of every subfield of A/F is bounded by the degree of A.
Every subfield of A/F is contained in a maximal subfield, which has
dimension deg(A) over F . L/F of dimension n splits A (i.e. A⊗L is
matrices over L) iff L is a maximal subfield in an algebra B, similar to
A in the Brauer group, with deg(B) = n [1, p. 60].

A is called a p-algebra if the underlying base field is of characteristic
p, and the dimension of A over its center is a power of p. The basic
structure theorems of p-algebras were discovered around 1940, mostly
by Albert [1] and Jacobson, whereas in the harder case of prime-to-p
degree the progress was much slower. The breakthrough came around
1980, with theorems of Amitsur (the construction of noncrossed prod-
ucts) and Merkurjev-Suslin (connecting the Brauer group to algebraic
K-theory), with the use of geometric methods that was possible mainly
in characteristic 0. While there was a lot of activity in the theory of
Azumaya algebras over commutative rings in characteristic p (e.g. Salt-
man’s thesis [36] or [18]), certain aspects in the study of the p-part of
the Brauer group itself seem to have been left behind.

Undoubtedly, the main method in the study of central simple alge-
bras is by means of their subfields.

Our contribution in this work is in several directions. The main
subject in Chapter 1 is the p-part of the Brauer group of fields with
characteristic p. We begin with field extensions of p-power dimension
in characteristic p, starting from well-known facts, and going deeper
into classifying and counting composite extensions, thus producing a
new proof for Witt’s theorem that the p-part of the absolute Galois
group of F is a free pro-p group, for the finitely generated case. We
then discuss standard couples of generators of cyclic algebras of degree
p, and give a description by generators and relations for the exponent-p
part of the Brauer group. In Section 4 we study various presentations
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of a given cyclic algebra of degree p, and show that an isomorphism of
two cyclic p-algebras of degree p becomes tame (in the sense defined
there) if we tensor by Mp(F )

⊗2(p−2). In Section 5 we show that if K/F
is a finite separable extension, then the p-part of the Brauer group of
K is generated by the classes of symbol algebras of the form [a, β),
where a ∈ K and β ∈ F . Moreover, [K :F ] + 1 symbols of this form
are enough to express any symbol algebra of degree p over K. In the
sixth section we study Hilbert’s theorem 90 in a general context, and
develop some elementary tools which apply to any Abelian group of
exponent p equipped with an action of a cyclic group. Given any cyclic
extension K/F , with arbitrary characteristic, these tools enable us to
suggest two interesting filtrations of subgroups of pBr(K), and study
their connections. Special attention is given to the case charF = p. We
show that under very mild assumption, Hilbert’s theorem 90 fails for

pBr(K). In Subsection 6.5 we study the invariant subgroup of pBr(K),
and discuss some generic examples. Some easy results on corestriction
of cyclic algebras down odd dimension extensions are given in the last
subsection, and used to give a counterexample to Hilbert’s theorem 90
for groups of the form nBr(K).

In Chapter 2 we closely study a class of cyclic algebras, suggested
by Brauer as examples with arbitrary degree and exponent. We give a
precise formulation for the technique of passing to the leading mono-
mial, and discuss some suggested construction of a noncrossed product
of exponent p (a problem which is still open).

The last Chapter discusses algebras with involution. We study the
presentations of involutions in crossed products, and show that given
enough roots of unity, a dihedral crossed product with involution has
an Abelian maximal subfield.





CHAPTER 1

p-Algebras

Central simple algebras of degree a power of p over a field of char-
acteristic p, are called p-algebras.

The theory of (finite-dimensional) central simple algebras naturally
split into two parts. While the basic structure theory of p-algebras was
derived, mainly by Albert, back in the 40s, the theory of algebras with
prime to p index still contains some very difficult open questions. On
the other hand, some deep theorems from the 80s, most notably the
Merkurjev-Suslin theorem, hold only for characteristic not dividing the
index (and in the presence of enough roots of unity).

The main theme of this chapter is to introduce some of the recent
results on prime-to-p index to the theory of p-algebras.

In the first section we describe the well-known Galois theory in char-
acteristic p, and continue to study composite extensions, with results
on the number of subgroups of various types of the absolute Galois
group. The construction and basic properties of p-algebras of degree p
are given in section 2.

In the third section we give a presentation of pBr(F ) by genera-
tors (p-symbols) and relations. In the fourth section we define tame
isomorphisms between cyclic p-algebras of degree p, following simi-
lar ideas from the theory of the automorphism groups of polynomial
rings. This is generalized to tensor product of cyclics of degree p, and
the main question is, given [a, b)∼=[a′, b′), what is the minimal m such
that [a, b)⊗Mp(F )

⊗m∼=[a′, b′)⊗Mp(F )
⊗m is tame. We show that the

m ≤ 2(p− 2) is always enough. Some special results for the case p = 2
are also given.

In section 5 we show that if K/F is separable, then every p-symbol
over K can be expressed as a sum of no more than [K :F ] + 1 symbols
of the form [a, β}, where a ∈ K and β ∈ F . This is used to define a
trace map on pBr(K) if K/F is Galois. Applications to the case of C2

fields of characteristic 2 are also given.
Let K/F be a cyclic extension of fields. In section 6 we study to

what extent does Hilbert’s theorem 90 fail for the group pBr(K). We
develop some elementary but useful tools, and use them to show that
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Hilbert’s theorem 90 holds iff every invariant algebra of exponent p is
the restriction from F of an algebra of the same exponent. If both
statements fail, we can match the two failures in the sense explain
there. We show that if [K :F ] is divisible by p, then under very weak
assumptions Hilbert’s theorem 90 does fail for pBr(K). Elements of
the invariant subgroup of pBr(K) are studied in the subsection 6.5, and
properties of the corestriction are used in the last subsection to show
that Hilbert’s theorem 90 does fail in some cases.

1. Field Extensions in Characteristic p

Let F be a field with charF = p > 0. In this section we briefly
describe the (well known) theory of field extensions of such fields, of
dimension an exponent of p. In subsections 1.3 and 1.4 we study com-
posite extensions, and use the results in subsections 1.5–1.6 to count
extensions of various types, and bound the number of corresponding
subgroups in the absolute Galois group. The results can be used to give
a new proof of Witt’s theorem that the p-part of the absolute Galois
group of F is a free pro-p group.

In subsequent sections we only use the basic facts from the first two
subsections, and the properties of HK/F defined in the third.

1.1. Inseparable Extensions. In every finite dimensional exten-
sion L/F , there is an intermediate subfield F ⊆ K ⊆ L such that K/F
is separable, and L/K is purely inseparable. [L :K] is a power of p.

Lemma 1.1. Let b ∈ F . g(λ) = λp − b is either irreducible over F ,
or splits in F .

Proof. Let y be a root of g in a splitting field, g1 the minimal
polynomial over F , and d = deg(g1).

g(λ) = λp − yp = (λ− y)p, and since g1 divides g (in F [y][λ]), it is
a power of (λ− y). Then yd ∈ F as the constant coefficient of g1.

If d = p we are done. Otherwise, write αd + βp = 1, then y =
(yd)αbβ ∈ F . �

Corollary 1.2. F [λ]/⟨λp − b⟩ is either a field or a local ring of
dimension p over its residue field.

Every inseparable extension of dimension p of F is constructed in
this way: let S/F be such an extension, then some y ∈ S satisfies
yp ∈ F , y ̸∈ F , so that λp− b is the minimal polynomial of y. Then we
let S = F [ p

√
b].
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If b1, b2 belong to the same class in F ∗/(F ∗)p , then obviously
F [ p

√
b1]∼=F [ p

√
b2] . For a complete classification we need to introduce a

certain subfield of F .

The p-power map F → F , defined by x 7→ xp, is a homomorphism
of fields (and thus monic). The image is denoted by F p = {xp : x ∈ F},
so that F∼=F p.

For example, suppose b1, b2 ∈ F , and denote Si = F [y : yp = bi].
Then S1

∼=S2 iff F p[b1]∼=F p[b2], since S
p
i = F p[bi].

The exponent of a purely inseparable extension S/F is the least
q (a power of p), for which Sq ⊆ F .

The p-power map is used to define F 1/p = F [x1/p : x ∈ F ], an
extension of F which contains all the exponent-p extensions. This can
be done over and over, to get

· · · ⊆ F p2 ⊆ F p ⊆ F ⊆ F 1/p ⊆ F 1/p2 ⊆ · · ·
— a chain of isomorphic fields.

Let K/F be a finite separable extension. If {b1, . . . , bm} is a basis of
K/F , then the p-power isomorphism carries it to a basis {bp1, . . . , bpm}
of Kp/F p. Writing K =

∑
Fbi and Kp =

∑
F pbpi , we get that the

composite of the two subfields F,Kp is FKp =
∑
Fbpi = K. It fol-

lows that F⊗F pKp∼=K, and similarly F 1/p⊗FK∼=K1/p. In particular,
[F :F p] = [K :Kp].

It also follows that {b1, . . . , bm} is a basis for K1/p/F 1/p, so that
{bp1, . . . , bpm} is a basis for K/F .

Corollary 1.3. If γ ∈ K, then F [γ] = F [γp].

Proof. {1, γ, . . . , γm−1} is a basis for F [γ]/F for some m, so that

{1, γp, . . . , γp(m−1)}
is a basis too. �

1.2. Cyclic Separable Extensions. Let ℘(λ) denote the expres-
sion λp − λ. Note the following trivial properties.

Remark 1.4. If u, v are elements of a field of characteristic p, then:
a. ℘(u+ v) = ℘(u) + ℘(v).
b. If j is an integer, ℘(ju) = j℘(u).
c. ℘(u) = ℘(v) iff u− v is an integer.

Remark 1.5. Let a ∈ F . f(λ) = λp − λ − a is either irreducible
over F , or splits in F .

Proof. f(λ) is separable. Let x be a root of f in a splitting field,
then the roots are x, x + 1, . . . , x + p− 1. Let f1(λ) be the minimal
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polynomial of x over F . If deg(f1) = 1 we are done; otherwise let x+ j
be another root of f1. If σ is an automorphism sending x 7→ x+ j then
x+ 2j, x+ 3j, . . . are roots of f1, and deg(f1) = p. �

Corollary 1.6. F [λ]/⟨λp − λ− a⟩ is either a Galois extension of
F of dimension p, or the split ring F×p.

A full description of Galois extensions of dimension p of F is given
by the following.

Theorem 1.7 (Artin-Schreier). Every cyclic extension of dimen-
sion p over F is of the form K = F [λ]/⟨λp − λ− a⟩ for some a ∈ F .

Proof. Let σ be a generator of the Galois group Gal(K/F ). Ob-
viously trK/F (1) = p = 0, so by the additive analogue of Hilbert’s
theorem 90, we have that 1 = σ(x)− x for some x ∈ K.

K = F [x] since x ̸∈ F . Note that σ(xp − x) = (x+ 1)p − (x+ 1) =
xp − x, so that x is a zero of f(λ) = λp − λ − a for a = xp − x ∈ F ,
and since deg(f) = p this is the minimal polynomial of x over F . �

Lemma 1.8. Let a1, a2 ∈ F , fi = λp − λ−ai, and Ki = F [λ]/⟨fi(λ)⟩
(i = 1, 2).

If K1
∼=K2, then a2 = ja1 + up − u for some 0 < j < p and u ∈ F .

Proof. If fi are reducible, then ai are both of the form ai =
ui

p − ui for ui ∈ F , and the result follows. Assume K1
∼=K2 are fields,

and let xi ∈ K1 be a root of fi = λp − λ − ai. Let σ be an au-
tomorphism of K1 such that σ(x1) = x1 + 1. Since the roots of f2
are x2 + j, j = 0, . . . , p− 1, it follows that σ(x2) = x2 + j for some
0 ≤ j < p (but j ̸= 0 for x2 ̸∈ F ). Now u = x2 − jx1 ∈ F , and
a2 = ℘(x2) = ℘(jx1 + u) = ja1 + ℘(u). �

The set ℘(F ) = {℘(u)}u ∈ F is a vector subspace of F over the
prime field Zp, and so is the quotient group F/℘(F ). For a ∈ F , let

ΛF (a) = F [λ]/⟨λp − λ− a⟩
be the corresponding extension of dimension p. By the above dis-
cussion, ΛF maps F/℘(F ) onto the set of cyclic extensions of di-
mension p of F , where the elements in the projective point Z∗pa =
{a, 2a, . . . , (p− 1)a} are mapped to the same extension.

More generally, there is a bijection from subspaces of dimension d of
F/℘(F ), to Galois extensions of F with Galois group Zd

p. Let a denote
the image of a in F/℘(F ). If a1, . . . , ad generate a d-dimensional sub-
space of F/℘(F ), then F [λ1, . . . , λd]/⟨λ1p − λ1 − a1, . . . , λd

p − λd − ad⟩
is in fact a Galois extension of F with Galois group Zd

p, and this is the
general form of such an extension.
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We now give an alternative description, using only one generator.
Let q = pd. Fq denotes the finite field with q elements.

Theorem 1.9. Suppose Fq ⊆ F .
a. Let c ∈ F . λq − λ− c is either irreducible over F , or completely

splits. If λq−λ−c is irreducible, then K = F [λ]/⟨λq − λ− c⟩ is Galois
over F , with Gal(K/F ) = Zd

p.
b. Let K/F be a Galois extension, with Galois group Gal(K/F ) =

Zd
p. Then K = F [λ]/⟨λq − λ− c⟩ for some c ∈ F .

Proof. a. Same as in 1.5 and 1.6. If α is a root of λq −λ− c, then
so are α + r for every r ∈ Fq. This implies Gal(K/F )∼=(Fq,+).

b. Let σ1, . . . , σd be generators for Gal(K/F ), and let

Fi = Kσ1,...,σi−1,σi+1,...,σd .

Fi/F is cyclic of dimension p, so we can write Fi = F [ui], u
p
i − ui =

ci ∈ F . Note that σi(uj) = uj + δij.
Let r1, . . . , rd be a basis for Fq over Zp. Consider u = r1u1 + · · · +

rdud. For any r = k1r1 + · · · + kdrd (ki ∈ Zp), let σ = σk1
1 . . . σkd

d and
compute that σ(u) = u+ r.

Thus u+ r (r ∈ Fq) are all roots of the minimal polynomial of u. It
follows that [F [u] :F ] ≥ q, so that F [u] = K. Since uq − u is invariant,
the minimal polynomial of u is λq − λ − c for c = uq − u ∈ F , as
asserted. �

Remark 1.10. The splitting field of λq − λ− c over F always con-
tains Fq. Suppose F ∩ Fq = Fq0 , then the splitting field over F is
K = F [u]⊗Fq0

Fq, where u is a root of the polynomial. Gal(K/F ) is

a semidirect product of (Fq,+)∼=Zd
p and ⟨σFR⟩ = Gal(Fq/Fq0)

∼=Zq/q0 ,
where σFR is the Frobenius automorphism acting on (Fq,+) as expo-
nentiation by q0.

1.3. Composite Extensions. We now address the following ques-
tion. Given a cyclic extension K/F , which cyclic extensions of dimen-
sion p over K are cyclic over F as well? Recall that if a ∈ K, a is the
class of a in K/℘(K), and ΛK(a) = K[λ]/⟨λp − λ− a⟩ (note that this
field indeed depends on a only).

Proposition 1.11. Let a ∈ K, where K/F is Galois. L = ΛK(a)
is Galois over F iff Gal(K/F ) acts on Z∗pa = {ka : 0 < k < p}, that is,
for every τ ∈ Gal(K/F ), τ(a) ∈ Z∗pa.

Proof. First observe that in general, if L is the splitting field of
f(λ) ∈ K[λ], then L/F is Galois iff for every τ ∈ Gal(K/F ), τ(f(λ))
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splits in L (here Gal(K/F ) acts on K[λ] by the action on the coeffi-
cients).

Now, L = ΛK(a) is Galois iff λp − λ−τ(a) splits for τ ∈ Gal(K/F ),
and we are done by Lemma 1.8. �

Fix a ∈ K, and let L = ΛK(a). Assume that L is indeed Galois
over F . Then Gal(L/F ) has a normal subgroup Gal(L/K)∼=Zp, with
quotient group Gal(K/F ).

Definition 1.12. A Galois extension L/F is said to be central over
K/F , if K ⊆ L and Gal(L/K) is central in Gal(L/F ).

Proposition 1.13. Suppose L/F is Galois.
L/F is central Galois over K/F iff the action of Gal(K/F ) on Z∗pa

is trivial.

Proof. Write L = K[α], where ℘(α) = αp − α = a. Let σ ∈
Gal(L/K) be a generator, such that σ(α) = α+1. Given µ ∈ Gal(L/F ),
we have that µ(a) = ia for some i ∈ Z∗p. Write µ(a) = ia + xp − x for

some x ∈ K, and take ℘−1 on both sides to get µ(α) = iα + x′, where
x′−x ∈ Zp. Now, µ

−1σµ(α) = µ−1σ(iα+x′) = µ−1(iα+ i+x′) = α+ i.
It follows that the centralizer CGal(L/F )(σ) is the stabilizer of a, so σ is
central iff the action is trivial. �

It is clear that for Gal(L/F ) to be cyclic, Gal(K/F ) must be cyclic
too, and from now on we assume this is the case. Let τ be a generator
for Gal(K/F ), and q = [K :F ] the order of τ .

The following object is very important in the classification of p-
extensions of K over F .

Definition 1.14. HK/F is the lift of the τ -invariant subgroup of
K/℘(K) to K:

HK/F = {a ∈ K : τ(a)− a ∈ ℘(K)}.

Note that HK/F/℘(K) is a subgroup of K/℘(K).

Corollary 1.15. In this language, ΛK(a) is central Galois over
K/F iff a ∈ HK/F .

Let a ∈ HK/F . Then we have that

(1) τ(a)− a = xp − x

for some x ∈ K.
Taking trK/F on both sides, we see that trK/F (x) is a root of

λp − λ = 0, and is thus an integer.
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Remark 1.16. If trK/F (x) = 0, then a can be adjusted (leaving
L = ΛK(a) unchanged) to satisfy a ∈ F .

Proof. By Hilbert’s Theorem 90, x = τ(y) − y for some y ∈ K,
and then τ(a)−a = xp − x = (τ(y)p − τ(y))−(yp − y). Thus a−℘(y) ∈
F . �

Suppose q = [K :F ] is prime to p.
The only central extension of Zp by Zq is Zp × Zq

∼=Zpq, so that
equation (1) is enough for L/F to be cyclic:

Theorem 1.17. Let K/F be a cyclic extension of order prime to
p, and let a ∈ K/℘(K).

L = ΛK(a) is cyclic over F iff τ(a) = a.

Moreover, if trK/F (x) = i, we can replace x by x − q−1i and then
apply Remark 1.16 to get a ∈ F . Thus we have proved

Corollary 1.18. If [K :F ] is prime to p, then HK/F = F +℘(K).

Note that if q is prime to p there is a one-to-one correspondence
between p-cyclic extensions of F and cyclic extensions of F which have
dimension p over K, by L0 7→ L0⊗FK, where the opposite direction is
by taking the unique subfield of dimension p over F .

Now assume that p divides q.
The central extensions of Zp by Zq are Zpq and Zp × Zq.
As before, let L = ΛK(a) = K[α], αp − α = a. From Equation (1)

it follows that we can extend τ to L by τ : α → α + x. It is easily
computed that τ q(α) = α + trK/F (x). Gal(L/F ) is cyclic iff τ q is a
non-trivial element of Gal(L/F ), that is if trK/F (x) ̸= 0.

Thus we have proved

Theorem 1.19. Let K/F be a cyclic extension of dimension divis-
ible by p, and let a ∈ HK/F . Then ΛK(a) is Galois over F .

The Galois group is Zp × Zq if a ∈ ℘(K) + F , and Zpq otherwise.

1.4. Relative H groups. In this subsection we study the groups
℘(K) = {ap − a} and HK/F (defined in 1.14). This will be used in the
next subsection to count extensions of various types.

We first compute F ∩ ℘(K) where K/F is a cyclic extension of
dimension p.

Set δp|q = 1 if p | q, and δp|q = 0 otherwise. If U ⊆ V are groups,
[V :U ] denotes the index of U in V (we use the same notation for
dimension over subfields, but no confusion should result of that).
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Proposition 1.20. If q is prime to p then F ∩ ℘(K) = ℘(F ).
Otherwise, let a ∈ F be an element such that Kτp = F [λ]/⟨λp − λ− a⟩
(so that a ̸∈ ℘(F )); then F ∩ ℘(K) = ℘(F ) + Zpa. To summarize,

[F ∩ ℘(K) :℘(F )] = pδp|q .

Proof. Define ϕ′ : ℘(K)∩F → Zp as follows. Let u ∈ K such that
℘(u) ∈ F . Then ℘(τ(u)−u) = τ(℘(u))−℘(u) = 0, so that j = τ(u)−u
is an integer. Set ϕ′(℘(u)) = j. If ℘(u) = ℘(u′) then u−u′ ∈ Zp, and so
ϕ′ is well defined. If q is prime to p then τ(u) = u for u = τ q(u) = u+qj,
so ϕ′ = 0. Otherwise, let α be a root of λp − λ− a; then τ(α)− α is a
non-zero integer, and u − iα = f for some i ∈ Zp and f ∈ F (thus ϕ′

is onto). It follows that ℘(u) = ia+ ℘(f), as asserted. �
This can be generalized.

Proposition 1.21. Let T/F be finite Galois extension, with an
arbitrary finite Galois group G. Then (F ∩ ℘(T ))/℘(F )∼=G/G′Gp

Proof. Let N = G′Gp, so that G/N is the maximal Abelian quo-
tient of exponent p of G. Let u ∈ T , and suppose ℘(u) ∈ F . For
every σ ∈ G we have that ℘(σ(u) − u) = σ(℘(u)) − ℘(u) = 0, so that
σ(u) = u+ jσ for some jσ ∈ Zp. Note that the map σ 7→ jσ is a group
homomorphism from G to Zp, so that N is in the kernel of this map,
and we have that u ∈ TN .

In particular, ℘(T )∩F = ℘(TN)∩F . Let σ1N, . . . , σdN be a basis
for G/N as a vector space over Zp, and α1, . . . , αd a standard set of
generators for TN/F , that is σi(αj) = αj + δij, ai = ℘(αi) ∈ F .

Check that f = u−
∑

1≤i≤d jσi
αi ∈ F , so that ℘(T ) ∩ F = ℘(F ) +

Zpa1+ · · ·+Zpad. Factoring out ℘(F ) we get the result, since a1, . . . , ad
are independent modulo ℘(F ). �

From now on we assume K/F is cyclic. Recall that if [K :F ] is
prime to p, then HK/F = F + ℘(K) (Corollary 1.18). We now assume
p divides [K :F ], and study HK/F .

Remark 1.22. If K/F is separable, then trK/F is onto. (This is a
well known consequence of Artin’s lemma).

Theorem 1.23. If p divides q = [K :F ], then

HK/F/(F + ℘(K))∼=Zp.

Proof. Given a ∈ HK/F , write τ(a) − a = ℘(x) for x ∈ K, and
consider the map ϕ : a 7→ trK/F (x). This is well defined since if τ(a)−
a = ℘(x′), then x− x′ ∈ Zp and tr(x) = tr(x′). Since ℘(trK/F (x)) = 0,
ϕ is into Zp. Note that if a ∈ F + ℘(K), then trK/F (x) = 0. By
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Remark 1.16, Ker(ϕ) = F + ℘(K). Finally, let x ∈ K be an element
with trK/F (x) = 1, then trK/F (℘(x)) = ℘(trK/F (x)) = 0, and there
exist a ∈ K such that σ(a) − a = ℘(x). Obviously a ∈ HK/F and
a 7→ 1. �

We have the following commutative diagram for the maps ϕ and ϕ′

defined in the proofs of the last theorem and Proposition 1.20. The
rows are exact if p divides [K :F ].

0 // F + ℘(K) //

tr
��

HK/F
ϕ //

tr
��

Zp
// O

0 // ℘(F ) // ℘(K) ∩ F ϕ′
// Zp

// 0

The leftmost trace map is readily seen to be onto, so by the ’5
lemma’ we also have

Corollary 1.24. The map tr : HK/F → ℘(K) ∩ F is onto.

Here is the lattice of the subspaces involved for K/F cyclic of di-
mension q, with the relative indices as computed above.

K

HK/F

p
δp|q

F + ℘(K)

�
�
�
�
�

F

�
�
�
�
�

℘(K)

F ∩ ℘(K)

p
δp|q

℘(F )

Consider a more complicated situation, where L/F is cyclic with
an intermediate field K. We want to describe the lattice of Zp-vector
spaces generated by F,K,L, their ℘-groups and the relative H groups.
For this we need to compare some points on that lattice.
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Recall that the lattice of subspaces of a given space is modular, i.e.,
for every three subspaces A,B,C, if A ⊆ C then

A+ (B ∩ C) = (A+B) ∩ C.
In this case we write A+B ∩ C and omit parenthesis.

Theorem 1.25. Let L/F be a cyclic extension, with F ⊆ K ⊆ L.
Then the following equalities hold:

a. K ∩HL/F = HK/F .
b. HK/F ∩ ℘(L) = K ∩ ℘(L).
c. HL/F +K = HL/K.
d. ℘(L) +HK/F = ℘(L) +K ∩HL/F .
e. HK/F + ℘(L) = F + ℘(L) if p | [L :K] or [K :F ] prime to p, and

[HK/F + ℘(L) :F + ℘(L)] = p otherwise.
f. ℘(L) ∩K ⊆ HK/F .
g. F + ℘(L) ∩HK/F = F + ℘(L) ∩K.

Proof. Let m = [K :F ]. Denote by τ a generator of Gal(L/F ),
and let θ : L → L denote the map θ = 1 + τ + · · · + τm−1. Note that
the restriction of θ to K is trK/F , and that trL/K ◦ θ = trL/F . Also,
(τm − 1) = θ(τ − 1).

a. The inclusion K ∩HL/F ⊇ HK/F is trivial. Let a ∈ K ∩HL/F .
Then τ(a)−a = ℘(l) for some l ∈ L. Compute that 0 = trK/F (τa−a) =
trK/F℘(l) = ℘(θl), so that θl ∈ Zp ⊆ F . Now τm(l)−l = τ(θl)−θl = 0,
so that l ∈ K and a ∈ HK/F .

b. By part a., HK/F ∩ ℘(L) = HL/F ∩ K ∩ ℘(L) = K ∩ ℘(L) as
℘(L) ⊆ HL/F .

c. The inclusion HL/F +K ⊆ HL/K is trivial. Let a ∈ HL/K , then
τm(a)− a = ℘(l) for some l ∈ L. As before ℘(trK/L(l)) = trK/L℘(l) =
trK/L(τ

m(a) − a) = 0 so trK/L(l) ∈ Zp ⊆ F . By Remark 1.22, we
can find l1 ∈ L such that trL/F (l1) = trL/K(l). Since trL/Kθ = trL/F ,
we have that trL/K(l − θl1) = trL/K l − trL/F l1 = 0, and there is some
r ∈ L such that l − θl1 = (τm − 1)(r). Let l0 = l1 + (τ − 1)(r),
then θl0 = θl1 + θ(τ − 1)r = θl1 + (τm − 1)(r) = l. Compute that
trL/F℘(l0) = ℘(trL/F l1) = ℘(trL/K l) = trL/K(τ

ma− a) = 0. Thus there
is some b ∈ L such that τ(b) − b = ℘(l0), so that b ∈ HL/F . Now,
τm(b)− b = θ(τ − 1)(b) = θ℘(l0) = ℘(θl0) = ℘(l) = τm(a)− a, so that
τm(a− b) = a− b, and a− b ∈ K. Thus a ∈ K +HL/F , as asserted.

d. Immediate from part a.
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e. Consider the spaces K + ℘(L) and HL/F . Their sum is, by part
c., equal to HL/K + ℘(L) = HL/K . By part d., their intersection is
HK/F + ℘(L). Thus HL/F/(HK/F + ℘(L))∼=HL/K/(K + ℘(L)). This
quotient is of size pδp|[L:K] by Corollary 1.18 and Theorem 1.23. From
the same reasons

∣∣HL/F/(F + ℘(L))
∣∣ = pδp|[L:F ] . Dividing, we find out

that [HK/F + ℘(L) :F + ℘(L)] is as asserted.

f. Let ℘(l) ∈ K for some l ∈ L. Then 0 = (τm − 1)℘(l) =
℘((τm − 1)l), so that (τm − 1)l ∈ Zp ⊆ F . Thus (τm − 1)(τ − 1)l =
(τ−1)(τm−1)l = 0, and (τ−1)l ∈ K. Now, τ℘(l)−℘(l) = ℘((τ−1)l) ∈
℘(K), so that ℘(l) ∈ HK/F .

g. The inclusion F + ℘(L) ∩HK/F ∩ F + ℘(L) ∩K is obvious, and
the other direction follows from part f. �

With all these facts put together, we get the following lattice (in
which the intersection and sum of spaces always appears in its proper
place). We set ϵ1p to be p if [L :K] is prime to p and [K :F ] is divisible
by p, and 1 otherwise. Similarly ϵp1 = p if [L :K] is divisible by p and
[K :F ] prime to p, and 1 otherwise. Also, ϵpp = p if [L :K] and [K :F ]
are both divisible by p, and 1 otherwise. Finally, we set ϵp = ϵp1ϵ

p
p, and

ϵp = ϵ1pϵ
p
p. The numbers in the diagram denote relative indices.
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L

HL/K

ϵpnnn
nnn

n

;
;

;
;

;
;

K + ℘(L)

A
A

A
A

A
A

A

K

E
E

E
E

E
E

E
E HL/F

ϵprrr
rr

HK/F + ℘(L)
ϵ1p

HK/F

ϵ1p

F + ℘(L)

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

;;
;;

F + ℘(L) ∩K

ϵpp
llll

lll

EE
EE

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
EE

EE

F + ℘(K)

EE
EE

EE
EE

EE
EE

EE

EE
EE

EE
EE

EE
EE

EE
℘(L)

F

22
22
22
22
22
2

22
22
22
22
22
2 K ∩ ℘(L)

ϵpp
llll

lll

℘(K) + F ∩ ℘(L)
ϵp1

F ∩ ℘(L)
ϵp1

℘(K)

F ∩ ℘(K)
ϵp

℘(F )

1.5. Counting Cyclic Extensions. In subsection 1.2 it was men-
tioned that Galois extensions of F with Galois group Zd

p are parame-
terized by d-dimensional subspaces of F/℘(F ). If

dF = dimZp F/℘(F )

is finite, we can actually count the extensions. The simplest example
is where F is finite — then dF = 1. Note that by [15, Prop. 4.4.8], the
p-part of the Brauer group Br(F ) is trivial when dF is finite.

Let K/F be a cyclic extension. The lines of K/℘(K) correspond to

cyclic extensions of dimension p over K, and there are pdK−1
p−1 such ex-

tensions. Similarly, by Corollary 1.15 there are exactly
[HK/F :℘(K)]−1

p−1 =



1. FIELD EXTENSIONS IN CHARACTERISTIC p 13

pdF−1
p−1 central Galois extensions of F which are p-dimensional over K

(the equality follows from Theorem 1.23).
The possible Galois groups for these extensions over F are Zp ×Zq

and Zpq (the two types coincide if q is prime to p). By Theorem 1.19,
extensions of the first type correspond to the classes (F +℘(K))/℘(K).

The following follows from Proposition 1.20.

Remark 1.26.

[F + ℘(K) :℘(K)] = pdF−δp|q .

Proof.

[F + ℘(K) :℘(K)] = [F :F ∩ ℘(K)]

= [F :℘(F )]/[F ∩ ℘(K) :℘(F )]

= pdF−δp|q .

�

Corollary 1.27. Suppose K/F is a cyclic extension. From Re-
mark 1.26 we have that

[F + ℘(K) :℘(K)] = pdF−δp|q ,

so that there are exactly p
dF−δp|q−1

p−1 Galois extensions L of F , containing

K as a subfield, such that Gal(L/F )∼=Zp × Zq.

For example, if dF = 1, let K be the only extension of dimension p.
Then F ⊆ ℘(K), and, as expected, there are no extensions of F with
Galois group Zp × Zp.

Now assume p | q, and count the extensions of the second type (those
which are cyclic over F ). From Theorem 1.23 we have

Corollary 1.28. Suppose K/F is cyclic of dimension divisible by
p.

The number of extensions of K which are cyclic of dimension p ·
[K :F ] over F , equals pdF−1.

Proof. By Remark 1.26 and Theorem 1.23, we have that [HK/F :℘(K)] =
[HK/F :F + ℘(K)] · [F + ℘(K) :℘(K)] = pdF . Now subtract the num-
ber of extensions with Galois group Zp × Zq (Corollary 1.27) from the
number of central Galois extensions:

[HK/F :℘(K)]− 1

p− 1
− pdF−1 − 1

p− 1
=
pdF − pdF−1

p− 1
= pdF−1.

�
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In particular, if F has at least one cyclic extension, then pdF−1 ≥ 1,
and we can inductively define a chain of cyclic extensions of F ,

F = F0 ⊆ F1 ⊆ F2 ⊆ . . .

and inspect F̂ = ∪Fi:

Corollary 1.29. Every cyclic extension K/F of dimension a power

of p is embedded in an extension F̂ /F such that Gal(F̂ /F ) = lim← Zpn

is the Abelian pro-p group of rank 1 (i.e. the additive group of the p-adic
integers).

This last corollary is usually deduced by the construction of Witt
vectors, e.g. [14].

In particular, if dF = 1 then pdF−1 = 1 and we have

Corollary 1.30. Suppose F has a unique cyclic extension of order
p.

Then F has a unique cyclic extension of any order pn. Moreover,
F has a unique extension F̂ with Gal(F̂ /F ) = lim← Zpn.

Remark 1.31. In the case dF = 1, the field F̂ has no cyclic exten-
sions of dimension p.

Proof. Let θ ∈ F̂ . Then θ ∈ Fi for some i, and λp − λ − θ has a
solution in Fi+1, and thus in F̂ . �

Corollary 1.32. Let K be a separably closed field of characteristic
p. Then the absolute Galois group Λ = Gal(K/Zp) has no finite p-
subgroups.

Proof. Otherwise, let σ ∈ Λ be an element of order p. Then
F = Kσ has a cyclic extension, so that dF ≥ 1 and by the theorem
dK ≥ 1. But dK = 0 by assumption. �

The information in Corollary 1.28 can also be interpreted in terms
of subgroup growth of the absolute Galois group of F , denoted by ΓF .
For a groupG, let Cn(G) denote the number of normal subgroupsN�G
of index n with cyclic quotient group.

Theorem 1.33.

Cpn(ΓF ) =
pdF − 1

p− 1
p(dF−1)(n−1).

In particular,
logCpn (ΓF )

log pn
−→ dF − 1.
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Proof. Every normal subgroup with quotient ΓF/N = Zpn is con-
tained in exactly one normal subgroup with quotient Zpn−1 , so that

Cpn(ΓF ) = Cpn−1(ΓF ) · pdF−1. But Cp(ΓF ) =
pdF−1
p−1 by definition of dF ,

so the result follows by induction. �
1.6. Going Up One Stage. We now discuss the number of p-

cyclic extensions of F and K when F ⊆ K. We treat two easy cases
(K/F Galois of dimension prime to p, or K/F purely inseparable), and
a harder and more fruitful one, when K/F is itself cyclic of dimension
p.

Proposition 1.34. If K/F is Galois and [K :F ] is prime to p,
then dF ≤ dK.

Proof. The map L 7→ L⊗FK (taking cyclic extensions of dimen-
sion p over F to cyclic extensions of the same dimension over K) is
injective, since the (normal) subgroup of elements of prime-to-p order
in Zp ×Gal(K/F ) is unique. �

Theorem 1.35. Let K/F be a purely inseparable extension. Then
a. K = F + ℘(K).
b. ℘(K) ∩ F = ℘(F ).
c. dK = dF .

Proof. We may assume K/F is of exponent p (and then use in-
duction).

a. For every k ∈ K, k = kp − (kp − k) ∈ F + ℘(K).
b. If kp − k ∈ F , then k ∈ Kp + F = F .
c. K/℘(K) = (F + ℘(K))/℘(K)∼=F/(℘(K) ∩ F ) = F/℘(F ). �
And now, the cyclic case. The result we give here follows from

Witt’s theorem that the Galois group of the maximal pro-p extension
over F is a free pro-p group [25, Cor. 3.2]. Since our theorem counts
subgroups of index p, it is equivalent to Witt’s theorem for the finitely-
generated case by a result of A. Lubotzky.

Theorem 1.36. Let K = F [u], up − u = θ ∈ F , be a cyclic exten-
sion of dimension p over F . Then

dK = p(dF − 1) + 1.

Proof. In order to compute dK = logp |K/℘(K)| we construct a
set of representatives for K/℘(K).

Since θ ̸∈ ℘(F ), Θ = (Zpθ + ℘(F ))/℘(F ) is a subgroup of order
p of F/℘(F ). Pick a set BF of representatives for the quotient group
(F/℘(F ))/Θ, so that BF + Zpθ is a complete set of representatives for
F/℘(F ). In particular, pdF = |F/℘(F )| = p|BF |.
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Another way to put it: every element f ∈ F is expressible in the
form

(2) f = gp − g + b+ iθ

for g ∈ F, b ∈ BF , i ∈ Zp, where b, i are unique (and g is unique up to
adding integers). In a more graphic form, F = ℘(F )⊕BF ⊕ Zpθ.

Let BK = BF +BFu+ · · ·+BFu
p−1 +Zpθu

p−1. We claim that BK

is a complete set of representatives for K/℘(K). Let fK =
∑p−1

i=0 fiu
i ∈

F [u] be an arbitrary element of K. We shall use reverse induction on
the degree of fK in order to show that fK is expressible as

(3) fK = ℘(gK) + bK

for unique bK ∈ BK , and unique gK ∈ K up to adding integers.
Write bK =

∑p−1
i=0 biu

i + jθup−1, bi ∈ BF , and gK =
∑p−1

i=0 giu
i, gi ∈

F . Note that in general, the upper monomial of (ui)p = (up)i = (u+θ)i

(considered as a polynomial in u over F ) is ui. Hence, the coefficient
of up−1 in gK

p − gK is gp−1
p − gp−1. Comparing coefficients of up−1 in

(3), we have the equation

(4) fp−1 = gp−1
p − gp−1 + bp−1 + jθ,

which by (2) has a solution with unique bp−1 and j, and gp−1 unique
up to adding integers.

Now let i ≤ p−1. Suppose j ∈ Zp, bp−1, . . . , bi ∈ BF , gp−1, . . . , gi+1 ∈
F are fixed, and gi is fixed up to adding integers. Write gi = gi0 + ji,
where gi0 is already fixed and ji ∈ Zp is yet to be determined. We solve
for bi−1,ji, and gi−1 up to integers, by comparing coefficients of ui−1

after removing the fixed part from (3). If h ∈ K = F [u], we denote by
[ui]h the coefficient of ui in h.

Let f ′i−1 = [ui−1](fK − ℘(
∑p−1

l=i+1 glu
l)), and compute using (3):
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f ′i−1 = [ui−1](fK − ℘(

p−1∑
l=i+1

glu
l))

= [ui−1](℘(
i∑

l=0

glu
l) +

p−1∑
i=0

blu
l + jθup−1)

= [ui−1](
i∑

l=0

(gpl u
lp − glu

l)) + bi−1

= [ui−1](
i∑

l=0

gpl (u+ θ)l −
i∑

l=0

glu
l) + bi−1

= [ui−1](
i∑

l=i−1

gpl (u+ θ)l −
i∑

l=i−1

glu
l) + bi−1

= [ui−1](gpi (u+ θ)i − giu
i + gpi−1(u+ θ)i−1 − gi−1u

i−1) + bi−1

= [ui−1](igpi θu
i−1 + (gpi−1 − gi−1)u

i−1) + bi−1

= (gpi−1 − gi−1) + i(gi0
p + ji)θ + bi−1

Subtracting igpi0θ, we get the equation

(5) f ′i−1 − igi0θ = gpi−1 − gi−1 + bi−1 + ijiθ.

By the choice of BF this equation has a solution, with unique bi−1 ∈
BF and ji ∈ Zp, and gi−1 unique up to adding integers. After fixing ji
we know gi, and the next induction step can be performed.

We have shown that BK is indeed a basis for K/℘K, so that pdK =
|K/℘(K)| = |BK | = |BF |pp = pp(dF−1)+1, and we are done. �

Corollary 1.37. If F = F0 ⊂ · · · ⊂ Fn is a chain of cyclic
extensions of dimension p, then dFn = pn(dF − 1) + 1.

This result too is related to subgroup growth of Γ = ΓF , the ab-
solute Galois group of F . Let Sn(G) denote the number of subnormal
subgroups of index n in G.

Theorem 1.38.

Spn(Γ) <

(
p

p− 1

)n

p
pn−1
p−1

(dF−1).

In particular,
log logSpn (Γ)

log pn
< 1 + o(1) whenever dF is finite.
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Proof. Note that if N ≤ G is a subnormal group of p-power index,
then N = Nt � Nt−1 � . . . � N1 � N0 = G, where Ni/Ni−1 is of order
p. In particular, Spn(G) is bounded by the sum of numbers of normal
subgroups of index p of all the subnormal subgroups of index pn−1 in

G. By the last corollary we have that Spn(Γ) ≤ Spn−1(Γ)p
pn(dF−1)+1−1

p−1 ,

and by induction

Spn(Γ) ≤ Πn−1
i=0

pp
i(dF−1)+1 − 1

p− 1

< Πn−1
i=0

pp
i(dF−1)+1

p− 1

= (p− 1)−npn+(dF−1)(1+p+···+pn−1).

�

Remark 1.39. In the special case where F has no prime-to-p ex-
tensions, Γ is a pro-p group and every subgroup is subnormal. In this
case Spn(Γ) is the number of subgroups of index pn.

2. Cyclic p-Algebras

A simple algebra A/F is cyclic if it contains a maximal subfield
K which is cyclic over F . See [22] for a survey of the history of cyclic
algebras.

The main structure theorem on p-algebras (algebras over F with
deg(A) a power of char(F ) = p) is that every p-algebra is similar (in
the Brauer group) to a cyclic algebra ([1, VII.31], [15, 4.5.7]). Non-
cyclic p-algebras (with degree ≥ p2) were first constructed by Amitsur
and Saltman [4].

If exp(A) = p, then A is similar to a tensor product of cyclic al-
gebras of degree p [15, 4.2.17]. It follows that the exponent-p part
of Br(F ) is generated by (the classes of) cyclic algebras of degree p.
Whether or not every p-algebra of degree p is cyclic is still wide open.

Every p-algebra A has a finite dimensional purely inseparable sub-
field S/F [15, 4.1.10], and exp(A) equals the minimal exponent of such
a field over F . If S = S ′[u] where up ∈ S ′, and [F [u] :F ] = pe, and S ′

does not split A, then A⊗C is split by S ′ for C a cyclic p-algebra of
degree pe over F [15, 4.2.11].

This is used as an induction mechanism to show, for example, the
following. If [F ∗ :F ∗p] = pd, then A is similar to a product of at most
d cyclic algebras of degree p (since F 1/p splits A, and is of dimension
pd over F ). More generally we have
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Remark 2.1. Suppose exp(A) = pe, where [F ∗ :F ∗p] = pd. Then
A is split by F 1/pe , which has dimension pde over F . It follows that A
is similar to a product of at most de cyclic algebras, at most d of any
degree pi (i = 1 . . . e). At least one cyclic algebra of degree pe must be
present.

If S/F is purely inseparable, then the map [A] 7→ [A⊗S] from Br(F )
to Br(S) is surjective [15, 4.1.5]. In particular for S = F 1/p, we have
that the map [A] 7→ [A⊗F 1/p] = [A]p is surjective, so that Br(F ) is
p-divisible. This is an important step in showing that every p-algebra
is similar to a product of cyclic algebras.

We now discuss the presentation of cyclic algebras of degree p by
means of generators and relations. We give full details of this old
construction, in order to make the computations more accessible in the
sequel.

Let A be a cyclic p-algebra of degree p, with maximal subfield K,
generated by x ∈ K such that xp − x = a ∈ F (Theorem 1.7). The
automorphism σ ∈ Gal(K/F ) acts on K by σ(x) = x+ 1. By Skolem-
Noether, there exists an element y ∈ A such that yxy−1 = x+ 1.

Lemma 2.2. F [y] is an inseparable extension of degree p over F ,
and as a maximal subfield, it splits A.

Proof. It is easy to compute that yjxy−j = x+j, so that for every
f(λ) ∈ F [λ], xf(y) − f(y)x = −yf ′(y), where f ′ denote the standard
derivative of f .

Now let g(λ) ∈ F [λ] be the minimal polynomial of y over F . Since
g(y) = 0, we also have g′(y) = 0. But deg(g′) < deg(g), so we must
have g′(λ) = 0, and p | deg(g). Thus [F [y] :F ] ≥ p, but since F [y] is

commutative, [F [y] :F ] ≤
√
[A :F ] = p, so that [F [y] :F ] = p. F [y] is

inseparable since g(λ) = λp − (yp). �

We have seen that no element of F [y]−F commutes with x, so that
F [x] ∩ F [y] = F . Counting dimensions we see that F [x, y] = A. Now
yp commutes with x and with y, so that b = yp ∈ F .

The relations

xp − x = a, yp = b, yxy−1 = x+ 1(6)

fully determine the multiplication in A, and we may use them to define
the symbol p-algebra

[a, b) = F [x, y : xp − x = a, yp = b, yx = xy + y].

Note that it is always central simple over F .
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As mentioned above, the classes of [a, b), a, b ∈ F , generate pBr(F )
(the exponent-p part of Br(F )). We now give a list of relations satisfied
by these generators.

Lemma 2.3. If a ∈ ℘(F ) = {up − u : u ∈ F}, or b ∈ (F ∗)p, then
[a, b) is split.

Proof. Since [a, b) is of prime degree, it is either a division algebra
or the split algebra Mp(F ).

Thus, it is enough to show that [a, b) is not a division algebra. In-
deed, if λp − λ−a is reducible over F , let α ∈ F be a root (Proposition
1.5). Then Πp−1

i=0 (x− α− i) = ℘(x− α) = a− a = 0, and we have zero
divisors. If b = βp for β ∈ F , then (β−1y − 1)p = 0 and again we have
zero divisors. �

The next theorem is responsible for the other identities. Its proof
will be used in section 4.

Theorem 2.4. a. [a1, b1)⊗ [a2, b2)∼=[a1 + a2, b1)⊗ [a2, b
−1
1 b2).

b. [a1, b1)⊗ [a2, b2)∼=[a1, b1b2)⊗ [a2 − a1, b2).

Proof. The left hand sideR is generated in both cases by x1, x2, y1, y2,
satisfying xi

p − xi = ai, y
p
i = bi, x1x2 = x2x1, y1y2 = y2y1, yixjy

−1
i =

xj + δij.
a. It is easy to check that R1 = F [x1+x2, y1] and R2 = F [x2, y

−1
1 y2]

are commuting subalgebras which generate R, R1
∼=[a1 + a2, b1), and

R2
∼=[a2, b

−1
1 b2).

b. The same argument, with R1 = F [x1, y1y2], R2 = F [x2 − x1, y2].
�

Corollary 2.5. a. [a1, b)⊗ [a2, b)∼=[a1 + a2, b)⊗Mp(F ).
b. [a, b1)⊗ [a, b2)∼=[a, b1b2)⊗Mp(F ).

Proof. Substitute b1 = b2 in Theorem 2.4.a, a1 = a2 in 2.4.b, and
use 2.3. �

A final computation:

Remark 2.6. [a, a)∼=Mp(F ).

Proof. Consider the elements x, x−1y in [a, a) = F [x, y : xp − x =
yp = a, yxy−1 = x + 1]. They satisfy xp − x = a, (x−1y)x(x−1y)−1 =
x−1(yxy−1)x = x−1(x+ 1)x = x+ 1, and finally,

(x−1y)p = NF [x]/F (x)
−1yp = a−1a = 1.

Thus [a, a)∼=[a, 1)∼=Mp(F ). �
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Did we miss an identity? In the next section it will be shown that
the results 2.3,2.5 and 2.6 are enough to prove any relation satisfied by
p-symbols.

3. Presentation for pBr(F )

3.1. The Merkurjev-Suslin Theorem. Let R be a ring, and
let GL(R) denote the direct limit of the groups GLn(R) of invertible
n × n matrices, under the canonical injections GLn(R) → GLn+1(R)
by A 7→ A⊕ 1.

The generators eij(r) = 1 + reij (r ∈ R, i, j ≥ 1) of GL(R) satisfy
certain identities, e.g. eij(r)ejk(s) = eik(r+ s). It is not surprising that
some relations depend on the arithmetic of the ring R.

The Steinberg group St(R) of R is defined by generators xij(r),
and certain relations which apply to {eij(r)} over every ring R. K2(R)
is defined as the kernel of the map xij(r) 7→ eij(r) from St(R) onto
GL(R), and is a measure of how ’general’ is the ring from an arith-
metical point of view. It turns out that K2(R) is always an Abelian
group, and that K2 : R 7→ K2(R) is a functor from the category of rings
to the category of abelian groups.

Matsumoto has proved (cf. [26, Thm. 4.3.15]) that if F is a field
(of arbitrary characteristic), then K2(F ) is the abelian group generated
by the symbols {a, b} (a, b ∈ F ∗), subject to the relations

{a, b1}+ {a, b2} = {a, b1b2},

{a1, b}+ {a2, b} = {a1a2, b},
{a, 1− a} = 0.

The connection to simple algebras is evident, since symbol algebras
in characteristic 0 obey the same rules. For every n, if charF is prime
to n and F has primitive n’th roots of unity, there is a canonical map
from K2(F ) to nBr(F ), sending the symbol {a, b} to the cyclic algebra
(a, b)n;F = F [x, y|xn = a, yn = b, yxy−1 = ρx].

The precise result has very far reaching consequences.

Theorem 3.1 (Merkurjev-Suslin [24]). Let n be an integer, and F
a field with characteristic prime to n, containing n’th roots of unity.

Then the natural map sending {a, b} to the symbol algebra (a, b)n
induces an isomorphism K2(F )/nK2(F ) → nBr(F ).

Essentially, this is a description of nBr(F ) in terms of generators
(the cyclic algebras) and relations. As a result, if charF = 0 and F has
all the roots of unity, then K2(F )∼=Br(F ) (since the above mentioned
maps are coherent).
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There are partial results for the case where F does not have roots
of unity. Merkurjev [23] has proved that if q is a prime ̸= charF ,
then qBr(F ) is generated by the classes of algebras of index q. Also if
[F [µq] :F ] ≤ 3, then qBr(F ) is generated by the classes of cyclic algebras
of degree q.

In connection with this result, it was proved by Merkurjev that in
the case [E :F ] ≤ 3, K2(E) is generated by the symbols {a, β}, a ∈ E,
β ∈ F . The same is true if F has no prime-to-[E :F ] extensions [7].

Even today, after several simplifications of the proof have been
made, the Merkurjev-Suslin theorem is still considered very hard. The
most difficult part is a K2 analog for Hilbert’s theorem 90: if K/F
is cyclic, Gal(K/F ) = ⟨σ⟩, and r ∈ K2(K) satisfies

∑
σir = 0, then

r = σs−s for some s ∈ K2(K). The proofs of this result use heavy ma-
chinery from étale cohomology, including higherK functors, the Braun-
Gerstein-Quillen spectral sequence, and analysis of Chern classes (cf.
[40]). A proof can be found in [38]. We discuss Hilbert’s theorem 90
for subgroups of prime exponent of Br(K) in Section 6.

Motivated by the description of nBr(F ) by generators and relations
for the prime-to-p case, we give in this section a similar description for

pBr(F ) where p = charF . The presentation we describe below was first
proved by Teichmüller. In a more modern language, it can be derived
from the Cartier map Ω1

F → Ω1
F/d(Ω

0
F ) defined by xdy

y
7→ (xp − x)dy

y
,

cf. [17]. Our proof is rather similar to that of Teichmüller, and we
include it for completeness.

3.2. Generators and Relations for pBr(F ). Let F be a field of
characteristic p.

In this subsection we give a presentation of pBr(F ) in terms of
generators and relations. As generators we use the p-cyclic algebras
— they generate pBr(F ) by Albert’s structure theory for p-algebras,
proved back in the 40’s.

Definition 3.2. K2(F ) is defined as the free abelian group gen-
erated by all formal p-symbols [a, b} (a, b ∈ F , b ̸= 0), subject to the
following relations (a, a1, a2, b1, b2 ∈ F , b, b1, b2 ̸= 0):

[a1 + a2, b} = [a1, b}+ [a2, b}(7)

[a, b1b2} = [a, b1}+ [a, b2}(8)

[b, b} = 0(9)

[ap − a, b} = 0.(10)
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Remark 3.3. From Equations (7) and (8), we see that [a, bp} =
p[a, b} = [pa, b} = [0, b} = 0.

Another useful computation is given by

Remark 3.4. For every a, b, c ∈ F , b, c ̸= 0,

[apbc, b} = −[apbc, c}(11)

Proof. If a = 0 we are done. Otherwise, compute that [apbc, b} =
[apbc, b} − [apbc, apbc} = [apbc, 1

cap
} = −[apbc, c}. �

It is evident that (a, b) → [a, b} defines a map from (F,+)⊗Zp
F ∗

onto K2(F ). Actually, this induces a map of abelian groups,

F/℘(F )⊗ZF
∗/F ∗p → K2(F ),

whose kernel is generated by the couples (a, a) (cf. [10, Lemma 11.14]).
Define a map RF : K2(F ) → pBr(F ) by RF : [a, b} 7→ [a, b), where

[a, b) = F [x, y : xp−x = a, yp = b, yx = (x+1)y] is the cyclic p-algebra.
This map is a well defined homomorphism by the basic computational
rules satisfied by cyclic p-algebras (Corollary 2.5 and Remark 2.6).

RF is onto by Albert’s structure theory, so it remains to show that
RF is one-to-one.

We start with an example for values of a for which [a, b} 7→ 0.

Lemma 3.5. If a = γp0 − γ0 +
∑p−1

i=1 γ
p
i b

i for γi ∈ F , then [a, b} = 0.

Proof. [u, v} = [u, v} − [u, u} = [u, v
u
}. Now compute:

[a, b} = [γp0 − γ0 +

p−1∑
i=1

γpi b
i, b}

= [γp0 − γ0, b}+
p−1∑
i=1

[γpi b
i, b}

=

p−1∑
i=1

[γpi b
i, b}

=

p−1∑
i=1

[
1

i
γpi b

i, bi}

= 0.

where the last equality follows from Remark 3.4 (with c = 1). �

It turns out that this example is the most general one:
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Fact 3.6. LetB be an C-algbera, and C a commutative subalgebra.
Let δ : C → C be the derivation induced by z ∈ B: zf − fz = δ(f) for
all f ∈ C.

Then (z + f)p = zp + fp + δp−1(f).

Theorem 3.7 (Teichmüller [39]). If [a, b) splits then a = γp0 −γ0+∑p−1
i=1 γ

p
i b

i for some γi ∈ F .

Proof. By assumption [a, b) ∼= Mp(F ) ∼= [0, b), so there are x, y ∈
Mp(F ) such that xp − x = a, yp = b and yx = (x + 1)y, and z′, y′ ∈
Mp(F ) such that y′p = b, z′p − z′ = 0 and y′z′ = (z′ + 1)y′. But since
F [y] ∼= F [y′], there is some t ∈ Mp(F ) such that y = ty′t−1. Setting
z = tz′t−1, we have that zp − z = 0 and yz = (z + 1)y.

Now y(x − z) = ((x + 1) − (z + 1))y = (x − z)y, so that x − z
commutes with y and x− z ∈ CMp(F )F [y] = F [y]. Thus, x− z = f(y)

for some polynomial f(λ) ∈ F [λ]. Write f(y) =
∑p−1

i=0 γiy
i.

In 3.6 take B =Mp(F ) and C = F [y]. The derivation δ induced by
z satisfies δ(y) = −y, and more generally δ(f(y)) = −yf ′ where f 7→ f ′

is the ordinary derivation of polynomials. δp−1(yi) = (−i)p−1yi = yi

for every i > 0, so that δp−1(f(y)) = f(y)− f(0).
We can now compute: a + z + f(y) = a + x = xp = (z + f(y))p =

zp+f(y)p+f(y)−f(0), so that a = f(y)p−f(0) =
∑p−1

i=0 γ
p
i b

i−γ0. �

Remark 3.8. Let F p ⊆ F be the subfield of all p−powers in F . If
a = γp0 − γ0 +

∑p−1
i=1 γ

p
i b

i then γ0 ∈ F p(a, b).

For the induction step we need the following lemma.

Lemma 3.9. If [a1, b1) ⊗ · · · ⊗ [an, bn) splits, then [a1, b1} + · · · +
[an, bn} can be written as a sum of n− 1 symbols in K2(F ).

Proof. Let S = F [b
1/p
2 , . . . , b

1/p
n ], a purely inseparable extension of

F . Obviously S splits [ai, bi) for all i = 2, . . . , n, but since [a1, b1) ⊗
· · · ⊗ [an, bn) is split, S splits [a1, b1) too. By Theorem 3.7, there exist
γ0, . . . , γp−1 ∈ S with a1 = γp0 − γ0 +

∑p−1
i=1 γ

p
i b

i
1, where by the above

remark γ0 ∈ Sp(a1, b1)=F.

Let G = Zn−1
p be the split abelian group of exponent p. If g ∈ G,

gj is the j’th component of g (j = 2, . . . , n).
Define a function β : G → S by βg = (bg22 . . . bgnn )1/p. The elements

{βg : g ∈ G} form a basis for S over F . Of course, βp
g = bg22 . . . bgnn ∈ F .

For i = 1, . . . , p − 1, write γi =
∑

g∈G γi,gβg, γi,g ∈ F . Then γpi =∑
g∈G γ

p
i,gβ

p
g . Now compute:
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[a1, b1} = [γp0 − γ0 +

p−1∑
i=1

γpi b
i
1, b1} =

= [γp0 − γ0, b1}+
p−1∑
i=1

[γpi b
i
1, b1} =

=

p−1∑
i=1

∑
g∈G

[γpi,gβ
p
gb

i
1, b1} =

=

p−1∑
i=1

∑
g∈G

[
1

i
γpi,gβ

p
gb

i
1, b

i
1} =

= −
p−1∑
i=1

∑
g∈G

[
1

i
γpi,gβ

p
gb

i
1, β

p
g},

the last equality follows from Remark 3.4 with c = βp
g .

Now compute that

[a1, b1} + [a2, b2}+ · · ·+ [an, bn} =

= −
p−1∑
i=1

∑
g∈G

[
1

i
γpi,gβ

p
gb

i
1, b

g2
2 . . . bgnn }+ [a2, b2}+ · · ·+ [an, bn} =

= −
n∑

j=2

p−1∑
i=1

∑
g∈G

[
gj
i
γpi,gβ

p
gb

i
1, bj}+ [a2, b2}+ · · ·+ [an, bn} =

=
n∑

j=2

[aj −
p−1∑
i=1

∑
g∈G

gj
i
γpi,gb

i
1β

p
g , bj}.

Thus [a1, b1}+ · · ·+[an, bn} is the sum of n−1 symbols, as asserted.
�

Theorem 3.10. K2(F )∼=pBr(F ).

Proof. We need to show that RF is one-to-one, that is, that
[a1, b1) ⊗ · · · ⊗ [an, bn) ∼ F implies [a1, b1} + · · · + [an, bn} = 0. The
case n = 1 is Teichmüller’s Theorem 3.7 (combined with Lemma 3.5).

Assume the assertion holds for sums of n− 1 symbols, and suppose
[a1, b1}+ · · ·+[an, bn} 7→ 0, i.e. [a1, b1)⊗· · ·⊗ [an, bn) splits. By Lemma
3.9, [a1, b1}+ · · ·+ [an, bn} is a sum of n− 1 symbols with split image,
so by the induction hypothesis [a1, b1}+ · · ·+ [an, bn} = 0. �
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4. Generators of p-Algebras

Among the basic notions in the study of the automorphisms group
of polynomial rings (e.g. over fields) are that of elementary automor-
phisms, which are those who stabilize all but one of the variables, and
that of tame automorphisms, which are compositions of elementary
ones.

In this section we suggest a similar notion as a tool to study the
variety of sets of standard generators of a p-algebra, which is a ten-
sor product of symbol p-algebras. Since the automorphisms group of a
central simple algebra A is already known, we consider the possible pre-
sentation of an algebra by standard generators, and use isomorphisms
as a device holding two presentations of an algebra at the same time.

This approach is motivated by the fact that axioms (7)–(10) are all
we need to make computations in pBr(F ) (Theorem 3.10), and that the
corresponding relations between p-algebras are proved (in 2.3–2.6) in
terms of explicit generators. It follows that every equality in pBr(F ) can
be explained in terms of simple changes of generators, if we add enough
matrices in both sides. A natural question is how many matrices are
needed in order to make room for the elementary changes. An answer
(and precise formulation of the question) are given in Theorem 4.16.

The standard presentations of symbol p-algebras were described
in Section 2. In subsection 4.1 we discuss the elementary switches
between standard sets of generators of symbol p-algebras, define tame
isomorphisms, and prove some basic facts about sets of generators.
This is generalized later to tensor products of several symbol p-algebras.

In the second subsection we prove (Theorem 4.9) that if two p-
symbols are equal in the Brauer group, then there is a way to rewrite
every symbol as sum of at most p − 1 symbols, such that the isomor-
phism becomes, in a sense, obvious.

This result is used in the third subsection to show that if [a, b)∼=[a′, b′)
are two presentations of the same algebra, then there is a chain of ele-
mentary switches of sets of generators which goes from the presentation
[a, b)⊗Mp(F )

⊗2(p−2) to [a′, b′)⊗Mp(F )
⊗2(p−2).

4.1. Generators of Cyclic p-Algebras. Let A/F be a cyclic
p-algebra of degree p.

Definition 4.1. x, y ∈ A form a standard couple of generators
(SCOG) of A if F [x, y] = A, and

(12) yxy−1 = x+ 1.

It should be noted that (12) gives a presentation of A as a p-symbol,
A = [xp − x, yp), by the following easy computation.
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Lemma 4.2. If x, y form a SCOG, then x satisfies

(13) xp − x ∈ F

and y satisfies

(14) yp ∈ F

Proof. From (12) compute that ypxy−p = x, and that y(xp − x)y−1 =
xp − x. It follows that xp − x, yp ∈ CA(F [x, y]) = Cent(A) = F . �

Write A = [a, b) where a = xp − x and b = yp. Note that for any
t ∈ A, the SCOG txt−1, tyt−1 gives the same presentation. Since we
are interested mainly in the symbols, we identify two SCOGs if they
are conjugate.

Remark 4.3. If x, y and x′, y′ are two SCOGs of A, with xp − x =
x′p − x′ and yp = y′p, then by Skolem-Noether there is a conjugation
that takes x → x′ and y → y′. In other words, there is a one-to-one
correspondence between SCOGs-up-to-conjugation, and presentations
of A as a symbol algebra.

For a symbol p-algebra A, let

XA = {x ∈ A : xp − x ∈ F, x ̸∈ F},

YA = {y ∈ A : yp ∈ F, y ̸∈ F}.
Every SCOG of A consists of x ∈ XA and y ∈ YA. Going from a
SCOG x, y to a SCOG x′, y′ is called an elementary switch if x′ = x
or y′ = y. This amounts to a change of presentation [a, b)∼=[a, b′) or
[a, b)∼=[a′, b), and these are called elementary isomorphisms.

As a framework, we form the graph of SCOGs of A, with vertices
the ordered couples (x, y) ∈ XA × YA such that yxy−1 = x + 1, where
we connect every two points (x, y), (x, y′) or (x, y), (x′, y). We work in
the quotient graph, identifying (x, y) and (x′, y′) if they are conjugate
in A.

Let [a0, b0)∼=[an, bn) be an isomorphism, with respective SCOGs x, y
and x′, y′.

Theorem 4.4. There is a path connecting the SCOGs x, y to x′, y′

in the graph, iff there is a chain of elementary isomorphisms

[a0, b0)∼=[a1, b1)∼= . . .∼=[an, bn).

Proof. A path in the graph corresponds to a chain of presenta-
tions, where each step is an elementary isomorphism, i.e. one of the
defining constants remains the same.
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For the other direction, start from x, y, and replace one generator
at a time, until reaching a SCOG of [an, bn) (which is possibly different
from the target x′, y′). Now use Remark 4.3. �

An isomorphism [a, b)∼=[a′, b′) is called tame, if it satisfies the con-
ditions of the above theorem, i.e. it is a composition of elementary
isomorphisms.

Question 4.5. Let A be a symbol p-algebra. Is the isomorphism
between any two presentations of A tame? In other words, is the graph
of SCOGs of A connected?

Remark 4.6. The graph of SCOGs of Mp(F ) is connected.

Proof. Suppose [a, b)∼=Mp(F )∼=[a′, b′) are two presentations of the
split algebra. Use

[a, b)∼=[0, b)∼=[0, b′)∼=[a′, b′).

�
It follows that if A∼=A′ is tame (where A,A′ are presentations of a

given algebra), then the isomorphism A⊗Mp(F )∼=A′⊗Mp(F ) is tame
too, and there is no need to specify the presentations of Mp(F ) in
both sides. This observation motivates the definition of stably-tame
isomorphisms in the third subsection. In subsection 4.4 we answer
affirmatively Question 4.5 for p = 2.

We end this subsection with a closer look on elementary switches.
First, we remark that for every x ∈ XA there is some y ∈ YA such

that x, y form a SCOG, and vice versa:

Remark 4.7. a. If x ∈ XA, then there is some y ∈ A such that
x, y form a SCOG of A.

b. If y ∈ YA, then there is some x ∈ A such that x, y form a SCOG
of A.

Proof. a. By Remark 1.5, F [x] is either a subfield of A, or the
split ring F×p. In both cases the automorphism induced by x 7→ x+ 1
is inner (Skolem-Noether or the generalization to maximal separable
commutative subalgebras in [9]), say induced by y. y ̸∈ F [x], so that
F [x, y] = A.

b. This is [1, Theorem IV.17]. �
The following is a characterization of elementary switches for sym-

bol p-algebras, in terms of elements of the subfields involved.

Lemma 4.8. Let x, y be a SCOG of A.
a. x, y1 is a SCOG iff y1 = ky for some k ∈ F [x].
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b. x1, y is a SCOG iff x1 = x+ u for some u ∈ F [y].

Proof. a. y1xy
−1
1 = x+ 1 iff y1y

−1 ∈ CA(F [x]) = F [x].
b. yx1y

−1 = x1 + 1 iff x1 − x ∈ CA(F [y]) = F [y]. �

4.2. The Connection Theorem.
Suppose we have the equalities

[ck, b1} = [kck, b2},

for ck ∈ F (k = 1, . . . , p− 1). Then obviously

[

p−1∑
k=1

ck, b1} = [

p−1∑
k=1

kck, b2}.

It turns out that every equality of p-symbols can be explained by
this observation.

Theorem 4.9 (Connection Theorem). Suppose [a1, b1} = [a2, b2},
a1, b1, a2, b2 ∈ F .

Then there exist c1, . . . , cp−1 ∈ F such that

(15) [ck, b1} = [kck, b2}

and

(16) [a1, b1} =

p−1∑
k=1

[ck, b1} =

p−1∑
k=1

[kck, b2} = [a2, b2}.

Proof. If b2 is a p-power in F then we can take ck = 0, so assume

L = F [b
1/p
2 ] is a field. Since [a1, b1)⊗L∼=[a2, b2)⊗L ∼ L, we can apply

Theorem 3.7 and write a1 = γ0
p − γ0 +

∑p−1
i=1 γ

p
i b

i
1 for γi ∈ L. By

Remark 3.8, γ0 ∈ F . For every i > 0, write γi =
∑p−1

j=0 γijb
j/p
2 , γij ∈ F .

Now let ck =
∑
−j/i≡k (mod p) γ

p
ijb

i
1b

j
2 (k = 0, 1, . . . , p− 1), and note that

[c0, b1} = 0. Then

[a1, b1} = [γ0
p − γ0 +

p−1∑
k=0

ck, b1} =

p−1∑
k=1

[ck, b1}.

Since ck ∈ F p·(b1b−k2 )+· · ·+F p·(b1b−k2 )p−1, we have that [ck, b1b
−k
2 } = 0,

from which (15) follows. Finally,

[a2, b2} = [a1, b1} =
∑

[ck, b1} =
∑

[kck, b2}

by assumption. �
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4.3. Generators of Products of Symbols. Let A be a tensor
product of symbol p-algebras.

Definition 4.10. Elements

(
x1 x2 . . . xk
y1 y2 . . . yk

)
∈ A form a stan-

dard vector of generators (SVOG) of A if x1, . . . , xk commute, y1, . . . , yk
commute, F [x1, . . . , xk, y1, . . . , yk] = A, and

(17) yixjy
−1
i = xj + δij.

The change

(
x1 x2 . . . xk
y1 y2 . . . yk

)
→
(
x′1 x′2 . . . x′k
y′1 y′2 . . . y′k

)
of SVOGs

is called an elementary switch if, for some 1 ≤ i0 ≤ k, either xi = x′i
for all i ̸= i0 and yi0 = y′i0 , or yi = y′i for all i ̸= i0 and xi0 = x′i0 (i.e. we
allow one change in each column, as long as one of the lines has only
one change in it).

Definition 4.11. Let X, Y and X ′, Y ′ be SVOGs of A.
An isomorphism F [X,Y ]∼=F [X ′, Y ′] is tame if there is a sequence

(X, Y ) = (X0, Y0), (X1, Y1), . . . , (Xm, Ym) = (X ′, Y ′) of SVOGs, such
that each change (Xi, Yi) → (Xi+1, Yi+1) is elementary.

A1
∼=A2 is stably-tame of level ≤ d ifA1⊗Mp(F )

⊗d∼=A2⊗Mp(F )
⊗d

is tame.

The last definition needs a little clarification. Indeed, the notion
of tameness refers to an isomorphism between two presentations of
an algebra, and Mp(F ) is given without any specific presentation. But
according to Remark 4.6, one can change generators of each of the split
components inside itself, so the choice of SCOGs for them is irrelevant.
Note that a stably-tame isomorphism of level 0 is tame.

Remark 4.12. If A = F [X,Y ]∼=F [X ′, Y ′] = A′ is tame, then

A⊗Mp(F )∼=A′⊗Mp(F )

is tame too.

To be precise, if z, u and z′, u′ are SCOGs of Mp(F ), the statement
is that F [X, z, Y, u]∼=F [X ′, z′, Y ′, u′] is tame.

Proof. Glue z, u to any SVOG in the chain going from A to
A′. You get a chain of SVOGs from F [X, z, Y, u] = A⊗Mp(F ) to
F [X ′, z, Y ′, u]. Now make three more steps without touching X ′, Y ′ to
go from z, u to z′, u′, as in Remark 4.6. �

Lemma 4.13. Suppose the isomorphisms A1
∼=A′1 and A2

∼=A′2 are
stably-tame of levels m1,m2, respectively. Then A1⊗A2

∼=A′1⊗A′2 is
stably-tame of level ≤ max{m1,m2}.
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Proof. Letm = max{m1,m2}. SinceAi⊗Mp(F )
⊗mi∼=A′i⊗Mp(F )

⊗mi

are tame, we may by the above remark assume that m1 = m2 = m.
Let U1, U

′
1, U2, U

′
2 be the corresponding SVOGs of A1, A

′
1, A2 and

A′2. By the assumption, there are SVOGs W1,W
′
1,W2,W

′
2 of Mp(F )

⊗m

with chains of elementary switches from Ui ∪Wi to U
′
i ∪W ′

i .
It is easily seen that the chain from U1∪U2∪W1 to U

′
1∪U2∪W ′

1, then
(using Remark 4.6) to U ′1∪U2∪W2, and then to U ′1∪U ′2∪W ′

2, is a chain
of elementary switches, so that A1⊗A2⊗Mp(F )

⊗m∼=A′1⊗A′2⊗Mp(F )
⊗m

is tame. �
Lemma 4.14. Let k ≥ 1, a, b ∈ F .
a. [a, b)⊗k∼=[a, bk)⊗Mp(F )

⊗(k−1) is tame.

b. [a, b)⊗k∼=[ka, b)⊗Mp(F )
⊗(k−1) is tame.

c. [a, bk)∼=[ka, b) is stably-tame of level ≤ k − 1.

Proof. Note that by Remark 4.6 we do not need to specify the

presentation of matrix components. Let

(
x1 . . . xk
y1 . . . yk

)
be a SVOG

of A = [a, b)⊗k, where xpj − xj = a, ypj = b, and F [xj, yj], F [xj′ , yj′ ]
commute if j ̸= j′.

a. Check that

(
x1 x2 − x1 . . . xk − x1

y1y2 . . . yk y2 . . . yk

)
is a SVOG of

A, which gives the presentation [a, bk)⊗[0, b)⊗(k−1) = [a, bk)⊗Mp(F )
⊗(k−1).

b. Similarly,

(
x1 + · · ·+ xk x2 . . . xk

y1 y−11 y2 . . . y−11 yk

)
is a SVOG which

gives the presentation [ka, b)⊗[a, 1)⊗(k−1) = [ka, b)⊗Mp(F )
⊗(k−1).

c. Immediate from parts a. and b. �
Taking k = p, we get the special case

Corollary 4.15. [a, b)⊗p∼=Mp(F )
⊗p is tame.

We are ready for the main result of this subsection.

Theorem 4.16. Every isomorphism of the form [a, b)∼=[a′, b′) is
stably-tame of level ≤ 2(p− 2).

Proof. We use the Connection theorem 4.9, where (16) gives an
isomorphism of p-algebras of degree (p− 1)p:

[a1, b1)⊗Mp(F )
⊗(p−2) ∼= [c1, b1)⊗ . . .⊗[cp−1, b1)

∼= [c1, b2)⊗ . . .⊗[cp−1, b
p−1
2 )

∼= [c1, b2)⊗ . . .⊗[(p− 1)cp−1, b2)

∼= [a2, b2)⊗Mp(F )
⊗(p−2).
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Let xk, yk by SCOGs for [ck, b1), so that

(
x1 x2 . . . xp−1
y1 y2 . . . yp−1

)
is

a SVOG for [c1, b1)⊗ . . .⊗[cp−1, b1).
By an inductive argument using Theorem 2.4,(

x1 + · · ·+ xp−1 x2 . . . xp−1
y1 y−11 y2 . . . y−11 yp−1

)
is a SVOG for [a1, b1)⊗Mp(F )

⊗p−2. It follows that the first isomor-
phism is tame. The last isomorphism is treated similarly.

The second isomorphism

[c1, b1)⊗ . . .⊗[cp−1, b1)∼=[c1, b2)⊗ . . .⊗[cp−1, bp−1)

is easily seen to be tame.
In the third isomorphism, every [ck, b

k
2)
∼=[kck, b2) is stably-tame of

level ≤ k− 1 by the last lemma, so by Lemma 4.13 the isomorphism is
stably-tame of level ≤ p− 2.

It follows that the isomorphism [a1, b1)∼=[a2, b2) is stably-tame of
level ≤ 2(p− 2). �

We can define a hierarchy of equivalence relations on the collection
of SCOGs of a given symbol p-algebra A: two SCOGs of A are equiv-
alent in level m if the isomorphism between the symbol algebras they
generate is stably-tame of level ≤ m. Obviously the relations become
coarser as the level increases, and by the theorem all the classes unite
eventually.

An isomorphism scheme which is not obviously tame appears in
[28, Lemma 3.2]. If x, y form a SCOG of an algebra A, then x induces
a derivation of F [y], and for any u ∈ F [y] we have that v = ux− xu ∈
F [y]. It follows that xv−1u, u form a SCOG of A. A natural question
is of what level of tameness is the isomorphism F [x, y]∼=F [xv−1u, u].

4.4. Quaternions in Characteristic 2. We now apply and in-
terpret the results of the previous subsections to the case p = 2.

By Theorem 4.16, every isomorphism of symbol 2-algebras is tame.
Indeed, the connection theorem for p = 2 reads:

Suppose [a1, b1} = [a2, b2} . Then there exists c ∈ F such that

(18) [a1, b1} = [c, b1} = [c, b2} = [a2, b2}.
Note that [3, Lemma 6.3] is essentially the same result for quater-

nion algebras over a field k with chark ̸= 2: if (a1, b1)2∼=(a2, b2)2, then

(a1, b1)2∼=(c, b1)2∼=(c, b2)2∼=(a2, b2)2

for some c ∈ k.
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We can explain Equation (18) in terms of generators. Recall that
x, y is a standard couple of generators for [a, b)2 if x2 − x = a, y2 = b,
and yx = xy + y. Now suppose

[a1, b1) ∼= [a2, b2).

By the usual argument, we can write a1 = µ2
0 − µ0 + µ2b1 for µ0 ∈ F

and µ ∈ F [
√
b2]. Expressing µ = µ1 + µ2

√
b2 for µ1, µ2 ∈ F , we have

(19) a1 = µ2
0 + µ0 + µ2

1b1 + µ2
2b1b2.

By symmetry, one can also solve

(20) a2 = η20 + η0 + η21b2 + η22b1b2.

By the proof of the connection theorem, [a1, b1)∼=[c, b1)∼=[c, b2)∼=[a2, b2)
for c = µ2

2b1b2. Let x, y be a standard couple of generators for [a1, b1),
and set x′ = x+ µ0 + µ1y, and y

′ = µ2b2c
−1x′y.

One can check that x′, y′ is a SCOG for [c, b2). There is a SCOG
x̃, ỹ for [a2, b2), so by Skolem-Noether, y′ = zỹz−1 for some z ∈ R. Set
x′′ = zx̃z−1. This completes the chain of SCOGs:

x, y is a SCOG for [a1, b1);
x′, y is a SCOG for [c, b1);
x′, y′ is a SCOG for [c, b2);
x′′, y′ is a SCOG for [a2, b2).

Corollary 4.17 (answer to Question 4.5 for p = 2). The graph of
SCOGs of a quaternion algebra is connected.

Now write x′′ = q+rx′+sy′+tx′y′, and solve (x′′)2−x′′ = a2, y
′x′′+

x′′y′ = y′ for the variable q, r, s, t. One gets r = 1, t = 0, so that
x′′ = q + x′ + sy′. Now computing a2 = (x′′)2 − x′′ = q2 + q + s2b2 + c,
we proved

Corollary 4.18. If [a1, b1)∼=[a2, b2), then it is possible to solve
(19),(20) with µ2 = η2.

5. Generators of pBr(K)

Let K/F be finite extension.
The subgroup of pBr(K)∼=K2(K) (Definition 3.2) generated by sym-

bols of the form [a, β} (a ∈ K, β ∈ F ) is denoted by [K,F}. The main
result of this section is that if K/F is separable, then K2(K) = [K,F}.
Moreover, every symbol in K2(K) = [K,K} can be written as sum of
no more than [K :F ] + 1 symbols from [K,F}.

The immediate application is that it is easy to compute the core-
striction. More on that — in subsection 5.2.
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It is known that if F is a C2-field of characteristic 0, then every
central simple algebra of exponent 2 over F is similar to a quaternion
symbol algebra [6]. In subsection 5.3 we extend this result to charac-
teristic 2, and show that if K/F is separable of dimension 2 and F is
C2, then every 2-algebra of exponent 2 over K is similar to a symbol
[a, β} where β ∈ F .

The last subsection is just a quick reference for the translation be-
tween ’our’ symbols and the so-called differential symbols.

5.1. The Subgroup [K,F}.
Lemma 5.1. Let b ∈ K, and suppose F [b]/F is separable. If a ∈

F [b], then [a, b} ∈ [K,F}.
Proof. Let n = [F [b] :F ].
First show that it is possible to write a as a polynomial in b, without

any monomials of the form αib
i with p | i. Indeed, since F [b]/F is

separable, F [bp] = F [b] (Corollary 1.3), and for every 0 ≤ j < n
we have that bj−1 ∈ F [bp] =

∑
0≤i<n Fb

ip. Multiplying by b, we get

bj ∈
∑

0≤i<n Fb
ip+1.

It follows that F [b] =
∑

0≤i<n Fb
ip+1, and writing a =

∑
0≤i<n αib

ip+1

we have that

[a, b} =
∑

0≤i<n

[αib
ip+1, b}

=
∑

0≤i<n

[αib
ip+1, bip+1}

=
∑

0≤i<n

[αib
ip+1,

1

αi

}

=
∑

0≤i<n

[−αib
ip+1, αi} ∈ [K,F}.

�
Remark 5.2. Under the conditions of the above lemma, [a, b} can

be expressed as a sum of n symbols from [K,F}.
Question 5.3. Suppose K/F is inseparable. Is it still true that

[K,K} = [K,F}? Inspecting the monomials one finds that if a ∈ F [b],
then [a, b} ∈ [K,F}+ [F [bp], K}.

Corollary 5.4. If [K :F ] is prime ̸= p, then K2(K) = [K,K} =
[K,F}.

Proof. Let [a, b} ∈ [K,K}. If b ∈ F , we are done. Otherwise
F [b] = K and a ∈ F [b], so we are done by Lemma 5.1. �
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Remark 5.5. If K is a finite field, then K2(K) = 0.

Proof. Since |K∗| is prime to p, every b ∈ K is a p-power, and
every symbol [a, b} is trivial. �

Theorem 5.6. Suppose K/F is a finite separable extension. Then
K2(K) = [K,F}.

Proof. If F is finite then K is finite too, and K2(K) = 0 by
Remark 5.5. Assume henceforth that F is infinite.

Let [a, b} ∈ [K,K}. The idea is to replace [a, b} by an equivalent
symbol with the property a ∈ F [b], where we can use Lemma 5.1.

Consider the collection of subfields F [b(a+αb)] ⊆ K, where α ∈ F .
Since K has only finitely many subfields containing F , there are α1 ̸=
α2 ∈ F such that L = F [b(a + α1b)] = F [b(a + α2b)]. Subtracting, we
see that ab, b2 ∈ L, and so a2 = (ab)2b−2 ∈ L.

Now suppose p = charF = 2. Then

[a+ α1b, b} = [a+ α1b, b(a+ α1b)} = [(a+ α1b)
2, b(a+ α1b)},

but (a+ α1b)
2 = a2 + α2

1b
2 ∈ L, so by Lemma 5.1

[a, b} = [a+ α1b, b} − [α1b, b} = [a+ α1b, b}+ [α1b, α1} ∈ [K,F}.
The same trick works for arbitrary p, inspecting the subfield F [b(a+

αb)p−1], but technically it is a little more complicated. We give a
slightly simpler proof for the case p ̸= 2.

There must be three scalars α1, α2, α3 ∈ F such that the three

fields F [ (a+αib)
2

b
] = F [a

2

b
+2αia+α

2
i b] are equal. Since the Vandermonde

matrix of α1, α2, α3 is invertible, this field contains a2

b
, 2a, b (but 2 ̸= 0).

Then a+ α1b ∈ F [ b
(a+α1b)2

], and

[a, b} = [a+ α1b, b} − [α1b, b} =

= [a+ α1b,
b

(a+ α1b)2
}+ [α1b, α1} ∈ [K,F}.

�
Corollary 5.7. If K/F is separable of dimension n, then every

symbol [a, b} can be expressed as a sum of at most n+ 1 symbols from
[K,F}.

Proof. By the proof of the last theorem, one symbol is needed in
order to reach a symbol [a, b} with a ∈ F [b], and then by Remark 5.2,
[F [b] :F ] ≤ n symbols suffice. �

If K/F has no intermediate subfield, then Remark 5.2 applies di-
rectly, and we never need more than n symbols from [K,F}. The
following question is natural.
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Question 5.8. For what extensions K/F are [K :F ] + 1 symbols
really needed?

5.2. The Trace Map. Fix some field extension K/F . By Theo-
rem 3.10, RK : K2(K) → pBr(K) defined by RK : [a, b} → [[a, b)] is an
isomorphism. We define resF→K : K2(F ) → K2(K) by sending every
symbol [α, β} over F to the same symbol over K. Note that this is not
necessarily injective, as illustrated by the case when K is the algebraic
closure of F . It is easily seen that

(21) resF→K ◦RF = RK ◦ resF→K ,

where the restriction in the left hand side is the usual restriction of
Brauer groups, [A] 7→ [A⊗FK].

For any separable extension K/F , there is a homomorphism cor :
Br(K) → Br(F ) called the corestriction (see, e.g., [30, Section 7.2]).
For [A] ∈ Br(F ), we have that cor(resF→KA) ∼ A⊗[K:F ]. Another
important property is the projection formula, that cor[a, β)K =
[tra, β)F and cor[β, a)K = [β,NK/Fa)F for a ∈ K, β ∈ F , where trK/F

denotes the usual trace map of fields..
We use the usual corestriction of the Brauer groups to define a

corestriction map from K2(K) to K2(F ) by

(22) corK/F = R−1F ◦ corK/F ◦RK .

Remark 5.9. By (21) and (22), corK/F ◦ resF→K : K2(F ) → K2(F )
is multiplication by [K :F ].

Remark 5.10. From Corollary 5.7 it follows that corK/F [a, b} is a
sum of no more than [K :F ] + 1 symbols in K2(F ). Note that P. Mam-
mone [19] showed that [K :F ] symbols are enough.

Suppose K/F is Galois. For symbols of the form [a, β} (β ∈ F ), we
get from the projection formula (for corestriction of symbol algebras)
that

corK/F [a, β} = R−1F corK/F [a, β) = R−1F [trK/Fa, β) = [trK/Fa, β}F .

Gal(K/F ) acts on K2(K) by σ : [a, b} → [σa, σb}. We define a
trace map TrK/F : K2(K) → K2(K) by

TrK/F (u) =
∑

σ∈Gal(K/F )

σ(u).

Remark 5.11. Suppose K/F is Galois. Then

(23) TrK/F = resF→K ◦ corK/F .
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Proof. Let u ∈ K2(K). Use Theorem 5.6 to write u =
∑

[ai, βi},
βi ∈ F . Now,

resF→KcorK/F (u) = resF→KcorK/F

∑
[ai, βi}

= resF→K

∑
[trK/Fai, βi}F

=
∑
i

[trK/Fai, βi}K

=
∑
i

∑
σ

[σai, βi}K

=
∑
σ

σ

(∑
i

[ai, βi}K

)
=

∑
σ

σu = TrK/F (u).

�
Theorem 5.12. If K/F is finite Galois, then

corK/F : K2(K) −→ K2(F )

is onto.

Proof. Let v ∈ K be an element such that trK/F (v) = 1 (such an
element exists by Remark 1.22). Then for every α, β ∈ F ,

corK/F [vα, β} = [trK/F (v)α, β} = [α, β}.
�

5.3. Quaternions over C2-fields of Characteristic 2. A field F
is a Cn-field if any system of homogeneous equations, with the number
of variables greater than the sum of n-powers of the total degrees of
the equations, has a non-trivial solution [12, Chap. 19]. For example,
a field which has transcendence degree n over an algebraically closed
field is Cn.

In [6, section 6] it is proved that if F is a C2 field of characteristic
0, then for every central simple algebra A of degree 2a3b, we have that
exp(A) = ind(A).

Proposition 5.13. Let p = 2 or 3. Assume F is a C2 field with
charF = p. If A/F is a p-algebra, then exp(A) = ind(A).

Proof. If exp(A) = p, thenA ∼ D1⊗ · · ·⊗Dt whereDi are symbol
p-algebras. By Step 3 in the Appendix of [6] (which is characteristic
free), every Di, Dj has a common splitting field of dimension p over F ,
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so that ind(A) = p. The induction argument in [6] works here too, so
the result apply for any exponent pt. �

Some new cyclicity results for central simple algebras over C2 fields
appear in [32].

Theorem 5.14. Let K/F be a separable extension of dimension 2,
where F is a C2-field of characteristic 2.

Every 2-symbol R = [a, b) over K (a, b ∈ K), can be written as
R∼=[c, γ), where c ∈ K and γ ∈ F .

Proof. Let x, y be the standard generators of the 2-symbol R =
F [x, y : x2−x = a, y2 = b, yxy−1 = x+1]. Write u = q+ rx+sy+ txy.
By direct computation, we see that u2 ∈ K iff r = 0. Note that if
u ̸∈ F , then u2 ∈ F ensures u ̸∈ K, since K/F is separable. Let θ be
a generator of K/F , and write q = q0 + q1θ, s = s0 + s1θ, t = t0 + t1θ,
for q0, q1, s0, s1, t0, t1 ∈ F . Set q0 = 0, so that u ̸∈ F unless u = 0. Now
compute that

u2 = (q + sy + txy)2 = q2 + bst+ bs2 + abt2,

so substituting, the coefficient of θ in u2 is immediately seen to be a
homogeneous quadratic form in the five variables q1, s0, s1, t0, t1 over F .
Since F is C2 and 5 > 22, there is a non-trivial solution for γ = u2 ∈ F .

By Remark 4.7.b, there is a v ∈ R such that uvu−1 = v + 1, and
R = F [v, u]∼=[c, γ).

�
Remark 5.15. Using similar arguments, the same result holds

when charF ̸= 2.

Question 5.16. Do we really need K/F to be separable?

5.4. Two Types of Symbols. The special form of p-symbols we
used to define cyclic p-algebras of degree p is, of course, a matter of con-
venience. Other authors (e.g. [15], [36]) prefer the so-called differential
symbols. For example, Teichmüller’s result was reproved by Jacobson
[16] in the differential setting. This short subsection is intended to
serve as a quick reference for the two languages and the translations
between them.

Definition 5.17.
[a, b) = F [x, y| xp − x = a, yp = b, yxy−1 = x+ 1].
(α, β) = F [u, v| up = α, vp = β, vu− uv = 1].

The transformation of defining generators is by x = uv, y = v
(u = xy−1, v = y), so that

[a, b) = (ab−1, b),
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(α, β) = [αβ, β) = [αβ, α−1).

The defining relations for K2(F ) are listed in (7)-(10). The parallel
relations for the differential symbols are

(a1 + a2, b) = (a1, b) + (a2, b)(24)

(a, b1b2) = (ab1, b2) + (ab2, b1)(25)

(1, a) = 0(26)

(apb−1, b) = (ab−1, b)(27)

Note that taking a = 1 in axiom (25) and using axiom (26), we get
the antisymmetry relation

(b1, b2) = −(b2, b1).(28)

Inducting on (25) and (24), we get (a, bp) = p(abp−1, b) = 0. By
antisymmetry, (26) is now obsolete.

Thus we can use (24),(25),(27) and (28) as defining relations. In
particular, pBr(F ) is now seen to be a quotient group of F ∧F , or even
better, of (F ∧ F )/(F p ∧ F p).

If F ⊆ K, then [K,F} = (K,F ) = (F,K), so Theorem 5.6 reads
(K,K) = (K,F ) (assuming K/F is separable). The trace of a sym-
bol from [K,F} or [F,K} is a symbol. The same is true, of course, for
(K,F ). The differential symbols parallel to [F,K} are {(α, β) : αβ ∈ F},
for which corK/F (α, β) = (αβNK/F (β)

−1, NK/F (β)).

6. Hilbert’s Theorem 90 for pBr(K)

Let K/F be a cyclic extension of fields, Gal(K/F ) = ⟨σ⟩. Theorem
90 in Hilbert’s classical book on Number theory [13] asserts that every
a ∈ K with NK/F (a) = 1 is of the form a = σ(u)u−1 (u ∈ K).

Similarly, every element a ∈ K with trK/F (a) = 0 is of the form
a = σ(u)− u for some u ∈ K.

As mentioned in subsection 3.1, a similar result about the trace
map of K2(K) (where charF is prime to [K :F ]) plays a key role in the
proof of the Merkurjev-Suslin theorem.

It should be noted, however, that Hilbert’s theorem 90 does not
in general hold for relative K2 groups K2(F )/nK2(F )∼=nBr(F ). This is
discussed and demonstrated in Subsection 6.6.

The main purpose of this section is to study to what extent does
Hilbert’s theorem 90 apply to pBr(K). It is trivial that the elements
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of the form (1 − σ)(r) (r ∈ pBr(K)) are in the kernel of TrK/F , so we
focus on the quotient Ker(TrK/F )/Im(1− σ).

In the first subsection we give a very simple computation, which,
assuming [K :F ] is coprime to p, gives for every u ∈ K2(K)∼=pBr(K)
with TrK/F (u) = 0, an explicit v ∈ K2(K) such that u = v − σ(v).

In the second subsection we rephrase Hilbert’s theorem 90 in the
context of modules, and give some general elementary results, which
show that Hilbert’s theorem 90 holds iff the invariant submodule is
the image of the trace. Then we dissect the modules in question into
pieces, and get a quantitative connection between the ’Hilbert defect’
and ’Galois defect’ of the module.

The results are applied in the fourth subsection to the group pBr(K).
We discuss the quotient modules defined in the general case, and give
some more details for the p-power dimension case. We also show that
under very weak hypothesis, Hilbert’s theorem 90 does fail for pBr(K).
In Subsection 6.5 we study the invariant subgroup pBr(K)σ, and show
that in some cases, invariant p-symbol algebras have special structure.
The relations to the Eilenberg-MacLane description of the invariant
subgroup of the Brauer group are also discussed.

In the last subsection we use properties of the corestriction to give
examples of failures of Hilbert’s theorem 90 in nBr(K) in characteristic
prime to n.

6.1. Hilbert’s Theorem 90 in the Prime-to-p Case. Suppose
d = [K :F ] is prime to p.

Let r ∈ K2(K) be an element such that TrK/F (r) = 0. Since
K2(K) = [K,F} (Theorem 5.6), we can write r =

∑m
i=1 [ai, βi} for

ai ∈ K and βi ∈ F .
Now note that for every a ∈ K, trK/F (a−d−1 ·trK/F (a)) = 0, so that

for every i, there is some ci ∈ K such that ai−d−1·trK/F (ai) = σ(ci)−ci.
An explicit formula for elements in Ker(TrK/F ) follows. It is probably
not new, but we include the short proof here for completeness.

Theorem 6.1. Let r ∈ K2(K) satisfy TrK/F (r) = 0. Write r =∑m
i=1 [ai, βi}, let ci be as above, and u =

∑m
i=1 [ci, βi}.

Then r = σ(u)− u.
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Proof. Compute

σ(u)− u = σ

(
m∑
i=1

[ci, βi}

)
−

m∑
i=1

[ci, βi} =

=
∑

[σ(ci)− ci, βi} =

=
∑

[ai − d−1 · trK/F (ai), βi} =

=
∑

[ai, βi} − d−1 ·
∑

[trK/F (ai), βi} =

= r − d−1 · TrK/F (r) = r.

�

6.2. Elementary Results. Let R be an arbitrary commutative
ring, andM an R-module. The idea is to use knowledge of the structure
of R to get information on the submodules ofM . We identify elements
of R with the module homomorphism of multiplication from the left.
We are mainly interested in results of the form Ker(ϕ) ⊆ Im(ψ), where
π, ψ ∈ R, and the main result will be used later to give necessary and
sufficient conditions for the validity of Hilbert’s theorem 90 in K2(K)
where K/F is a cyclic extension.

Let π ∈ R be an element. Trivially,

Ker(π) ⊆ Ker(π2) ⊆ · · · ⊆ Ker(πm),

and
Im(πm) ⊆ Im(πm−1) ⊆ · · · ⊆ Im(π).

Proposition 6.2. Let 0 < k < m. Then Ker(πk+1) ⊆ Im(πm−k)
iff Ker(πk) ⊆ Im(πm−k+1).

Proof. Suppose Ker(πk+1) ⊆ Im(πm−k). Let v ∈ M such that
πkv = 0. Then πk+1v = 0, so by the assumption v = πm−ku for
some u ∈ M . Compute that 0 = πkv = πmu = πk+1(πm−k−1u), so
again by the assumption πm−k−1u = πm−kw for some w ∈ M , and
v = ππm−k−1u = ππm−kw ∈ Im(πm−k+1).

Now assume Ker(πk) ⊆ Im(πm−k+1), and let v ∈ M such that
πk+1v = 0. Then πv ∈ Ker(πk) ⊆ Im(πm−k+1); write πv = πm−k+1u.
It follows that πk(v − πm−ku) = 0, so that v − πm−ku = πm−k+1w for
some w ∈M , and v = πm−k(u+ πw). �

By induction, we have

Corollary 6.3. The relations

Ker(πk) ⊆ Im(πm+1−k) (0 < k ≤ m)
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are all equivalent. In particular, Ker(π) ⊆ Im(πm) iff Ker(πm) ⊆
Im(π).

We say that ϕ, ψ ∈ R are coprime if Rϕ + Rψ = R, that is, there
are α, β ∈ R such that αϕ+ βψ = 1.

Lemma 6.4. If ϕ, ψ ∈ R are co-prime, then
a. M = Im(ϕ) + Im(ψ),
b. Ker(ϕ) ∩Ker(ψ) = 0, and
c. Ker(ϕ) ⊆ Im(ψ) and Ker(ψ) ⊆ Im(ϕ).

Proof. Write αϕ+ βψ = 1.
a. Every x ∈M can be written as x = (αϕ+βψ)x = ϕ(αx)+ψ(βx).
b. If ϕx = ψx = 0, then x = (αϕ+ βψ)x = α(ϕx) + β(ψx) = 0.
c. If ϕx = 0, then x = (αϕ + βψ)x = ψ(βx) ∈ Im(ψ); similarly

Ker(ψ) ⊆ Im(ϕ). �
Lemma 6.5. If ϕ, ψ ∈ R are co-prime, then
a. Im(ϕψ) = Im(ϕ) ∩ Im(ψ), and
b. Ker(ϕψ) = Ker(ϕ) + Ker(ψ).

Proof. Write αϕ+ βψ = 1.
a. The inclusion Im(ϕψ) ⊆ Im(ϕ) ∩ Im(ψ) is trivial. Let v =

ϕx = ψy for x, y ∈ M . Then x = (αϕ + βψ)x = α(ϕx) + βψx =
α(ψy) + βψx = ψ(αy + βx), and v = ϕx = ϕψ(αy + βx) ∈ Im(ϕψ).

b. Again Ker(ϕψ) ⊇ Ker(ϕ) + Ker(ψ) is trivial. Let x ∈ M satisfy
ϕψx = 0. Then x = (αϕ + βψ)x = (αϕx) + (βψx) ∈ Ker(ψ) + Ker(ϕ)
since ψ(αϕx) = α(ϕψx) = 0 and ϕ(βψx) = β(ϕψx) = 0. �

Remark 6.6. The last lemma can be generalized as follows. Say
that ϕ, ψ have greatest common divisor if there is some χ ∈ R such
that ϕ = χϕ′, ψ = χψ′, and ϕ′, ψ′ are co-prime (when R is a domain,
ϕ, ψ have greatest common divisor iff Rϕ+Rψ is principal).

Suppose ϕ, ψ have greatest common divisor and let [ϕ, ψ] = χϕ′ψ′.
It can be shown that

a. Im([ϕ, ψ]) = Im(ϕ) ∩ Im(ψ), and
b. Ker([ϕ, ψ]) = Ker(ϕ) + Ker(ψ).

The motivation for the following result comes from Proposition 6.20
in subsection 6.4, describing the trace element in some suitable ring R.

Corollary 6.7. Suppose ϕ, π ∈ R are co-prime, and θ = πmϕ.
Then Ker(π) ⊆ Im(θ) iff Ker(θ) ⊆ Im(π).

Proof. Note that ϕ is coprime to πm. By Lemma 6.4.c, Ker(π) ⊆
Im(ϕ). Thus, Ker(π) ⊆ Im(θ)

Lemma 6.5.a
= Im(πm) ∩ Im(ϕ) iff Ker(π) ⊆



6. HILBERT’S THEOREM 90 FOR pBr(K) 43

Im(πm). This relation holds iff Ker(πm) ⊆ Im(π) (Corollary 6.3), but
since Ker(ϕ) ⊆ Im(π) (again Lemma 6.4.c), it happens iff Ker(πm) +

Ker(ϕ)
Lemma 6.5.b

= Ker(θ) ⊆ Im(π). �
Remark 6.8. If ϕ, ψ ∈ R, ϕψ = 0, then Im(ψ) ⊆ Ker(ϕ) and

Im(ϕ) ⊆ Ker(ψ). If, moreover, ϕ, ψ are co-prime, then Im(ψ) = Ker(ϕ),
Im(ϕ) = Ker(ψ), and M = Im(ϕ)⊕ Im(ψ) (by Lemmas 6.4 and 6.5).

The following proposition shows that in the special case θπ = 0
(which will be important in Subsection 6.4), the last corollary is a
special case of Corollary 6.3.

Proposition 6.9. Suppose ϕ, π ∈ R are co-prime, θ = πmϕ, and
θπ = 0.

Then Im(θ) = Im(πm) ∩Ker(π) and Ker(θ) = Ker(πm) + Im(π).

Proof. Since ϕ is coprime to πm+1, we get from Remarks 6.5 and
6.8 that Im(θ) = Im(πm)∩ Im(ϕ) = Im(πm)∩Ker(πm+1). But Im(θ) ⊆
Ker(π) ∩ Im(πm) ⊆ Ker(πm+1) ∩ Im(πm), so we get an equality.

Similarly, Ker(θ) = Ker(πm) + Ker(ϕ) = Ker(πm) + Im(πm+1) ⊆
Ker(πm) + Im(π) ⊆ Ker(θ). �

It is comfortable to be able to lift properties of the submodules of
given exponent, to the whole module, as in the following proposition.
We adopt the notation eM for Ker(e) for every e ∈ R (but usually
e ∈ Z).

Proposition 6.10. Let θ, π, e,m ∈ R be elements such that θπ = 0,
and M is e-divisible.

If

eM ∩Ker(θ) ⊆ Im(π), mM ∩Ker(θ) ⊆ Im(π),

then

meM ∩Ker(θ) ⊆ Im(π).

Proof. Let x ∈ meM satisfy θx = 0. Then ex ∈ mM ∩ Ker(θ) ⊆
Im(π). Write ex = πy. By e-divisibility, y = ey′ for some y′ ∈ M .
Now ex = πy = eπy′, so that e(x − πy′) = 0. But also θ(x − πy′) =
θx− θπy′ = 0, and thus x− πy′ ∈ eM ∩Ker(θ) ⊆ Im(π).

It follows that x ∈ Im(π), as asserted. �
Corollary 6.11. Let θ, π, e ∈ R be elements such that θπ = 0,

and M is e-divisible. Let Me = eM ∪ e2M ∪ . . . .
If

eM ∩Ker(θ) ⊆ Im(π),

then
Me ∩Ker(θ) ⊆ Im(π).
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Proof. Show that eiM ∩Ker(θ) ⊆ Im(π) by induction on i. �

Suppose M =M1+M2 where M1,M2 are submodules. The follow-
ing result can be used to combine properties of submodules into result
on M , even though the assumption on ϕ is very restrictive.

Proposition 6.12. Suppose ϕ, ψ ∈ R are co-prime, and ϕψ = 0.
Then Ker(ϕ) = (Ker(ϕ) ∩M1) + (Ker(ϕ) ∩M2).

Proof. Write αϕ+ βψ = 1.
Let x1 + x2 ∈ M where xi ∈ Mi, and suppose ϕ(x1 + x2) = 0.

Compute that ϕ(βψxi) = ϕψ(βxi) = 0, so that βψxi ∈ Ker(ϕ) ∩Mi.
Now x1 + x2 = (αϕ+ βψ)(x1 + x2) = αϕ(x1 + x2) + βψ(x1 + x2) =

βψx1 + βψx2 ∈ (Ker(ϕ) ∩M1) + (Ker(ϕ) ∩M2). �

6.3. A Quantitative Theory. One of the main results in the last
subsection is Corollary 6.7, that if ϕ, π ∈ R are co-prime, and θ = πmϕ,
then Ker(π) ⊆ Im(θ) iff Ker(θ) ⊆ Im(π).

In this subsection we add the assumption θπ = 0, and strengthen
the result to show that |Kerθ/Imπ| = |Kerπ/Imθ|.

Multiplication by ϕ ∈ R induces the isomorphism M/Kerϕ∼=Imϕ.
Let us generalize this. We use the standard notation

ϕ−1D = {v ∈M : ϕv ∈ D}.

Remark 6.13. Let B ⊆ A, D ⊆ C be submodules of M . Multipli-
cation by ϕ induces an isomorphism ϕ : A/B → C/D iff the following
conditions hold:

(1) ϕA ⊆ C (the map is into C/D)
(2) ϕB ⊆ D (the map is well defined)
(3) A ∩ ϕ−1D ⊆ B (the map is one-to-one)
(4) C ⊆ ϕA+D (the map is onto)

From the above assumptions it follows that

A ∩ ϕ−1ϕB ⊆ A ∩ ϕ−1D ⊆ B ⊆ A ∩ ϕ−1ϕB

and

D + ϕA ⊆ C ⊆ D + ϕA.

Thus the most general isomorphism possible is

Corollary 6.14. Multiplication by ϕ induces an isomorphism

ϕ : A/(A ∩ ϕ−1D) −→ (ϕA+D)/D.
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For convenience, set π0 = 1.
Let

Uk = Ker(πk) + Imπ,

Lk = Im(πk) ∩Kerπ.

Then

Imπ = U0 ⊆ U1 ⊆ . . . ⊆ Um = Ker(πm) + Imπ,

Kerπ = L0 ⊇ L1 ⊇ . . . ⊇ Lm = Im(πm) ∩Kerπ.

The following is useful:

Remark 6.15. We have that

Uk = π−k(Im(πk+1))

and

Lk = πk(Ker(πk+1)).

Proof. Trivially Ker(πk), Imπ ⊆ π−kIm(πk+1), so that we have
Uk ⊆ π−kIm(πk+1). Now let x ∈ π−kIm(πk+1), then πkx = πk+1y for
some y ∈M , and x = (x− πy) + πy ∈ Ker(πk) + Imπ = Uk.

Likewise, it is trivial that πkKer(πk+1) ⊆ Im(πk),Kerπ, so that
πkKer(πk+1) ⊆ Lk. If x ∈ Lk, write x = πky where πk+1y = πx = 0.
Thus y ∈ Ker(πk+1), and x ∈ πkKer(πk+1). �

Theorem 6.16. Uk/Uk−1∼=Lk−1/Lk (1 ≤ k ≤ m).

Proof. We check that πk−1 : Uk/Uk−1 → (Lk−1 + Im(πk))/Im(πk)
is a (well defined) isomorphism. Then

Uk/Uk−1 ∼= (Lk−1 + Im(πk))/Im(πk)
∼= Lk−1/(Lk−1 ∩ Im(πk))

= Lk−1/Lk,

and we are done. Let A = Uk = Ker(πk) + Imπ and D = Im(πk).
By Corollary 6.14, we have to check that A∩π−(k−1)D = Uk−1, and

that πk−1A+D = Lk−1 + Im(πk).
By the remark, πk−1D = Uk−1 ⊆ A, so that A ∩ π−(k−1)D = Uk ∩

Uk−1 = Uk−1.
Finally D = Im(πk) = πk−1Imπ ⊆ πk−1A, so that

πk−1A+D = πk−1A

= πk−1(Ker(πk) + Imπ) =

= πk−1(Ker(πk)) + πk−1Imπ = Lk−1 + Im(πk).

�
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As an illustration, here is a very small portion of the lattice of
submodules generated by Ker(πk) and Im(πk) for 1 ≤ k ≤ 3.

U3 = Imπ +Ker(π3)

��
��
�

U2

��
��
��
��
��
��
��
��

U1

?
?

?

��
��
��
��
��
��
��
��
��
��
��
��
��
�

U0 = Imπ

��
��
��

Ker(π3)

Im(π2) + L1

��
��
��
��
��
��
��
��

Im(π2)

��
��
�

Ker(π2)

Im(π3) + L2

��
��
��

Im(π3)

��
��
�

L0 = Kerπ

?
?

?

L1

L2

L3 = Kerπ ∩ Im(π3)

Corollary 6.17. The quotient modules Um/U0 and L0/Lm have
composition series, such that after reversing the order in one series, we
get pairwise isomorphic quotients.

Combining Proposition 6.9 with Theorem 6.16, we have proved the
main result of this subsection, namely

Corollary 6.18. Suppose ϕ, π ∈ R are co-prime, θ = πmϕ, and
θπ = 0. Then

Imπ ⊆ Kerπ + Imπ ⊆ . . . ⊆ Ker(πm−1) + Imπ ⊆ Kerθ,

Kerπ ⊇ Imπ ∩Kerπ ⊇ . . . ⊇ Im(πm−1) ∩Kerπ ⊇ Imθ

form composition series with isomorphic quotients (in reverse order in
which they appear).

In particular, |Kerθ/Imπ| = |Kerπ/Imθ|.
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6.4. Hilbert’s Theorem 90 for pBr(K). Let K/F be a cyclic
field extension of degree n, with σ a generator of Gal(K/F ). We do
not assume anything on charF .

Abelian groups of exponent p with a σ-action can be viewed as
modules over R = Zp[σ|σn = 1]. Let M be such a module. Later in
this subsection we specialize to M = pBr(K).

From now on, Σ = 1 + σ + · · · + σn−1 ∈ R is the trace element,
so that left multiplication by Σ induces TrK/F : M → M . Also let
π = 1− σ, so that Σ · π = 0, and obviously Im(π) ⊆ Ker(Σ). Hilbert’s
theorem 90 for M is precisely the statement Ker(Σ) = Im(π).

In this general setup, Theorem 6.1 has the following proof:

Proposition 6.19. If n is prime to p, then Hilbert’s theorem 90
holds for M :

Ker(Σ) = (1− σ)M.

Proof. Σ, 1− σ are co-prime since the image n of Σ in R/⟨1− σ⟩
is invertible. We are done by Lemma 6.4. �

We now factor the trace element in R in the general case. Write
n = [K :F ] = prd, where (p, d) = 1.

Proposition 6.20. Let π = 1−σ. The trace element Σ ∈ R factors
as Σ = πpr−1ϕ, where ϕ is coprime to π in R. Also Σ · π = 0.

Proof. That Σπ = σn − 1 = 0 is obvious. Work in the preimage
R1 = Zp[λ] of R: 1− λn = (1− λd)p

r
= (1− λ)p

r
(1 + λ+ · · ·+ λd−1)p

r
,

so that 1 + λ + · · · + λn−1 = (1 − λ)p
r−1(1 + λ + · · · + λd−1)p

r
. The

image in R is Σ = πpr−1(1 + σ + · · ·+ σd−1)p
r
.

As before, ϕ = (1+σ+ · · ·+σd−1)p
r
is coprime to π since the image

dp
r
in R/⟨π⟩ = Zp is invertible. �
We define the ’Hilbert defect’ of the R-module M as a measure of

how badly does Hilbert’s theorem 90 fail for M :

DH(M) = Ker(Σ)/Im(π).

The dual quotient (cf. Corollary 6.18) is Ker(π)/Im(Σ). The kernel of
π = 1− σ is simply the invariant subgroup Mσ. We define the ’Galois
defect’ as the quotient

DG(M) =Mσ/Im(Σ).

Now apply Corollary 6.18 to get filtrations of DH(K/F ) and DG(K/F ).
Recall that n = [K :F ] = prd where (p, d) = 1, and set m = pr − 1. As
in subsection 6.3, let

Lk = πk(M) ∩Mσ,
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Uk = Ker(πk) + πM

Then
Mσ = L0 ⊇ L1 ⊇ . . . ⊇ Lm = Im(Σ),

πM = U0 ⊆ U1 ⊆ . . . ⊆ Um = Ker(Σ),

where the equalities in the right come from Proposition 6.9. Check
that DH(M) = Um/U0, while DG(M) = L0/Lm.

By Theorem 6.16, the quotients are isomorphic after reversing or-
der: Uk/Uk−1∼=Lk−1/Lk (1 ≤ k ≤ m).

Corollary 6.21. DH(M) and DG(M) have decomposition series
with isomorphic quotients after reversing order in one of them.

In particular, DH = 1 iff DG = 1.

If [K :F ] is prime to p, then by Proposition 6.19, DH(M) = 1 and
DG(M) = 1. On the other extent we have that if n = [K :F ] = pr, then
πn = 0 and Im(πn−k) ⊆ Ker(πk) always holds, so by Corollary 6.3 we
have that DH(M) and DG(M) vanish iff Ker(πk) = Im(πn−k) for some
0 < k < n.

Remark 6.22. If p = 2 and n = [K :F ] = 2, then DH(M) = DG(M)
since π = TrK/F (and the above filtration has only one level).

Example 6.23. A possible application of the above results is for the
module M = pBr(K). Note that Br(K) is a module over Z[σ|σn = 1]
(where σ acts on Br(K) by the action on the base field, and Z acts by
exponentiation). The kernel of p ∈ Z[σ] is the subgroup of classes of
exponent dividing p, i.e. M = pBr(K). As required, this is a module
over R = Zp[σ|σn = 1].

In the special case M = pBr(K) we write DH(K/F ) instead of
DH(pBr(K)), and similarly for DG.

Corollary 6.21 gives corresponding filtrations for the quotients

DH(K/F ) = Ker(TrK/F )/πpBr(K)

and
DG(K/F ) = pBr(K)σ/Im(TrK/F ).

DG(K/F ) can be given a new form if charF = p.

Remark 6.24. If charF = p, then corK/F : pBr(K) → pBr(F ) is
onto by Corollary 5.12. Thus Im(TrK/F ) = Im(resF→K ◦ corK/F ) =
Im(resF→K), and this group is denoted by [F, F} ⊆ K2(K) = [K,F}
(the last equality is Theorem 5.6).

In this case

DH(K/F ) = Ker(TrK/F )/[F, F}.
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We can show that very frequently DG, and thus also DH, are non-
trivial. Recall that for an extension F1/F , Br(F1/F ) denotes the kernel
of resF→[1

/F ] : Br(F ) → Br(F1), that is, the subgroup of Br(F ) con-
sisting of algebras split by F1.

Theorem 6.25. Assume charF = p. Let K/F be a cyclic ex-
tension, and F ⊂ F1 ⊆ K the subfield of dimension p over F . If
Br(F1/F ) ̸= 1, then DG(K/F ) ̸= 1, that is, the map

resF→K : pBr(F ) → pBr(K)σ

is not onto.

By Corollary 6.21, we also have DH(K/F ) ̸= 1, so that Hilbert’s
theorem 90 fails in this case. We need two lemmas before a proof of
the theorem is given.

Lemma 6.26. Let A ∈ Br(K). For all the algebras B over F with
resF→KB = A, the number lcm{exp(B), [K :F ]} is a constant.

Proof. Let n = [K :F ]. Suppose the algebras B1, B2 over F have
the same restriction to K. Then B′ = B2⊗B1

op is split by K, so that

exp(B2) = exp(B1⊗B′) | lcm{exp(B1), exp(B
′)} | lcm{exp(B1), n},

and also
lcm{exp(B2), n} | lcm{exp(B1), n}.

�
Note that the same result holds with exp(Br(K/F )) instead of

[K :F ].

Lemma 6.27. Let L/F be a cyclic extension of degree pt+1 with
Gal(L/F ) = ⟨σ⟩, and let b ∈ F . Set F1 = Lσp

, an intermediate subfield
of dimension p over F . Then the cyclic algebra C = (L/F, σ, b) satisfies

C⊗p
t ∼ (F1/F, σ, b).

Proof. Let ω = (α0, . . . , αt) denote the Witt vector (over F ) cor-
responding to L, so that C = [ω, b) — a symbol p-algebra of degree
pt+1 (see [20] for some basic properties of such symbols). Then

C⊗p
t

= [(α0, . . . , αt), b)
⊗pt

∼ [pt(α0, . . . , αt), b)

= [(0, . . . , 0, α0), b)

∼ [α0, b),

the last symbol is of degree p over F , and contains F1 = F [x|xp − x =
α0]. �



50 1. p-ALGEBRAS

Proof of Theorem 6.25. Let K1 be a subfield of K such that
[K :K1] is prime to p, and n1 = [K1 :F ] is a power of p. Then F ⊂
F1 ⊆ K1 ⊆ K.

Let L/K1 be an extension of dimension p over K1, which is cyclic
over F (such an extension always exist, by Corollary 1.29). Let σ be
a generator of Gal(L/F ). Pick some 1 ̸= u ∈ Br(F1/F ), then u is the
class of an algebra containing F1 as a maximal subfield, which is thus
of the form (F1/F, σ, b) for some b ∈ F .

Consider the cyclic algebra C = (L/F, σ, b). By Lemma 6.27,
C⊗n1 ∼ (F1/F, σ, b) which is non split by the choice of b. Thus
exp(C) = pn1.

Let A = resF→KC. Since C contains K1 as a subfield and is of
degree pn1, we have that exp(A) | ind(A) divides p, and so [A] ∈ pBr(K),
and is obviously invariant. Let B ∈ Br(F ) such that resF→KB = A. By
Lemma 6.26, we have that n1p = exp(C) divides (exp(C), [K :F ]) =
(exp(B), [K :F ]), but since n1p does not divide [K :F ], we see that
exp(B) cannot divide [K :F ], and so cannot be equal to p.

Thus A is not a restriction from pBr(F ), as asserted. �

We now move into a more complicated setting. The results below
can be formulated for general modules of exponent p, but we prefer to
specialize to charF = p and M = K2(K).

The fact that Σ is a power of π when n = pr enables us to go a
little deeper in that case. Let F ⊆ L ⊆ K be an intermediate field,
where [L :F ] = n1 and [K :L] = n2 are powers of p. As before π = 1−σ
where Gal(K/F ) = ⟨σ⟩, so that Gal(K/L) = ⟨σn2⟩.

Agree that [L, F} ⊆ K2(K) denotes the image of resL→K : K2(L) →
K2(K) (this is a different object than K2(L)). DH(L/F ) is a quotient
of submodules of K2(L). We can generalize it to measure the quotient
of submodules of [L, F} ⊆ K2(K), by defining

DH(K,L/F ) = {u ∈ [L, F} : TrL/Fu = 0}/π[L, F},
so that the usual Hilbert defect is DH(K/F ) = DH(K,K/F ).

Theorem 6.28. If [K :F ] is a p power and F ⊆ L ⊆ K, then

DH(K,L/F ) =
Ker(TrL/F )

π[L, F}
∼=

Ker(TrK/F )

Ker(TrL/F ) + π[K,F}
.

In particular, DH(K,L/F ) is a quotient of DH(K/F ).

Proof. Similarly to the definition of Uk, we set

Vk = {v ∈ [L, F} : πkv = 0}+ π[L, F}.
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Since n2 = [K :L] is a p power, ΣK/L = 1 + σn1 + · · ·+ σn1(n2−1) =
(1 − σn1)n2−1. But n1 is a p power too, so that (1 − σn1) = (1 − σ)n1

and ΣK/L = πn1(n2−1). Thus multiplication by πn1(n2−1) induces the the
trace map TrK/L from K2(K), onto [L, F}.

It follows that ΣK/L ·Un1(n2−1)+k = Vk for 0 ≤ k < n1. Fortunately,
Ker(ΣK/L) ⊆ Un1(n2−1) by definition of Un1(n2−1), so that multiplication
by ΣK/L maps

Un1n2−1/Un1(n2−1) = Ker(TrK/F )/(KerK/L + π[K,F})

(a quotient of DH(K/F ) = Ker(TrK/F )/π[K,F}) bijectively to

Vn1−1/V0 = Ker(TrL/F )/π[L, F} = DH(K,L/F ).

�

For the dual (and much easier) result on DG, define DG(K,L/F ) to
be the Galois defect of [L, F} over [F, F} inside K2(K):

DG(K,L/F ) = [L, F}σ/[F, F}.

Proposition 6.29. DG(K,L/F ) is a submodule of DG(K/F ).

Proof. By definition

DG(K,L/F ) = [L, F}σ/[F, F} ⊆ [K,F}σ/[F, F}.

�

Note that in the decomposition series of length n− 1 of DH(K/F ),
the upper n1 − 1 components correspond to DH(K,L/F ). Likewise, in
the decomposition of DG(K/F ) to isomorphic (in reverse order) quo-
tients, the lower n1 − 1 components belong to DG(K,L/F ).

We end this subsection with a description of DH(K,K/L) in the
special case [K :L] = [L :F ] = 2, p = 2. Letting π = 1 − σ, we have
that π4 = 0, TrK/F = 1 + σ + σ2 + σ3 = π3, TrL/F = π, and TrK/L =
1 − σ2 = π2. The (modular) lattice generated by the submodules
Ker(π) ⊆ Ker(π2) ⊆ Ker(π3) and Im(π3) ⊆ Im(π2) ⊆ Im(π) of K2(K)
is similar to that of page 46:
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U3 = Ker(π3)

U2 = Ker(π2) + Im(π)

��
��
��
��
��
��
�

U1 = Ker(π) + Im(π)

?
?

?

��
��
��
��
��
��
�

U0 = Imπ

��
��
��
��
��
��
�

Ker(π2)

U1 ∩Ker(π2) = L0 + Im(π2)

��
��
��
��
��
��
�

?
?

?

U0 ∩Ker(π2) = L1 + Im(π2)

��
��
��
��
��
��
�

Im(π2)

��
��
��
��
��
��
�

L0 = Kerπ

?
?

?
?

L1 = Im(π) ∩Ker(π)

L2 = Im(π2) ∩Ker(π)

L3 = Kerπ ∩ Im(π3)

Let Qk = Lk/Lk+1, k = 0, 1, 2. DG(K/F ) has decomposition
series with quotients Q2, Q1, Q0, and the quotients in DH(K/F ) are
Q0, Q1, Q2. DG(K/L) = Ker(1 − σ2)/Im(TrK/L) = Ker(π2)/Im(π2) =
DH(K/L), and this module has decomposition series with quotients
Q1, Q0, Q1.

By describing the lattice of submodules for general cyclic extension
K/F with [K :F ] = pr, it can be shown that DH(K/L) (F ⊆ L ⊆ K)
will always have a decomposition series whose quotients come from the
standard quotients Lk/Lk+1 of DH(K/F ).

6.5. The Invariant Subgroup pBr(K)σ. Let K/F be a cyclic
extension of fields, n = [K :F ], and σ a generator of Gal(K/F ). Also
let R = Zp[σ|σn = 1], π = 1 − σ, and Σ = 1 + σ + · · · + σn−1 ∈ R.
[K,F} = K2(K)∼=pBr(K) is a natural R-module, and multiplication by
Σ induces the map TrK/F .
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As seen in the last subsection (Corollary 6.21), the R-module

DH(K/F ) = Ker(TrK/F )/π[K,F}
which measures the failure of Hilbert’s theorem 90 for K2(K)∼=pBr(K)
has a composition series which, after reversing the order of quotients,
is the same as that of DG(K/F ) = K2(K)σ/[F, F}.

In this subsection we study the invariant subgroup pBr(K)σ =
K2(K)σ. We describe a special subgroup of K2(K)σ, and study some
generic examples.

It was proved by Eilenberg-MacLane [11] that for every Galois ex-
tension K/F (regardless of charF ), the quotient Br(K)σ/Im(resF→K)
embeds into H3(Gal(K,F ), K∗). If K/F is cyclic then H3 = 1, and so
every invariant class in Br(K) is a restriction from Br(F ). It should be
emphasized that the relation to the relative invariant groups nBr(K)
is not too tight: the fact that an invariant [A] ∈ nBr(K) is a restric-
tion, does not show that it is a restriction from nBr(F ). In general
A = resF→KB with exp(A) | exp(B), and, in view of Theorem 6.25, one
should not expect to have an equality.

The situation in prime-to-p extensions do not reflect the general
case:

Proposition 6.30. If n = [K :F ] is prime to p, then K2(K)σ =
[F, F}.

Proof. By Theorem 6.1 we have that DH(K/F ) = 1, so that
DG(K/F ) = 1 too. �

Recall that HK/F = {a ∈ K : σ(a)− a ∈ ℘(K)} (Subsection 1.3),
where ℘(K) = {αp − α : α ∈ K}. HK/F/(F + ℘(K))∼=Zp if p divides
n (Theorem 1.23), and HK/F = F + ℘(K) otherwise (Corollary 1.18).
We assume that p divides [K :F ].

Proposition 6.31. We have that [HK/F , F} ⊆ K2(K)σ. Also, ev-
ery class of [HK/F , F}/[F, F} has a representative which is one symbol.

Proof. Let a ∈ HK/F , β ∈ F . Then σ(a) − a = ℘(k) for some
k ∈ K, and σ([a, β)) = [a+ ℘(k), β) = [a, β).

Recall that there is some a0 ∈ K such that HK/F = F+℘(K)+Zpa0
(Proposition 1.23). Thus for every a ∈ HK/F , we have that a = ja0 +
℘(k) + α for some j ∈ Zp, k ∈ K and α ∈ F , so for every β ∈ F
we can write [a, β} = [ja0 + α, β} ≡ [a0, β

j} mod [F, F}. Sum of such
symbols can thus be given the same form. �

From the proof it follows that the map β 7→ [a0, β} + [F, F} from
F ∗ to [HK/F , F} is onto, so that [HK/F , F}/[F, F} is a quotient group
of F ∗.
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Remark 6.32. By Corollary 1.15, if a ∈ HK/F , then for every
x ∈ [a, β) such that xp − x = a, we have that K[x] is Galois over F .

By Theorem 5.6, pBr(K) is generated by the symbol algebras [a, β)
where a ∈ K, β ∈ F . We now study an invariant algebra of this form.
Again we emphasize that by the Eilenberg-MacLane result, [a, β) is
the restriction of some algebra B over F , which has exponent bounded
by p[K :F ]. Essentially we ask if it is a restriction of an algebra of
exponent p (or even better — of index p).

Let a ∈ K, β ∈ F , and R = [a, β) ∈ pBr(K)σ.
Let x, y be a SCOG (Definition 4.1) of [a, β), and u′, y′ a SCOG

of [σ(a), β). We may assume this is the same algebra, so that u′, y′ ∈
[a, β). Now, F [y]∼=F [y′], so there is a conjugation that carries y′ to
y; let u be the image of u′ under this conjugation. Now extend σ
(the generator of Gal(K/F )) to an automorphism of R, by σ(x) = u
and σ(y) = y (this can be done since the defining relations xp − x =
a, yp = β and yxy−1 = x + 1, are preserved). In this context it is
worth mentioning that a central simple algebra over F is invariant iff
the automorphisms of K over F can be extended to automorphisms of
A ([10, Section 23, (12)]).

We assume henceforth that p |n = [K :F ].

Proposition 6.33. Suppose a ̸∈ ℘(K) (otherwise [a, β) is split),
and let x, y, u ∈ R be as above.

If σn(x) ∈ K[x], then [a, β} ∈ [HK/F , F} (moreover, we can write
[a, β} = [α, β} for α ∈ HK/F ).

Proof. From Lemma 4.8 it follows that u = σ(x) = x+γ0+γ1y+
· · ·+ γp−1y

p−1 for γi ∈ K. Now compute that σn(x) = x+ trK/F (γ0) +
· · · + trK/F (γp−1)y

p−1, but since σn acts trivially on K, we have that
σn(x) satisfies ℘(σn(x)) = σn(℘(x)) = a = ℘(x). By the assumption
σn(x) and x commute, so that ℘(σn(x) − x) = 0 and it follows that
σn(x) = x+j for some j ∈ Zp. Thus trK/F (γi) = 0 for every i > 0. Use
this to write γi = δi − σδi (i > 0), and let z = x + δ0 + · · · + δp−1y

p−1

(δ0 ∈ K can be arbitrary).
Compute that σ(z) = z+(γ0+σδ0−δ0). (If j = 0, z could be made

an element of Rσ). Set α = ℘(z) = a+ δp0 − δ0 + δp1β + · · ·+ δpp−1β
p−1,

and compute that σ(α)− α = ℘(γ0 + σδ0 − δ0). Thus α ∈ HK/F .
Since z, y form a SCOG of [α, β), we are done. �

Remark 6.34. If, in the above setting, σn(x) = x, then [a, β} =
[α, β} for α ∈ F . In particular, [a, β)K = [α, β)F⊗FK.
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Proof. In the above computations, we have j = σn(x)−x = 0, so
that trK/F (γ0) = 0 and we can choose δ0 ∈ K such that σ(α) = α and
α ∈ F . This completes the proof.

The fact that σ extends to an automorphism of R of the same or-
der, enables us to give another proof. The invariant subalgebra Rσ

is an F -subalgebra of R, such that R∼=Rσ⊗FK [30, 7.2.14]. Count-
ing dimensions, deg(Rσ/F ) = p. Since y ∈ Rσ satisfies yp ∈ F , we
can apply Albert’s Theorem [1, VII.24], and find some z ∈ Rσ such
that α = zp − z ∈ F , yz = zy + y. Then Rσ∼=[α, β)F and we have
[a, β)∼=[α, β)F⊗FK = [α, β)K . �

We illustrate the method in the last remark by an example.

Example 6.35. Let k be a field of characteristic 2, λ1, λ2 transcen-
dental over k, K = k(λ1, λ2), σ : K → K the automorphism defined
by σ : λ1 ↔ λ2, and F = Kσ.

Then r = [λ1, λ1 + λ2} is σ-invariant, for [λ1, λ1 + λ2} = [λ2, λ1 + λ2}.
Taking a SCOG x, y for R = [λ1, λ1 + λ2) (so that x2 − x = λ1, y

2 =
λ1+λ2 and yxy

−1 = x+1), we look for u ∈ R such that yuy−1 = u+1
and u2−u = λ2. Writing u = x+γ0+γ1y, it is easy to guess u = x+y.

Then σ is extended to an automorphism of R by σ : x 7→ u, y 7→
y, so we compute that σ2(x) = σ(u) = x. Applying the zero-trace

argument of Remark 6.34, we find out that λ1 =
λ1λ2

λ1+λ2
+
(

λ1

λ1+λ2

)2
(λ1+

λ2), so that

[λ1, λ1 + λ2} = [
λ1λ2
λ1 + λ2

, λ1 + λ2} ∈ [F, F}.

Note that in this example Gal(K[x]/F ) = Z2
2 (by Theorem 1.19, as

x2 − x ∈ F + ℘(K)).

The next example is generic for [HK/F , F}, and we suspect it does
not belong to [F, F}.

Example 6.36 (A generic element of [HK/F , F}). Let k be a field of
characteristic 2, µ, η transcendental variables over k, and K = k(µ, η).
Define σ ∈ Aut(K) by σ : µ 7→ µ+ 1, σ : η 7→ η, and let F = Kσ.

Let a = µ2(1 − µ). Then a ∈ HK/F , since σ(a) − a = ℘(µ). And
indeed, r = [a, η} is invariant: σ(r)− r = [σ(a)− a, η} = [µ− µ2, η} =
0.

Note that a ̸∈ F +℘(K) (for tr(µ) = 1, cf. Theorem 1.23). Thus if
x ∈ [a, η) satisfies x2 − x = a, then Gal(K[x]/F )∼=Z4.
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6.6. Remarks on Corestriction. We make some remarks on the
corestriction in Brauer groups for cyclic extensions, and use them to
show that Hilbert’s theorem 90 does fail for the Brauer groups.

Proposition 6.37. Let K/F be a cyclic extension of odd dimension
n, such that F has n-roots of unity.

Then corK/F : nBr(K) → nBr(F ) is onto Br(K/F ).

Proof. Let u ∈ Br(F ) be a class split by K, then some algebra
A ∈ u has K as a maximal subfield. Writing K = F [α|αn = a], we
see that A is a cyclic algebra A = (a, b)n;F for some b ∈ F . The cyclic
algebra (α, b)n;K over K satisfies corK/F (α, b)n;K = (Nσ(α), b)n;F =
((−1)n−1a, b)n;F = (a, b)n;F . �

If [K :F ] = 2 and K/F is generated by α =
√
1 + t2 for some t ∈ F ,

then a = α2 = NK/F (α
2+tα) is a norm, so that corK/F covers Br(K/F )

by the same argument.
However, this result is not true for [K :F ] = 2 in general:

Example 6.38. The class of the standard quaternions [H] ∈ Br(C/R)
is not a corestriction from Br(C) = 1.

More can be said if Br(K) = 1.

Corollary 6.39. Let K/F be a (solvable) Galois extension of odd
dimension n = [K :F ]. Suppose F has n-roots of unity.

If Br(K) = 1, then Br(F ) = 1.

Proof. By induction we may assume K/F is cyclic.
Let u ∈ Br(F ), then resF→K(u) ∈ Br(K) = 1, so that u ∈ Br(K/F ).

By the proposition, u is a corestriction from Br(K) = 1, so that
u = [F ]. �

Note that if F0 ⊆ F , then Br(F0) = Br(F/F0) since Br(F ) = 1.
Here is a diagram of the groups involved in the next setting.

Br(K)

corK/F

��

TrK/F

%%JJ
JJ

JJ
JJ

J

0 // Br(K/F ) // Br(F )
resF→K// Br(K)σ

Proposition 6.40. Let K/F be a cyclic extension of odd dimension
n, Gal(K/F ) = ⟨σ⟩, such that F has n-roots of unity.

If Br(K/F ) ̸= 1 then Hilbert’s theorem 90 does not hold for nBr(K)
over nBr(F ), that is, there are u ∈ nBr(K) with zero trace (where
TrK/F = resF→K ◦ corK/F ), which are not of the form u = (1 − σ)v
for any v ∈ Br(K).
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Proof. Let 1 ̸= [A] ∈ Br(F ) be split by K. By proposition 6.37
one can write [A] = [corK/F (A1)]. Then

TrK/F ([A1]) = resF→KcorK/F [A1] = resF→K [A] = 0.

Assuming Hilbert’s theorem 90 holds, we can write [A1] = (1− σ)[A2]
for some [A2] ∈ Br(K); but then

[A] = [corK/F (A1)] = [corK/F (A2)]− [corK/F (σA2)] = 0,

a contradiction. �
Suppose charF = 0 and F has all the roots of unity. By Merkurjev-

Suslin theorem, nBr(K)∼=K2(K)/nK2(K). Let u denote an element
in K2(K) corresponding to [A] of the proposition; we have chosen A
such that TrK/F (u) ≡ 0 in the relative K2 group, that is TrK/F (u) ∈
nK2(K). As we have seen, it does not follow that u ≡ (1 − σ)v
(mod nK2(K)) for some v ∈ K2(K).





CHAPTER 2

Brauer Algebras

1. Introduction

Let p be a prime number, F a field with char(F ) ̸= p. Building on
Amitsur’s famous example [2], Saltman [34] proved that the generic
division algebra of degree pν and exponent pµ is not a crossed product
with respect to any group for ν ≥ µ ≥ 3 (µ = 2 for p an odd prime,
if F has no p-roots of unity). The situation for exponent p and degree
pν , ν ≥ 3, remained open (except for degree 8 and exponent 2, where
it is a crossed product with respect to Z2 × Z2 × Z2, [29]).

In this chapter we study Brauer algebras of degree pν and exponent
p, making several reductions on possible sets of generators of a Zν

p-
Galois extensions of the center.

The base fields in the examples we study contain finitely many roots
of unity of p-power order. Using the ultraproduct argument at the end
of [33], it is possible to produce an algebra with similar properties,
such that the center contains the whole group µp∞ .

Once one produces a central simple algebra of the required degree
and exponent which is not a Zν

p-crossed product, the generic division
algebra would be a noncrossed product, for it is known that the generic
division algebra of degree pν and arbitrary exponent is not a crossed
product with respect to any other group. An example was presented
in [27] and [30], but there were several major gaps. We continue the
investigation of this example in a more general situation described in
§4, closing some of the gaps. One gap remains, so the problem of
producing a noncrossed product of exponent p is still open.

2. The Leading Monomial Technique

The technique of the leading monomial enables one to pass from
good elements of a generic algebra to homogeneous good elements of a
more concrete algebra. This was used numerous times, for example [3]
or [33].

Let M be a commutative linearly ordered monoid, and T an M-
graded ring without zero divisors: T = ⊕α∈MTα, with TαTβ ⊆ Tα+β.

59
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Let Φ = {ϕ} be a set of grading-preserving automorphisms of T
(that is ϕ(Tα) ⊆ Tα for all ϕ ∈ Φ, α ∈ M), such that the fixed subring
TΦ ⊆ Cent(T ).

For any element r =
∑
rα ∈ T , the upper component of r is µ(r) =

rα0 , where α0 is maximal in {α : rα ̸= 0}.
Remark 2.1. a. If f ∈ TΦ and fg ∈ TΦ, then g ∈ TΦ.
b. µ(fg) = µ(f)µ(g).
c. If f ∈ TΦ then µ(f) ∈ TΦ.
d. If f, g commute in T , then so do µ(f), µ(g).

Let θ > 1 be an integer, θ ̸= 0 in T . An element f ∈ T is θ-invariant
if f θ ∈ TΦ, but f i ̸∈ TΦ for any 0 < i < θ.

Proposition 2.2. If f ∈ T is θ-invariant, then so is µ(f).

Proof. µ(f)θ = µ(f θ) is invariant since f θ is.
We first show that if f is θ-invariant then µ(f) ̸∈ TΦ. Write f =

g + z where z is the sum of the invariant components in f , and g the
sum of noninvariant components. In particular z ∈ Cent(T ), so that
z, g commute. By assumption, g ̸= 0.

Assume µ(f) is a summand in z. The upper component of f θ−zθ =
(g + z)θ − zθ = θzθ−1g + · · ·+ gθ is the upper component of θzt−1g, so
that µ(θzθ−1g) = θµ(z)θ−1µ(g) is invariant. Now µ(g) is invariant for
µ(z) is, a contradiction to the definition of g.

Finally, suppose µ(f)i ∈ TΦ, then replacing i with (i, θ) we may
assume i | θ, and f i is θ/i-invariant. By what we have just proved,
µ(f i) ̸∈ TΦ unless θ/i = 1, so that i = θ. �

We call {f1, . . . , fν} a θ-set if f1, . . . , fν are pairwise commuting,
f θ
i ∈ TΦ, and f i1

1 · · · f iν
ν ̸∈ TΦ for all 0 ≤ i1, . . . , iν < θ, unless i1 =

· · · = iν = 0. Note that if f belongs to a θ-set then f is θ-invariant. If
TΦ is a field containing θ-roots of unity, then a θ-set is a standard set
of generators for a Zν

θ -Galois field extension of TΦ.

Proposition 2.3. If the set {f1, . . . , fν} is a θ-set, then so is the
set {µ(f1), . . . , µ(fν)}.

Proof. In general, f i1
1 · · · f iν

ν ∈ TΦ iff every ij ≡ 0 (mod θ).
Suppose µ(f1)

i1 · · ·µ(fν)iν = µ(f i1
1 · · · f iν

ν ) ∈ TΦ, then f i1
1 · · · f iν

ν

cannot be θ-invariant by the previous proposition, so that i1 ≡ · · · ≡
iν ≡ 0 (mod θ). �

Let ρθ denote a (fixed) θ-root of unity in T .

Proposition 2.4. Let {f1, . . . , fν} be a θ-set, and g a θ-invariant
element such that for every i = 1, . . . , ν, gfig

−1 = ραi
θ fi. Assume θ is
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a power of some prime p. Then T has a θ-set of the same size, with g
as one of its elements.

Proof. Case 1: f1, . . . , fν commute with g. The intersection of
the subalgebras Li = TΦ[f1, . . . , fi−1, fi+1, . . . , fν ], i = 1, . . . , ν, is TΦ,
so that for some i we have gθ/p ̸∈ Li. Then f1, . . . , fi−1, fi+1, . . . , fν , g
form a θ-set of size ν, as asserted.

Case 2: Not every fi commute with g; for example assume αν ̸= 0.

Then f̃i = f−1i f
αi/αν (mod θ)
ν , i = 1, . . . , ν − 1, commute with g. Since

L = TΦ[f̃1, . . . , ˜fν−1] ⊂ TΦ[f1, . . . , fν ], g does not belong to L (for

otherwise fν , g would commute). Thus, f̃1, . . . , ˜fν−1, g form a θ-set. �

3. The Generic Elements Construction

We apply the leading monomial technique to an important special
case.

Let R = (K/F, σ, b) be a cyclic algebra of degree n and exponent
θ, and let z ∈ R be an element such that

(∀k ∈ K)zkz−1 = σ(k), zn = b.

Let λ be an indeterminate over K, and extend σ to K(λ) by as-
signing σ(λ) = λ. R̃ = R⊗F F (λ) = K(λ)[z] = (K(λ)/F (λ), σ, b) is of
course cyclic of the same degree and exponent asR. The idea is to mix λ
with elements of R: take K� = K(λθ) and R� = K(λθ)[λz] ⊆ R̃. Also
let F� = Cent(R�) = F (λθ). Note that R� ∼= (K(λθ)/F (λθ), σ, λnb) is
again cyclic of degree n.

Theorem 3.1. exp(R�) = θ.

Proof. ByWedderburn’s criterion, bθ ∈ NK/F (K), but bi ̸∈ NK/F (K)
for any 0 < i < θ.

We apply the same criterion for λnb in the extension K(λθ)/F (λθ).
Write bθ = NK/F (β), thenNK(λθ)/F (λθ)(λ

θβ) = (λnb)θ, so that exp(R�) ≤
θ. On the other hand, suppose (λnb)i = NK(λθ)/F (λθ)(f/g) where

f, g ∈ K[λθ], 0 ≤ i < θ. Multiplying by NK(λθ)/F (λθ)(g) and comparing
degrees of λ, we see that nθ |ni, so that i = 0. �

Note that R� is the ring of central quotients of T = K[λθ][λz],
which is N-graded as a ring of polynomials in λ. Let k ∈ K be a
generator of K/F . Conjugation by z or by k induce grading-preserving
automorphisms, and the invariant subring under the conjugations is
F�.

Note that for any f ∈ K[λθ][λz] ⊆ R�, µ(f) ∈ K[zθ]zα ·λu for some
0 ≤ α < θ.
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Suppose F contains θ-root of unity, denoted by ρθ. Let k1 be a
generator for the field extension Kσθ

/F , such that σ(k1) = ρθk1. In
particular, kθ1 ∈ F .

Note that K[zθ] is the centralizer of k1 in R.

Lemma 3.2 (Going down R� → R). If R� contains a θ-set of size ν,
then R has a θ-set f1, . . . , fν such that f1 = k1 and f2, . . . , fν ∈ K[zθ].

Proof. Let g1, . . . , gν ∈ R� be a θ-set. Multiplying by central
elements, we may assume gi ∈ K[λθ][λz]. The leading monomials of
g1, . . . , gν (relatively to λ) form a θ-set by Proposition 2.3. We can thus
assume gi ∈ K[zθ] · (λz)αi ⊆ R�. Moreover, dropping the appropriate
powers of λ we have a θ-set f1, . . . , fν ∈ R, fi ∈ K[zθ] · zαi .

But now conjugation by k1 multiplies each fi by ραi
θ , so we can

apply Proposition 2.4. �

Remark 3.3 (Going up R → R�). If f1, . . . , fν is a θ-set in R, such
that k1 = f1, then it is a θ-set in R� too.

Proof. Since fi commute with k1, we have that f2, . . . , fν ∈ CR(k1) =

K[zθ]. Now fi =
∑n/θ−1

j=0 k
(j)
i zjθ =

∑n/θ−1
j=0 (k

(j)
i λ−jθ)(λz)jθ ∈ K(λθ)[λz] =

R�. �

4. Brauer’s Example

We now focus on the Brauer algebra.
Recall the definition, following the notation in [30, Chap 7.3]. Fix

a prime number p, and let t, θ be powers of p. Denote by ρθ a primitive
θ-root of unity (over Q), and let µ0, ..., µt−1 be indeterminates over
Q[ρθ]. The field Eθ,t = Q[ρθ](µ0, ..., µt−1) has an automorphism σ of
order t defined by σ : µi 7→ µi+1(mod t), σ : ρθ 7→ ρθ.

For any divisor n of t, let Kθ,n,t be the fixed subfield of Eθ,t under
σn. The generalized Brauer example is the cyclic algebra Rθ,n,t =
(Kθ,n,t/Kθ,1,t, σ, ρθ), of degree n over its center Kθ,1,t = Eσ

θ,t. In what
follows we work with subalgebras of Rθ,t,t. Picking an element z ∈ Rθ,t,t

such that conjugation by z induce σ on Eθ,t and z
t = ρθ, we can write

Rθ,t,t = Eθ,t[z].
Note that zn commutes withKθ,n,t, so thatKn = Kθ,n,t[z

n] is a field.
This is a maximal subfield of Rθ,t,t, of dimension t over the center F .
Moreover, (zn)t/n = ρθ so that zn is a θt/n-root of unity in Kn, and we
sometimes denote ρθt/n = zn. In particular, Kn

∼= Kθt/n,n,t.
Let Rn = Kn[z], a cyclic algebra of degree n, with center Fn =

Kσ
n = Kθ,1,t[z

n] ∼= Kθt/n,1,t.
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Rn is the centralizer of zn in Rθ,t,t, and it is isomorphic to Rθt/n,n,t

(cf. [30, Thm. 7.3.6(i)]). By [30, Thm. 7.3.8], Rn is a division algebra
of exponent θ.

We add a picture of all that, for easy reference.

Rθ,t,t = Eθ,t[z]

??
??

?

��
��
��
��
��
��

Rn = Kn[z]

��
��
��
��
��
��

??
??

??
??

??
??

Fn[z]

��
��
��
��
��
��

Eθ,t[z
n]

??
??

?

��
��
��

Kn = Kθ,n,t[z
n]

��
��
��

??
??

??
??

??
??

Fn = Kθ,1,t[z
n]

��
��
��

Eθ,t

??
??

??

Kθ,n,t

??
??

??
??

??
??

F = Kθ,1,t = Eσ
θ,t

The reader is advised to add Fn/θ, Kn/θ and Rn/θ in the diagram.

Let H = Q[ρθ][µ0, . . . , µt−1] denote the subring of integers of Eθ,t.
Note that Hσn

= H ∩ Eσn

θ,t , and that Rn, the centralizer of zn in Rθ,t,t,

is the ring of central quotients of Hσn
[z]. Let q = tθ

n
. Conjugation by

zn/θ induces a linear transformation of order t
n/θ

= q on H.

Theorem 4.1. Hσn
[z] can be given an Nq-grading, such that the

components are eigenspaces of the action of zn/θ.

Proof. Let V = Q[ρθ]µ0 + · · · + Q[ρθ]µt−1, a generating linear
subspace of H. H has the standard grading by total degree, inducing
the decomposition to linear spaces over Q[ρθ]:

(29) H = Q[ρθ]⊕ V ⊕ V 2 ⊕ . . .

Conjugation by zn/θ is a linear transformation of order q on V ,
but it has no eigenvalues in Q[ρθ] (unless n = t). In order to use the
zn/θ action to decompose V , we take tensor products by Q[ρq] (over
Q[ρθ]). H ⊗ Q[ρq] = H[ρq] generates the commutative field Eθ,t[ρq],
a different object from Eθ,t[z

n]. But the two objects have the same
subfield Kn = Kθ,n,t[z

n] ∼= Kθ,n,t ⊗ Q[ρq], which is the field we are
really after.
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Over Q[ρq], we have the decomposition

(30) V = V0 ⊕ · · · ⊕ Vq−1,

where zn/θ acts on Vj as multiplication by ρjq.
Substituting (30) in (29), we see that H[ρq] is a sum of all prod-

ucts V n0
0 · · ·V nq−1

q−1 . In order to see that this sum is direct, pick a basis

{v(j)0 , . . . , v
(j)
n/θ−1} for Vj, then {v(j)u }0≤j<q,0≤u<n/θ generateH (as a ring).

The transcendence degree of H is t, so that the {v(j)u } must be alge-
braically independent. It is now obvious that every element is expressed
in a unique way.

Let e0, . . . , eq−1 be the standard basis of Zq. The degree function

defined on monomials by v
(j)
u 7→ ej makes H[ρq] an Nq-graded ring,

with homogeneous components V n0
0 · · ·V nq−1

q−1 .
Consider the ring H[ρq][u], subjected to the relations uhu−1 = σ(h)

(h ∈ H), un = ρq. It decomposes into a direct sum H[ρq][u] = H[ρq] +
H[ρq] · u + · · · + H[ρq] · un−1. Since conjugation by u preserves the
linear components Vj, it preserves all the components, so that H[ρq][u]
is (Nq × Zn)-graded. The same is true for the subalgebra Hσn

[ρq][u]
(and the only non-zero components are the products V n0

0 · · ·V nq−1

q−1 with
n1 + 2n2 + · · ·+ (q − 1)nq−1 ≡ 0 (mod q/θ)).

Since Hσn
[ρq] ∼= Hσn

[zn], we also have that Hσn
[ρq][u] ∼= Hσn

[z],
so that Hσn

[z] is (Nq × Zn)-graded. In particular, Hσn
[z] is Nq-graded

with the components V n0
0 · · ·V nq−1

q−1 [z]. �

The reason we can’t use the same proof to decompose into eigenspaces
of zn/k, k > θ, is that Hσn

[ρtk/n] ̸∼= Hσn
[znθ/k]: the leftmost ring is com-

mutative, while the other is not.

Notation 4.2. From now on we assume θ = p. Also let n = pν,
ν ≥ 2.

When ν = 2, Rn is a crossed product, as shown by the following
well known fact (also see Example 1.1 in Chapter 3):

Remark 4.3. Let F be a field of characteristic ̸= p, with p-roots
of unity. Any cyclic algebra R = (K/F, σ, b) = K[z] of degree p2 over
F is a Zp × Zp-crossed product, by inspecting the subfield Kσp

[zp].

A final remark before we dive into the reductions: we have the
chains of inclusions

Ft ⊂ · · · ⊂ Fn ⊂ Fn/p ⊂ · · · ⊂ F1,

Rt ⊃ · · · ⊃ Rn ⊃ Rn/p ⊃ · · · ⊃ R1,
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but the fields Kn (n = 1, p, p2, . . . , t) do not contain each other. It
follows that the R�

n = Kn(λ
p)[λz] do not satisfy any natural inclusion

relation among them.

Proposition 4.4. Suppose R�
n has a p-set of size ν, then Rn has

a p-set of the same size, with k1, z
n/p as two of the elements.

Proof. Recall that k1 is a generator of the extension Kp,p,t/Kp,1,t,
such that σ(k1) = ρpk1. In particular, kp1 ∈ Kp,1,t. At the same time,
Kσp

n = Fn[k1] and k1
p ∈ Fn.

By Lemma 3.2, we have

Reduction 1. Rn contains a p-set f1, . . . , fν such that f1 = k1 and
f2, . . . , fν ∈ Kn[z

p].

Reduction 2. We may assume that zn/pfiz
−n/p = ραi

p fi for some
αi.

Proof. Viewing fi as elements of Rp,t,t, we may multiply by suit-
able central elements, and assume fi ∈ H[zp]∩Rn = Hσn

[zp] ⊂ Hσn
[z].

We apply Theorem 4.1 to grade Hσn
[z] with components which are

eigenspaces of zn/p. Note that we may choose k1 =
∑t−1

i=0 ρ
−i
p µi ∈ V0,

so that f1 = k1 is homogeneous.
Let kν be a generator of Kθ,n,t/Kθ,n/p,t, such that σn/p(kν) = ρpkν .

Since Rn = Fn[kν , z], central elements in Rn are exactly those invariant
under conjugation by z and kν . Moreover, since z, kν are eigenvectors
of zn/p, conjugation by them takes Vj (of the grading) to itself, and so
is grading-preserving. This is enough to apply Proposition 2.3.

Replacing f1, f2, . . . , fν by their upper homogeneous parts, we still
have a p-set, where every fi is an eigenvector of zn/p. Finally, since fi
are p-central, the eigenvalues are powers of ρp, as required. �

Reduction 3. We may assume that f2 = zn/p.

Proof. Note that f1 = k1 and zn/p commute.
By the previous reduction fi are eigenvectors of zn/p, so we can

apply Proposition 2.4 with g = zn/p. �
This finishes the proof of Proposition 4.4. �
Corollary 4.5. Suppose ν ≥ 3. If R�

n = Kn(λ
p)[λz] is a Zν

p-

crossed product, then R�
n/p is a Zν−1

p -crossed product.

Proof. Suppose R�
n has a p-set of size ν. By the last proposition,

Rn has a homogeneous p-set of the same size, with one of the elements
equals zn/p (and another equal k1).
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Then CRn(z
n/p) = Rn/p has a p-set of size ν − 1, and by Remark

3.3 so does R�
n/p. �

As already mentioned in Remark 4.3, R�
p2 contains the p-set k1, z

p,

so we are led to study the next case, n = p3 (which we hope is not a
Z3

p-crossed product for p ̸= 2). This is done in Section 6.

Note that for p = 2, k1, z
4, z2 + z−2 is a 2-set in R�

8 .

5. Property D(p) for Algebras of Degree p2

A cyclic algebra R = (K/F, σ, b) = K[z|zkz−1 = σ(k), zn = b] of
degree n is said to satisfy property D(f), f a divisor of n, if it decom-
poses into a tensor product of cyclic subalgebras, one that contains
Kσf

and the other that contains F [zf ]. The property was introduced
and studied in [33].

Suppose deg(R) = [K :F ] = p2, and that F contains a p-root of
unity. Choose a generator k1 for Kσp

/F such that kp1 ∈ F . Consider
the subfield L = F [k1, z

p], which is Z2
p-Galois over F . We use square

brackets to denote the multiplicative commutator. By Skolem-Noether,
there exist u, v ∈ R such that

(31) [u, k1] = 1, [u, zp] = ρp,

and

(32) [v, k1] = ρp, [v, zp] = 1.

Note that letting k2 be a cyclic generator for K/Kσp
, u = k2 and

v = z is a solution to (31)+(32).
We now add another constraint:

(33) [u, v] = 1.

Lemma 5.1. Property D(p) for R is equivalent to the existence of
a solution for (31)+(32)+(33).

Proof. Assume property D(p) is satisfied. Then there exist com-
muting central simple subalgebras R1, R2 ⊂ R with R1 ∩ R2 = F ,
R1R2 = R, k1 ∈ R1, z

p ∈ R2. We can thus find u ∈ R1 = CR(R2) such
that [u, k1] = ρp and v ∈ R2 satisfying (32), and (33) is also clear.

Now suppose u, v commute, and satisfy (31),(32). We first show
that L[u, v] = R. Indeed, u ̸∈ L (for it does not commute with zp), so
that [L[u] :F ] ≥ p3. If L[u] = R, we are done. Otherwise, k1 is in the
center of L[u], but does not commute with v — so that v ̸∈ L[u], and
L[u, v] = R.
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From (33) it now follows that up commutes with k1, z
p, u, v, so that

up ∈ F . Similarly vp ∈ F , and F [k1, u], F [z
p, v] are the commuting

subalgebras we are looking for. �

We may look for a special kind of element: consider the constraint

(34) up ∈ F.

Proposition 5.2. If equations (31)+(34) has a solution, then so
do (31)+(32)+(33).

Proof. By the assumption, F [zp, u] is a (cyclic) central subalge-
bra of R, of dimension p2. Its centralizer is of dimension p2, and con-
tains the cyclic subfield F [k1]. Applying Skolem-Noether to this cen-
tralizer we find v ∈ CR(F [z

p, u]) such that [v, k1] = ρp. u, v satisfy
(31)+(32)+(33). �

6. Brauer’s Example in Degree n = p3

Suppose R�
p3 has a p-set of size 3. By Proposition 4.4, Rp3 has

the p-set zp
2
, k1, f3, where f3 ∈ Rp3 . Actually by the choice of f3 in

Reduction 2, f3 ∈ Hσp3

[zp].

Lemma 6.1. f3 does not commute with zp.

Proof. We draw a picture of the subalgebras of Rp3 appearing in
the sequel (this is a zoom into the rightmost square in the previous
diagram).



68 2. BRAUER ALGEBRAS

Rp3 = Kp3 [z]

??
??

??

��
��
�

Rp2 = Kp2 [z]

��
��
�

??
??

??
??

??
??

??
??

?

F1 = F [z]

��
��
�

Kp3 [z
p]

??
??

??

��
��
��
��
��
��
��
��
�

Kp2 [z
p]

??
??

??

S = F [k1, z
p]

��
��
�

??
??

??

Fp = F [zp]

��
��
�

F [k1, z
p2 ]

��
��
��

??
??

?

Fp2 = F [zp
2
]

��
��
�

Kp3

??
??

??
??

??
??

??
??

?

Fp3 [k1]

??
??

?

Fp3 = F [zp
3
]

Note that Fp3 [z
p] is Galois over Fp3 = F [zp

3
].

k1, z
p2 are elements of the field S = Fp3 [k1, z

p]. Also, f3 commutes
with Fp3 [k1]. Assume f3, z

p commute. Then f3 ∈ CR(S) = S, so

that Fp3 [k1, z
p2 , f3] ⊆ S, the two fields having the same dimension

p3 over F . It follows that the two fields are equal, but the Galois
group of S = Fp3 [k1, z

p] = Fp3 [k1] ⊗Fp3
Fp3 [z

p] over Fp3 is Zp × Zp2 , a

contradiction. �

Theorem 10 in [33] states that the Brauer algebra Rpq,p2,p2q does not
satisfy D(p). This algebra is isomorphic to our Rp2 by [30, 7.3.6(i)] (for
t = p2q).

Recall that in order to construct a noncrossed product of exponent
p we need to get contradiction to the assumption that a p-central set of
size 3 exists in R�

p3 . We discuss two possible approaches (one of which

was suggested in [27]), and show why they fail.
One strategy is to try to use f3 to solve (31)+(34) in Rp2 , thus

showing that it satisfies property D(p), a contradiction.
We look for an element g ∈ Rp2 , such that:

(35) [g, k1] = 1, [g, zp] = ρp, gp ∈ Fp2 .

Remark 6.2. Assuming such an element g exists, we have that
Fp2 [z

p, g] is a cyclic algebra of degree p over Fp2 , and its corestriction
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down the extension Fp2/Fp3 is

corFp2/Fp3
(zp

2

, g) = (ρp, g).

Since f3 commutes with k1, z
p2 , it belongs to Hσp2

[zp]. Apply the-

orem 4.1 with n = p2 to grade Hσp2

[z] ⊂ Rp2 with components which
are eigenspaces of zp.

It seems natural to continue as in Reduction 2, and replace f3 by an
eigenvector of zp. Indeed, conjugation by z and by k2 (a cyclic generator

of Kσp2

p3 /Kσp

p3 ) preserve the grading (since z,k2 are eigenvectors of zp
2
),

so the p-power of an upper homogeneous component µ(f3) of f3 will

be in CentRp3
(F [z, k2]) = Fp3 [z

p2 ] = Fp2 . But this is not enough, for

we cannot exclude the possibility that µ(f3),z
p commute (consider zp

itself as a candidate for µ(f3); for p = 2 we do have f3 = z2 + z−2).
This cannot be pursued further to show that µ(f3)

p ∈ Fp3 since
conjugation by k3 does not preserve the grading (for example, k3zk

−1
3 ̸∈

V0 · z in the above grading). Fortunately the condition (34) does not
require gp ∈ Fp3 .

We withdraw one step backwards and present a second approach.
Apply Theorem 4.1 with n = p3 and q = t/p2, to get a decomposition

V = V0 ⊕ · · · ⊕ Vq−1 to eigenspaces of zp
2
over F [zp

3
]. By Reduction 3

and the proof of Reduction 2, we can assume f3 ∈ V α0
0 · · ·V αq−1

q−1 [zp] for
some α0, . . . , αq−1 ∈ N.

Let W = V α0
0 · · ·V αq−1

q−1 . Since W commutes with zp
2
, conjuga-

tion by zp is a linear transformation of order p on W , so we have
a decomposition W = W0 ⊕ · · · ⊕ Wp−1 over Q[ρp], where Wi is the
eigenspace of the eigenvalue ρip. Consider the Np-graded algebra A =⊕

Q[ρp]
W β0

0 . . .W
βp−1

p−1 [zp]. Check that conjugation by zp and by k2 are

grading-preserving (for zpWiz
−p = Wi, k2 commutes with Wi, and

k2z
pk−12 = ρ−1p zp).
The invariant subalgebra under these conjugations in contained in

the center Cent(A) (for A ⊆ Hσp2

[zp], and the invariant subalgebra

is contained in the invariant subalgebra of Hσp2

[zp] under the same

conjugations, which is the center Hσp
[zp

2
] of Hσp2

[zp]).
This is enough to apply Proposition 2.2: since f3 is p-invariant, so

is any upper component of f3. But since f3 does not commute with
zp (Proposition 6.1), it has a non-zero component in some Wi (i ̸= 0),
and this component satisfies

(36) [g, k1] = 1, [g, zp] = ρp, gp ∈ Fp2 [k1].
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Compare this to (35) — we need gp ∈ Fp2 , but this could be achieved
only if conjugation by z was grading preserving, and this is not the
case.

Summarizing, we have that if R�
p3 has a p-set of size 3, then Rp3 has

a p-set consisting of k1 (the cyclic generator of K
σp
/F ), zp

2
and f3. We

have that f3 ∈ W [zp], W = V α0
0 · · ·V αq−1

q−1 for some α0, . . . , αq−1, where

Vi are eigenspaces of z
p2 . We can decompose W = W0 ⊕ · · · ⊕Wp−1 to

eigenspaces of zp, and f3 has a component g ∈ Wi[z
p] (i ̸= 0) such that

g commutes with k1, z
p2 , zpgz−p = ρipg, and g

p ∈ Fp3 [k1, z
p2 ].



CHAPTER 3

Dihedral Crossed Products With Involution

1. Introduction

One of the best ways to understand central simple algebras is to
study their maximal subfields. If an algebra happen to have a maximal
subfield K Galois over the center F , it has an easy description via the
second cohomology group H2(G,K∗), where G = Gal(K/F ). Such an
algebra is called a crossed product of G over K/F . For example, a
cyclic algebra is a crossed product of a cyclic group.

In the early days every known division algebra was constructed as
a crossed product, and by classical theorems of Wedderburn, Albert
and Dickson, all division algebras of degree 2, 3, 4, 6 or 12 are crossed
products.

An interesting question concerning crossed products is to describe
in what cases will every crossed product of a given group be a crossed
product of some other group too. If all the Galois maximal subfields
of a suitable central simple algebra have the same Galois group G, this
group is termed rigid. Amitsur showed that the elementary abelian
groups are rigid, and this was a key step in his construction of non-
crossed products [2]. Since then it was shown by Saltman [35] and
Amitsur-Tignol [5] that every noncyclic abelian group is rigid.

We use the notation G −→ H to say that every crossed product of
G is also a crossed product of H.

Example 1.1. Let n = m1m2 be integers and assume F has m2-
roots of unity. Then Zn −→ Zm1 × Zm2 , that is, every Zn-crossed
product is also a Zm1 × Zm2-crossed product.

Proof. Let R = (K/F, σ, b) be a cyclic algebra of degree n over
F , b ∈ F , with z ∈ R inducing σ on K. Obviously Kσm1 [zm1 ] =
Kσm1⊗FF [z

m1 ] is a maximal subfield of R, Galois over F with Galois
group Zm × Zn/m. �

It was shown by Rowen and Saltman [31] that if n is odd, then
every Dn-crossed product is cyclic (assuming charF is prime to n, and
F has n roots of unity). Their proof is constructive; a few years later
Mammone and Tignol [21] gave another proof, using the corestriction.
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If char(F ) divides n, then any semidirect product of a cyclic group
acting on Zn is abelian. This is a result of Albert, proved by what is
in modern language a relatively easy use of the corestriction.

Brussel [8] has shown thatD4, and more generally the dihedral-type
groups of order p3, are all rigid.

In this chapter we show that if one assumes the algebra has an
involution, then a dihedral crossed product is also an abelian crossed
product.

2. Involutions

Recall the standard description of crossed products. Let K/F be
Galois extension of fields, with Galois group G = Gal(K/F ). Let R be
a central simple F -algebra, with a maximal subfield K. By Skolem-
Noether, for every g ∈ G there is an element zg ∈ R that induces
g on K. We say that {zg} is a G-basis of R. Now, zgh and zgzh
induce the same automorphism, so that cg,h = zgzhz

−1
gh ∈ CR(K) =

K defines a 2-cocycle c ∈ H2(G,K∗). Obviously cg,h determines the
multiplication in K[zg], and we denote (K,G, c) = K[{zg} : zgkz

−1
g =

g(k), zgzh = cg,hzgh]. The map c 7→ (K,G, c) induces an isomorphism
H2(G,K∗)∼=Br(K/F ).

This construction can be refined for algebras with involution. Let
R be a central simple F -algebra, with a maximal subfield F ⊆ K ⊆ R,
and an automorphism τ ∈ G = Gal(K/F ) such that τ 2 = idK .

Proposition 2.1 ([30, Prop. 7.2.45]). If R has an involution of
the first kind, then there is an involution whose restriction to K is τ .

Let {zg : g ∈ G} be a G-basis. Let u 7→ u∗ be an involution of R
whose restriction to K is τ . We denote gτ = τgτ−1, and g−τ = (gτ )−1.
Note that g 7→ gτ is an automorphism of order 2 of G.

Let sg = z∗gzgτ .

Proposition 2.2. The elements {sg} are in K.

Proof. We show that sg ∈ CR(K) = K. Let k ∈ K.

sgksg
−1 = z∗gzgτkzgτ

−1z∗g
−1

= z∗gτgτ
−1(k)z∗g

−1

= z∗g(gτ
−1k)∗(z−1g )∗

= (z−1g (gτ−1k)zg)
∗

= (g−1gτ−1k)∗

= (τ−1k)∗ = k.
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�

Proposition 2.3. The set {sg} ⊆ K satisfies

(37) sgτ = τ(sg)

(38) sgh = shh
−τ (sg) · τ(gh)−1(cg,h · τ−1cgτ ,hτ )−1.

Proof. Compute.

τ(sg) = τ(z∗gzgτ ) =

= (z∗gzgτ )
∗ =

= z∗gτ zg =

= sgτ .

sgh = z∗ghz(gh)τ =

= (c−1g,hzgzh)
∗zgτhτ =

= z∗hz
∗
gτ(c

−1
g,h) · c

−1
gτ ,hτ zgτ zhτ =

= z∗hz
∗
gzgτ zhτh−τg−τ (τ(c−1g,h) · c

−1
gτ ,hτ ) =

= z∗hsgzhτ (gh)−τ (τ(c−1g,h) · c
−1
gτ ,hτ ) =

= shh
−τ (sg)τ(gh)

−1(cg,h · τ−1cgτ ,hτ )−1.

�

By reversing the above computations, we have

Proposition 2.4. Let R be a crossed product of G over K/F ,
with a G-basis {zg} ⊆ R, and multiplication defined by a 2-cocycle
cg,h ∈ H2(G,K∗).

Then zg 7→ sgz
−1
gτ defines an involution whose restriction to K is τ ,

iff {sg} ⊆ K satisfies Equations (37) and (38).

Proof. If zg 7→ sgz
−1
gτ defines an involution, then {sg} satisfy the

conditions by Propositions 2.2 and 2.3.
Suppose {sg} ⊆ K satisfy (37) and (38). Define a map on R =

(K,G, c) by (
∑
agzg)

∗ =
∑
sgτg

−1(ag)z
−1
gτ (this definition extends z∗g =

sgz
−1
gτ ). Since additivity of u 7→ u∗ is clear, it remains to check that

u 7→ u∗ is anticommutative and that u∗∗ = u. Let a, b ∈ K, g, h ∈ G.

(ab)∗ = τ(ab) = τ(a)τ(b) = b∗a∗.
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(azg)
∗ = sgτg

−1(a)z−1gτ

= sgg
−ττ(a)z−1gτ

= sgz
−1
gτ τ(a)

= z∗ga
∗.

(zgzh)
∗ = (cg,hzgh)

∗

= sghτ(gh)
−1(cg,h)z

−1
(gh)τ

= shh
−τ (sg) · τ(gh)−1(cg,h · τ−1cgτ ,hτ )−1τ(gh)−1(cg,h)z

−1
(gh)τ

= shh
−τ (sg) · (gh)−τ (c−1gτ ,hτ )z

−1
(gh)τ

= shh
−τ (sg) · (gh)−τ (c−1gτ ,hτ )(c

−1
gτ ,hτ zgτ zhτ )−1

= shh
−τ (sg) · (gh)−τ (c−1gτ ,hτ )z

−1
hτ z

−1
gτ cgτ ,hτ

= shh
−τ (sg) · (gh)−τ (c−1gτ ,hτ )h

−τg−τ (cgτ ,hτ )z−1hτ z
−1
gτ

= shh
−τ (sg)z

−1
hτ z

−1
gτ

= shz
−1
hτ · sgz−1gτ

= z∗hz
∗
g .

a∗∗ = τ 2(a) = a

Finally let u = (zg−τ zgτ )
−1 ∈ K, then

z∗∗g = (sgz
−1
gτ )
∗

= (sguzg−τ )∗

= sg−τ τgτ (sgu)z
−1
g−1

= sg−τgτ(sgu)z
−1
g−1

= sg−τgτ(sg)g(u
∗)z−1g−1

= sg−τgτ(sg)g((z
−1
gτ z

−1
g−τ )

∗)z−1g−1

= sg−τgτ(sg)zg(z
−1
gτ z

−1
g−τ )

∗z−1g z−1g−1

= sg−τgτ(sg)zg(z
∗
g−τ )−1(z∗gτ )

−1z−1g z−1g−1

= sg−τgτ(sg)zg(sg−τ z−1g−1)
−1(sgτ z

−1
g )−1z−1g z−1g−1

= sg−τgτ(sg)zgzg−1s−1g−τ zgs
−1
gτ z

−1
g z−1g−1

= sg−τgτ(sg)zgzg−1s−1g−τg(s
−1
gτ )z

−1
g−1
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= sg−τgτ(sg)zgg
−1(s−1g−τ g(s

−1
gτ ))

= sg−τgτ(sg)s
−1
g−τg(s

−1
gτ )zg

= gτ(sg)g(s
−1
gτ )zg

= g(τ(sg)s
−1
gτ )zg

= zg.

�
Example 2.5. For cyclic algebras G = ⟨g|gn = 1⟩, and we can

choose zgi = zi for z = zg. Then the cocycle becomes cgi,gj = 1 if
i+ j < n, cgi,gj = b1 otherwise, where b = zn ∈ F

For τ = 1, the conditions above translates to NK/F (η) = b2 where

η = sg ∈ K. If n is even and τ = gn/2, then η = sg ∈ Kτ and again
NK/F (η) = b2.

Proposition 2.4 is a generalization of the computations done by
Albert [1, Theorems X.16–17] for the case τ = 1, in his proof that R
has an involution iff exp(R) | 2.

Now let rg = z∗gz
−1
g−τ = sg(zg−τ zgτ )

−1 ∈ K.

Proposition 2.6.

(39) rg−τ = gτ(r−1g )

Proof. Compute:

gτ(rg) = zg(rg)
∗z−1g

= zg(z
∗
gz
−1
g−τ )

∗z−1g

= zg(z
∗
g−τ )−1zgz

−1
g

= (z∗g−τ z−1g )−1

= (rg−ta)−1

�
Corollary 2.7. z∗τ = ±zτ .
Proof. We have that τ−τ = τ , so by Equation (39), rτ

2 = 1, that
is z∗τ = ±zτ . �

Note that any element zg of a G-basis can be replaced by another
element kzg, k ∈ K. If G has exponent 2, then every element of G
satisfies g−τ = g. In [3, Theorem 2.1] it is shown that in this case zg
can be chosen such that z∗g = ±zg. This can be slightly improved.

Proposition 2.8. If g ∈ G, g ̸= τ , satisfies g−τ = g, then we can
choose zg to satisfy z∗g = zg.
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Proof. For every k ∈ K, we have that

(kzg)
∗ = z∗gk

∗ = rgzg−τ τ(k) = rgzgτ(k) = rggτ(k)k
−1 · (kzg).

By the assumption (gτ)2 = ggτ = 1, so using Equation (39) we
have that Ngτ (rg) = rg · gτ(rg) = 1. Thus rg = gτ(k)−1k for some
k ∈ K, and then (kzg)

∗ = kzg. �

3. Dihedral Crossed Products

Let Dn = ⟨g, t|gn = 1, tgt−1 = g−1, t2 = 1⟩ be the dihedral group of
order 2n.

As mentioned in the introduction, it is already known that if n is
odd, then any crossed product of Dn is cyclic (given n roots of unity in
the base field). Naturally, our interest is in the case where n is even.

Let K/F be a Galois extension with Galois group Gal(K/F )∼=Dn.
There are σ, τ ∈ Gal(K/F ) such that σn = 1 and τστ−1 = σ−1.

Let R be a crossed product with center F and maximal subfield K,
with an involution (∗). By Proposition 2.1 we can assume its restriction
to K is τ . There is an element z ∈ R that induces σ on K. By
Proposition 2.8, we may assume z∗ = z.

Proposition 3.1. b = zn ∈ F .

Proof. b ∈ K since b = zn acts trivially on K. σ(b) = zbz−1 =
zznz−1 = zn = b, and τ(b) = b∗ = (zn)∗ = (z∗)n = zn = b. Thus
b ∈ Kσ,τ = F . �

If F has n roots of unity, then F [z] is cyclic over F . It commutes
with Kσ, and obviously they intersect in F . Thus Kσ[z] is a maximal
subfield Galois over F , and we have proved

Theorem 3.2. Let R be a crossed product of Dn as above. If R has
an involution and the center F has n roots of unity, then R is also a
crossed product of the abelian group Z2 × Zn.

Corollary 3.3. Let R be central simple algebra of degree n with
involution over F , with maximal subfield L, so that [L :F ] = n. Assume
F has n roots of unity. If the Galois closure of L/F has dihedral Galois
group Dn, then R is Brauer equivalent to an abelian crossed product.

Proof. Denote the Galois closure of L/F by K. Since L splits R,
K is a maximal subfield of M2(R). By the above theorem M2(R) has
a maximal subfield whose Galois group over F is Z2 × Zn. �
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Let m |n. Then σm ∈ Dn generates a normal subgroup of order
n/m. Kσm

is Galois with group Dn/⟨σm⟩∼=Dm. The field F [zm] gen-
erated by zm has dimension n/m, and the intersection with K is F . If
F has n/m roots of unity, then F [zm] is cyclic over F .

Corollary 3.4. If m |n and F has n/m roots of unity, then a
crossed product of Dn with involution is also a crossed product of the
group Zn/m ×Dm (viathe subfield Kσm

[zm]).

Note that if n/m = 2 and m is odd, then Z2 ×Dm = Dn.
Here are the first few conclusions for crossed products with involu-

tion (assuming enough roots of unity):

D4 −→ Z2 × Z4, Z3
2

D6 −→ Z2 × Z6

D8 −→ Z2 ×D4, Z2 × Z2 × Z4, Z2 × Z8

D10 −→ Z2 × Z10

D12 −→ Z2 × Z2 × S3, Z3 ×D4, Z4 × S3, Z2 × Z2 × Z6, Z2 × Z12

It would be interesting to know the relations between the other
groups. For example, does Z2 ×D4 −→ Z2 × Z2 × Z4 assuming invo-
lution?
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