Kneser-Tits problem for trialitarian groups and bounded generation by restricted elements
 Philippe Gille and Uzi Vishne

1. Introduction

Let F be a field. Let F_{s} / F be a separable closure of F and denote by Γ_{F} the Galois group of F_{s} / F. We consider a semisimple group G / F of absolute type D_{4} [9], whose root system can be depicted as

The automorphism group of this Dynkin diagram is S_{3}, hence G defines a class in $\mathrm{H}^{1}\left(F, S_{3}\right)=\operatorname{Hom}_{c t}\left(\Gamma_{F}, S_{3}\right) / S_{3}$, namely an isomorphism class of cubic étale algebras $[4, \S 18]$. If this cubic étale algebra, say K / F, is a field, we say that G is trialitarian. The following result answers the Kneser-Tits problem for those groups.

Theorem 1.1. [3, §6.1] Let G / F be a semisimple simply connected trialitarian group. If G is isotropic, then the (abstract) group $G(F)$ is simple.

Since $Z(G)=\operatorname{ker}\left(R_{K / F}\left(\mu_{2}\right) \rightarrow \mu_{2}\right)$, note that $Z(G)(F)=1$. If G is quasi-split (for example in the case of finite fields), this is a special case of Chevalley's theorem [1]. By Tits tables for indices, the only other case to consider is that with Tits index

In the number field case, this has been proven by G. Prasad and M.S. Raghunathan [6]. Our goal is to explain how this result follows from a general statement and how it applies together with Prasad's approach to a nice understanding of generators for the rational points of the anisotropic kernel of G.

2. Invariance under transcendental extensions

Assume for convenience that F is infinite. Let G / F be a semisimple connected group which is absolutely almost simple and isotropic. We denote by $G^{+}(F)$ the (normal) subgroup of $G(F)$ which is generated by the $R_{u}(P)(F)$ for P running over the F-parabolic subgroups of G. Tits showed that any proper normal subgroup of $G^{+}(F)$ is central [8] [10]. So for proving that $G(F) / Z(G)(F)$ is simple, the plan is to show the triviality of the Whitehead group

$$
W(F, G)=\underset{1}{G(F) / G^{+}(F) .}
$$

This is the Kneser-Tits problem. Note that by Platonov's work, $W(F, G)$ can be non-trivial, e.g. for special linear groups of central simple algebras [5].

Theorem 2.1. [3, §5.3] The map $W(F, G) \rightarrow W(F(t), G)$ is an isomorphism.
Corollary 2.2. If G / F is a F-rational variety, then $W(F, G)=1$.
Let us sketch the proof of the Corollary. The idea is to consider the generic element $\xi \in G(F(G))$. Since $F(G)$ is purely transcendental over F, it follows that $\xi \in G(F) \cdot G^{+}(F(G))$. Since $G^{+}(F)$ is Zariski dense in G, we can see by specialization that $\xi \in G^{+}(F(G))$. Therefore there exists an dense open subset U of G such that $U(F) \subset G^{+}(F)$. But $U(F) \cdot U(F)=G(F)$, thus $W(F, G)=1$.

Assume now that G / F is trialitarian. Since Chernousov and Platonov have shown that such a group is an F-rational variety $[2, \S 8]$, we conclude that $W(F, G)=$ 1.

3. Bounded generation by Restricted elements

We assume that $\operatorname{char}(F) \neq 2$ and for convenience that F is perfect and infinite. In [6], Prasad gives an explicit description of $W(F, G)$ in terms of the the Tits algebra of G, which is the Allen algebra $M_{2}(D)$ for D a quaternion division algebra over K satisfying $\operatorname{cor}_{K / F}[D]=0 \in \operatorname{Br}(F)$, where K is a cubic étale extension of F. We have

$$
W(F, G)=U /\langle R\rangle
$$

where U is the group of elements of the quaternion algebra D / K whose reduced norm is in F^{\times}, and R is the set of elements $x \neq 0$ for which both the reduced norm and the reduced trace are in F. Combined with Theorem 1.1, we get the
Corollary 3.1. $\langle R\rangle=U$.
This leaves open the question of bounding the number of generators from R required to express every element of U.

One may consider the same question when K is a cubic étale extension which is not a field, namely, $K=F \times L$ for L a quadratic field extension of F, or $K=F \times F \times F$, and D is an Azumaya algebra over K. In the former case, $D=D_{1} \times D_{2}$ where D_{1} is a quaternion algebra over F and D_{2} a quaternion algebra over L, with $\operatorname{cor}_{L / F} D_{2} \sim D_{1}$. In the latter, $D=D_{1} \times D_{2} \times D_{3}$, where D_{i} $(i=1,2,3)$ are quaternion algebras over F, and $D_{1} \otimes_{F} D_{2} \otimes_{F} D_{3} \sim F$. The sets V and R can be defined in the same manner as above.

This is not an artificial generalization: extending scalars from F to $\tilde{F}=K$, the algebra becomes $\tilde{D}=D \otimes_{F} K$ which is an Azumaya algebra over $\tilde{K}=K \otimes_{F} K$, and \tilde{K} is a cubic étale extension of \tilde{F}, which is not a field.

Theorem $3.2([7, \S 2])$. When K is not a field, every element of U is a product of at most 3 elements of R.

On the other hand, by means of generic counterexamples, one can show that 3 is the best possible:

Proposition 3.3 ([7, Cor. 4.0.4]). Let $F=\mathbb{Q}(\eta, \lambda), K=F \times F \times F$, and $D=$ $(\alpha, \eta+1)_{F} \times(\alpha, \lambda)_{F} \times(\alpha,(\eta+1) \lambda)_{F}$, where $\alpha=\eta^{2}-4$. Let $x_{i}, y_{i}(i=1,2,3)$ be standard generators for the i 'th component.

Then the element $v=\left(\left(\eta+x_{1}\right)\left(\eta+2+2 y_{1}\right), \eta\left(1+x_{2}\right), 2 \eta\right) \in D_{1} \times D_{2} \times D_{3}$ is in V, but not in $R \cdot R$. In particular $V \nsubseteq R \cdot R$.

Another explicit counterexample [7, Cor. 4.0.4] shows that $V \not \subset R \cdot R$ when $K=F \times L$. By means of extending scalars [7, §5], it also follows that $V \not \subset R \cdot R$ when K is a field.

References

[1] C. Chevalley, Sur certains groupes simples, Tôhoku Math. J. 7 (1955), 14-66.
[2] V. Chernousov et V. P. Platonov, The rationality problem for semisimple group varieties, J. reine angew. math. 504 (1998), 1-28.
[3] P. Gille, Le problème de Kneser-Tits, séminaire Bourbaki Exp. n ${ }^{\circ} 983$ (2007), to appear in Astérisque.
[4] M.-A. Knus, A. Merkurjev, M. Rost and J.-P. Tignol, The book of involutions, American Mathematical Society Colloquium Publications 44 (1998), American Mathematical Society.
[5] V. P. Platonov, On the Tannaka-Artin problem, Dokl. Akad. Nauk SSSR Ser. Math 221 (1975); english translation: Soviet. Math. Dokl. 16 (1975), 468-471.
[6] G. Prasad, On the Kneser-Tits problem for the triality forms, Commentarii mathematici helvetici, 83(4), (2008), 913-925.
[7] L.H. Rowen, D. Saltman, Y. Segev and U. Vishne, An Azumaya algebra version of the Kneser-Tits problem for groups of type D_{4}, to appear, Communications in Algebra.
[8] J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329.
[9] J. Tits, Classification of algebraic semisimple groups, Algebraic Groups and Discontinuous Subgroups, Proc. Sympos. Pure Math., Boulder, Colo. (1965) pp. 33-62, Amer. Math. Soc.
[10] J. Tits, Groupes de Whitehead de groupes algébriques simples sur un corps (d'après V. P. Platonov et al.), sém. Bourbaki (1976/77), Exp. nº 505, Lecture Notes in Math. 677 (1978), 218-236.

