PRIMITIVE ALGEBRAS WITH ARBITRARY GELFAND-KIRILLOV DIMENSION

UZI VISHNE

ABSTRACT. We construct, for every real $\beta \geq 2$, a primitive affine algebra with Gelfand-Kirillov dimension β . Unlike earlier constructions, there are no assumptions on the base field. In particular, this is the first construction over \mathbb{R} or \mathbb{C} .

Given a recursive sequence $\{v_n\}$ of elements in a free monoid, we investigate the quotient of the free associative algebra by the ideal generated by all non-subwords in $\{v_n\}$.

We bound the dimension of the resulting algebra in terms of the growth of $\{v_n\}$. In particular, if $|v_n|$ is less than doubly-exponential then the dimension is 2. This also answers affirmatively a conjecture of Salwa [12].

Appeared in J. Algebra, **211**(1), (1999), 151-158

1. Preliminaries

Let A be an affine k-algebra. The **Gelfand-Kirillov dimension** [6] of A is defined as

$$GKdim(A) = \limsup_{s \to \infty} \frac{\log \dim(V + V^2 + V^3 + \dots + V^s)}{\log s}$$

where V is a finite-dimensional subspace that generates A as an algebra. (see [9] for details).

It is easily seen that GKdim(A) = 0 iff A is finite dimensional. Otherwise $GKdim(A) \ge 1$, and by Bergman's gap theorem [3], either GKdim(A) = 1 (in which case A is a PI-algebra by [14]), or $GKdim(A) \ge 2$.

If A is PI then GKdim(A) equals the transcendence degree of A over k [2], and is thus an integer.

Affine algebras with GKdim arbitrary real $\beta \geq 2$ were constructed by Borho-Kraft [4] and by Warfield [15] (*cf.* also [9, 2.9]). These examples fail to be prime. For a semiprime example, see [7].

Date: June 20, 1997.

The author wishes to thank his Ph.D. instructor, Prof. L.H.Rowen.

In [8] Irving and Warfield constructed primitive algebras with arbitrary GKdim, under the restriction that the base field F has an infinite-dimensional algebraic extension.

In this note we provide straightforward examples of primitive affine algebras over an arbitrary field, having arbitrary $GKdim \geq 2$.

Our construction is a generalization of the Morse algebra. It is a monomial algebra, that is, the quotient of a free associative algebra by an ideal generated by monomials. The growth of such algebras has been studied, for example, in [1], [5] and [11].

We assume the ideal to be generated by all monomials that are not subwords in a given sequence $\{v_n\}$ of elements in a free monoid, and relate properties of the resulting algebra A to the sequence $\{v_n\}$.

In section 2 we prove that under conditions (1), (2) below, GKdim(A) is bounded in terms of $\frac{\log |v_{n+1}|}{\log |v_n|}$. If $|v_n|$ is less then doubly-exponential (as is the case if v_n is defined by a constant recursion rule), then $GKdim(A) \leq 2$. Some theory of recurring sequences over finite fields is used in section 3 to choose $\{v_n\}$ that achieve the bound, thus producing prime algebras of arbitrary GKdim. These examples are shown to be primitive in section 4.

2. Monomial Algebras

Let S be a free finitely-generated monoid. If L is an ideal of S, then $A = k[S/L] \cong k[S]/k[L]$ is an affine **monomial algebra**.

Fix a group \mathcal{T} of permutation automorphisms of \mathcal{S} . If $M < \mathcal{S}$ is a submonoid, let $M_{\mathcal{T}}$ denote the closure of M under the operation of \mathcal{T} .

Let $\{v_n\}$ be a sequence in S. Evidently, the set L of words that are not subwords in any v_n , is an ideal. In this case {subwords of length s in v_n : all n} is a basis for the s'th homogeneous part of A.

All algebras discussed below are defined over a fixed (but arbitrary) field k, with ideals L as above, where we assume

(1)
$$\forall n : |v_n| \le |v_{n+1}|$$

(2)
$$\forall n : v_{n+\kappa} \in \langle v_n, v_{n+1}, \dots, v_{n+\kappa-1} \rangle_{\mathcal{T}}$$

for some fixed κ .

Write $x \leq y$ if x is a subword in y. As in Salwa [12], there is an obvious criterion for A to be prime.

Remark 2.1. A is prime iff for any i, j there exist $w \in S$ such that $v_i w v_j < v_k$ for some k.

If $x \in \mathcal{S}$, $X \subseteq \mathcal{S}$, let $W_s(x) = \{w : w \leq x, |w| = s\}$ and $W_s(X) = \bigcup_{x \in X} W_s(x)$. Obviously, $|W_s(x)| < |x|$ if s > 1. Write $w_s = |W_s(\{v_n\})|$. Then

$$GKdim(A) = \limsup_{s \to \infty} \frac{\log(w_1 + w_2 + \dots + w_s)}{\log s}.$$

Note that GKdim(A) = 0 iff $|v_n|$ is bounded. We assume henceforth that this is *not* the case, so by Bergman's gap theorem GKdim(A) = 1 or $GKdim(A) \ge 2$.

The main tool we use to compute GKdim(A) is the following simple lemma.

Lemma 2.2. If $|x_2|, |x_3|, \ldots, |x_{m-1}| \ge s$, then

$$W_s(x_1x_2...x_m) = W_s(x_1x_2) \cup W_s(x_2x_3) \cup \cdots \cup W_s(x_{m-1}x_m).$$

Proof. A subword of length s of $x_1x_2...x_m$ can never intersect more then two consecutive x_i 's.

Theorem 2.3. Let $d = \limsup \frac{\log |v_{n+1}|}{\log |v_n|}$. Then $GKdim(A) \le 1 + d^{\kappa}$.

Proof. Fix s and some $\epsilon > 0$.

There is some μ such that $|v_{\mu}| < s \leq |v_{\mu+1}|$. Iterating assumption (2), we get $v_{\mu+i} \in \langle v_{\mu+1}, \ldots, v_{\mu+\kappa} \rangle_{\mathcal{T}}$ for all $i \geq 1$. Thus, by Lemma 2.2,

$$w_{s} = |W_{s}(\{v_{\mu+i} : i \geq 1\})|$$

$$\leq |\bigcup_{\tau_{1},\tau_{2}\in\mathcal{T}, 0 < j_{1}, j_{2} \leq \kappa} W_{s}(\tau_{1}(v_{\mu+j_{1}})\tau_{2}(v_{\mu+j_{2}}))|$$

$$\leq \sum_{\tau_{1},\tau_{2}\in\mathcal{T}, 0 < j_{1}, j_{2} \leq \kappa} |W_{s}(\tau_{1}(v_{\mu+j_{1}})\tau_{2}(v_{\mu+j_{2}}))|$$

$$< \sum_{\tau_{1},\tau_{2}\in\mathcal{T}, 0 < j_{1}, j_{2} \leq \kappa} |\tau_{1}(v_{\mu+j_{1}})\tau_{2}(v_{\mu+j_{2}})|$$

$$\leq 2|\mathcal{T}|^{2}\kappa^{2}|v_{\mu+\kappa}|$$

Let $c = 2|\mathcal{T}|^2 \kappa^2$. We have that $w_1 + w_2 + \dots + w_s < cs|v_{\mu+\kappa}|$, so $\frac{\log(w_1 + \dots + w_s)}{\log s} < \frac{\log cs}{\log s} + \frac{\log |v_{\mu+\kappa}|}{\log |v_{\mu}|} \le 1 + d^{\kappa} + \epsilon$ for large enough s.

If $|v_n|$ is less than doubly exponential, *i.e.*, $\log \log |v_{n+1}| - \log \log |v_n| \rightarrow 0$, then d = 1 and $GKdim(A) \leq 2$.

It can be shown that GKdim(A) = 1 iff for some constant C, almost all the words v_n are periodic with period < C. We omit the details of the proof.

In many natural examples v_n are defined recursively. In this case we have

Corollary 2.4. Suppose that $\{v_n\}$ is defined by a constant recursion rule (i.e. the formula for v_n as a function of $v_{n-1}, \ldots, v_{n-\kappa}$ does not involve n), such that assumption (1) is satisfied.

Then $|v_{n+1}| < M|v_n|$ for some constant M, and by Theorem 2.3 we have that GKdim(A) < 2.

In particular Salwa's example [12] has Gelfand-Kirillov dimension 2. We end this section with

Lemma 2.5. Assume that for any $i, v_i < v_k$ for some k. Then $GKdim(A) \ge 1 + limsup \frac{\log w_s}{\log s}.$

Proof. The assumption implies that w_s is nondecreasing. Now

$$GKdim(A) = limsup \frac{\log(w_1 + \dots + w_{2s})}{\log 2s}$$

$$\geq limsup \frac{\log sw_s}{\log 2s}$$

$$= 1 + limsup \frac{\log w_s}{\log s}.$$

3. PRIME AFFINE ALGEBRAS WITH ARBITRARY DIMENSION

In this section we present sequences $\{v_n\}$ that define prime algebras with arbitrary GKdim > 2. These examples are shown to be primitive in Section 4.

Some preliminaries from the theory of linear recurring sequences are needed. The reader is referred to [10, Chap. 8] for more details and proofs.

Proposition 3.1. Let m > 1 be a natural number. Let K be the field of order 2^m . Pick a generator u of the multiplicative group K^* . Let $g(x) = g_0 + g_1 x + \cdots + x^m$ be the minimal polynomial of u over \mathbb{Z}_2 .

Define a sequence $\{b_i\}$ over \mathbb{Z}_2 by $b_0 = \cdots = b_{m-2} = 0, b_{m-1} = 1$, and the recursion rule $b_{i+m} = g_0 b_i + g_1 b_{i+1} + \cdots + g_{m-1} b_{i+m-1}$ $(i \ge 0)$. Then $\{b_i\}$ has period $2^m - 1$, and for every non-zero $w \in \mathbb{Z}_2^m$, there

is a unique $0 \le i < 2^m - 1$ such that $w = b_i b_{i+1} \dots b_{i+m-1}$.

Moreover, if w and w' are opposite non-zero words (i.e. w + w' =(11...1) of length m+1, then exactly one of them appears in $\{b_i\}$ ((11...1), (00...0) do not appear at all).

4

Definition 3.2. L_m denotes a word of length $2^m + m - 1$ over \mathbb{Z}_2 , constructed as the first $2^m + m - 2$ elements of a sequence defined as in Proposition 3.1, preceded by a single 0.

For example, we can take $L_1 = 01$, $L_2 = 00110$, $L_3 = 0001011100$ and $L_4 = 0000100110101111000$.

Remark 3.3. Every word of length m appears exactly once as a subword of L_m . Two opposite words of length m + 1 do not appear both in L_m except for the couple (00...01), (11...10). No opposite words of length m + 2 appear in L_m .

Let $S = \langle x, y \rangle$ be the free monoid on two generators, with the automorphism $v \mapsto \bar{v}$ defined by $\bar{x} = y, \bar{y} = x$. The substitution of a word v in L_m is defined as the replacement of all 0's in L_m by v and all 1's by \bar{v} . For example, $L_1(v) = v\bar{v}$.

Fix a sequence of integers r_n . We define $\{v_n\} \subseteq S$ as follows:

$$v_1 = x, \quad v_{n+1} = L_{r_n}(v_n).$$

Define an algebra A using $\{v_n\}$ as in the beginning of section 2. Note that assumptions (1) and (2) are satisfied (with $\kappa = 1$).

Note that if $r_n > 1$ then v_{n+1} starts with $v_n v_n$ and ends with v_n . The case $r_n = 1$ gives the well known Morse algebra.

Theorem 3.4. A is prime.

Proof. By Remark 2.1 we must show for any v_i, v_j that $v_i w v_j < v_k$ for some k and a word w. Pick $n = max\{i, j\}$, then $v_i, v_j < v_n$, so pick w_i, w_j such that $v_i w_i$ is a tail of v_n and $w_j v_j$ a head of v_n .

If $r_n > 1$ then $v_i w_i w_j v_j < v_n v_n < v_{n+1}$ by definition of L_{r_n} . Otherwise suppose $r_n = 1$; if $r_{n+1} > 1$ then $v_i w_i \overline{v_n} w_j v_j < v_{n+1} v_{n+1} < v_{n+2}$, and if $r_{n+2} = 1$ then $v_i w_i \overline{v_n} w_j v_j < v_{n+1} \overline{v_{n+1}} = v_{n+2}$.

From now on we assume that $r_n \geq 3$.

Lemma 3.5. If $m \ge (r_n + 2)|v_n|$, then the subwords of length m in v_{n+1} and in $\overline{v_{n+1}}$ are all different.

Proof. Let $k = r_n + 2$. It is enough to prove the assertion in the case $m = k|v_n|$. For n = 1 the result follows from 3.3. Let n > 1.

Let a, b be two equal subwords of v_{n+1} or $\overline{v_{n+1}}$. Write v_{n+1} as a word on the letters $v_n, \overline{v_n}$ which we call *full letters*. Then a, b are determined by the full letter $(v_n \text{ or } \overline{v_n})$ in v_{n+1} or in $\overline{v_{n+1}}$ in which they start, and the relative position in this full letter. The strategy is to show first that a and b start at the same relative position, and then show that they actually start at the same full letter.

Write $a = a_0 u_1 \dots u_{k-1} a_1$ where $|a_0|, |a_1| \leq |v_n|$, and each u_i equals one of the full letters $v_n, \overline{v_n}$; write $b = b_0 w_1 \dots w_{k-1} b_1$ in the same manner. W.l.o.g. we assume $|a_0| \ge |b_0|$.

Write $a_0 = a_{00}a_{01}$ and $b_1 = b_{10}b_{11}$ where $a_{00} = b_0$ and $b_{11} = a_1$. Also factor $u_i = u'_i u''_i$ and $w_i = w''_i w'_i$ where $|u''_i| = |w''_i| = |a_0| - |b_0|$.

Assume $|a_0| - |b_0| \leq \frac{1}{2} |v_n|$ (the other case is treated similarly). Then

 $u'_1 = w'_1$ is an equality of words of length $\geq \frac{1}{2}|v_n|$. Since $\frac{1}{2}|v_n| \geq \frac{r_{n-1}+2}{2^{r_{n-1}}+r_{n-1}-1}|v_n| = (r_{n-1}+2)|v_{n-1}|$, the induction hypothesis force u'_i, w'_i to begin in the same relative position. But then it follows that u''_i, w''_i are empty words and each of u'_i, w'_i is a full letter, v_n or $\overline{v_n}$. By Remark 3.3, the $r_n + 1$ equalities $u_i = u'_i = w'_i = w_i$ force one of two cases: a, b begin in the same position in v_{n+1} or in $\overline{v_{n+1}}$, in which case we are done, or $u_1 \dots u_{k-1} = w_1 \dots w_{k-1} = v_n \dots v_n \overline{v_n}$ and $a \leq v_{n+1}, b \leq \overline{v_{n+1}}$ (or vice versa). But $v_n \dots v_n \overline{v_n}$ is the header of v_{n+1} , so a_0, b_0 must be empty. Then we have that $a_1 = b_1$, the $(r_n + 2)$ 'th equality of full letters, a contradiction of Remark 3.3.

We can now compute the Gelfand-Kirillov dimension of A.

Theorem 3.6. Let $d = \limsup \frac{r_1 + \dots + r_n}{r_1 + \dots + r_{n-1}}$. Then GKdim(A) = d + 1. *Proof.* Note that $|v_n| = |L_{r_1}| |L_{r_2}| \dots |L_{r_{n-1}}|$, so

$$r_1 + \dots + r_{n-1} < \log_2 |v_n| < n + r_1 + \dots + r_{n-1}.$$

By Theorem 2.3 we have

$$GKdim(A) \le 1 + \limsup \frac{\log_2 |v_{n+1}|}{\log_2 |v_n|} = 2 + \limsup \frac{\log_2 |L_{r_n}|}{\log_2 |v_n|} \le 2 + \limsup \frac{r_n + 1}{r_1 + \dots + r_{n-1}} = 1 + d.$$

For the other direction, recall that by Lemma 3.5 all of the subwords of length $s = (r_n + 2)|v_n|$ in v_{n+1} are different. Thus

$$w_s \ge |v_{n+1}| - s = (2^{r_n} - 3)|v_n|$$

(where w_s is the number of subwords of length s in any v_n), and, if d > 1,

$$\frac{\log_2 w_s}{\log_2 s} > \frac{\log_2(2^{r_n} - 3) + \log_2 |v_n|}{\log_2(r_n + 2) + \log_2 |v_n|} > \frac{r_1 + \dots + r_n - 1}{\log_2(r_n) + n + r_1 + \dots + r_{n-1}}.$$

The *limsup* of the lower bound is d (whether d is finite or infinite). If d = 1, then the expression in the middle already apporaches 1. \square

6

Finally, let $\beta \in \mathbb{R}, \beta \geq 1$.

Take $r_n = \max([\beta^n], 3)$, and define an algebra A as above. Checking the conditions of Theorem 3.6, we arrive at

Theorem 3.7. A is an affine prime algebra with $GKdim(A) = \beta + 1$.

In particular, the bound in 2.3 is tight (at least for $\kappa = 1$).

4. OUR EXAMPLES ARE PRIMITIVE

In this section we show that A is primitive. We assume that $r_n \ge 3$, and $r_n > 3$ infinitely often (note that for dimension 2 we must take $r_n = 4$).

Definition 4.1. For $u, v \in S$, let $u \leq_l v$ ($u \leq_r v$) denote that u is a head (tail) of v. An element $a \in A$ is a **left** (**right**) **tower** if the set of monomials of a is linearly ordered by $\leq_l (\leq_r)$.

Being a left tower is invariant under multiplication by a monomial from the left.

Lemma 4.2. Let L < A be a left ideal. Then L contains a left tower. Moreover, for every $a \in A$, wa is a left tower for some monomial w.

Proof. It is enough to show that if a_1, a_2 are monomials, and $wa_1 = 0$ iff $wa_2 = 0$ (all $w \in S$), then a_1, a_2 are \leq_l -comparable. Assume $|a_1| \geq |a_2|$.

For some n we have $a_2 \leq v_n$ and $r_n > 3$. Write $v_n = \alpha a_2 \beta$, $v_{n+1} = uv_n$.

By assumption $u\alpha a_1 \neq 0$, so $u\alpha a_1 \leq v_m$ for some m. Writing v_m as a word in the letters $v_{n+1}, \overline{v_{n+1}}$, the intersection of u with some letter is of length $> \frac{1}{2}|u| > (r_n+2)|v_n|$. By Lemma 3.5, u (and thus $u\alpha a_1$) appears in v_m as a header of v_{n+1} , and we get $u\alpha a_2 \leq_l u\alpha a_1$, as desired. \Box

Corollary 4.3. Let $I \trianglelefteq A$ be an ideal. Then I contains a monomial.

Proof. By Lemma 4.2 and left-right symmetry, there is some $a \in I$ that is a left and right tower.

Let u, w be two different monomials in $a, |u| \leq |w|$. Multiplying by long enough monomials from both sides we may assume that $w = v_n$, and $\frac{1}{2}|v_n| < |u|$.

Now $u \leq_r v_n$ and $u \leq_l v_n$ implies by Lemma 3.5 that $u = v_n$, a contradiction.

Let $J = \langle x, y \rangle \trianglelefteq A$, a maximal ideal in A.

Recall that if $J_1, \ldots, J_n \subseteq R$ are maximal ideals in a (unital) ring R, and $J_1 J_2 \ldots J_n \subseteq I \neq R$, then $I \subseteq J_i$ for some i (for taking a maximal ideal $I_1 \supseteq I$ we have some $J_i \subseteq I_1$, implying $J_i = I_1 \supseteq I$).

Corollary 4.4. J is the unique maximal ideal in A. Moreover, for any $I \trianglelefteq A$, the quotient A/I is a finite dimensional k-algebra and Jac(A/I) = J/I.

Proof. By Corollary 4.3, $v_n \in I$ for some n. Now every monomial of length $> 2|v_{n+1}|$ contains v_{n+1} or $\overline{v_{n+1}}$ and thus v_n as a subword, so $J^m \subseteq I$ for $m = 2|v_{n+1}|$, and thus $I \subseteq J$.

A/I is finite dimensional spanned by { words of length < m }, and $Jac(A/I) = Jac(A/J^m)/(I/J^m) = (J/J^m)/(I/J^m) = J/I$.

Corollary 4.5. The only prime ideals of A are 0, J. In particular, the (classical) Krull dimension of A is one.

Proof. 0 is prime by Remark 2.1. If $I \neq 0$ is prime then J/I = Jac(A/I) = 0 so I = J.

Theorem 4.6. A is primitive.

Proof. Assume, on the contrary, that A is non-primitive. Then the only primitive ideal of A is J, so this is the Jacobson radical of A. In particular, $x + y \in J$ should be quasi-regular.

But if a(1-x-y) = 1, let w be a longest monomial in a. Necessarily $wx \neq 0$ or $wy \neq 0$, so wx (say) appears on the left hand side of the equality but not on the right hand side, a contradiction.

From Corollary 4.4 it follows that A satisfies ACC on two-sided ideals (since a chain going up from $I \trianglelefteq A$ has length $< \dim(A/I)$ as a k-algebra). For one-sided ideals the situation is not that pleasant.

Remark 4.7. A is a not left-Noetherian.

Proof. We construct a left ideal that is not finitely-generated.

Ordering the monomials in A by $\langle r \rangle$ we get a tree T_1 , in which every node is a root for a tree with at least two, and thus infinitely many, branches (indeed, if $w \langle v_n \rangle$ is a monomial write $v_n = \alpha w \beta$, then $w \langle r \rangle v_n \alpha w$ and $w \langle r \rangle \overline{v_n} \alpha w$). Now define a tree T_n and $w_n \in T_n$ $(n \geq 1)$ as follows: Let $w \in T_n$ be a monomial with $wx, wy \in T_n$. Take $w_n = wx$, and T_{n+1} the tree with root wy.

Then $L = Aw_1 + Aw_2 + \ldots$ is definitely not *f.g.*, since the w_i are \leq_l -incomparable.

8

References

- D.J.Anick, On monomial algebras of finite global dimension, Trans. Amer. Math. Soc. 291 (1) (1985), 291–310.
- [2] A.Berele, Homogeneous Polynomial Identities, Israel J. Math. 42 (1982), 258-272.
- [3] G.M.Bergman, A note on growth functions of Algebras and Semigroups, mimeographed notes, University of California, Berkeley, 1978.
- [4] W.Borho and H.Kraft, Über die Gelfand-Kirillov-Dimension, Math. Ann. 220, (1976), 1-24.
- [5] H.W.Ellingsen Jr., Graphs and the growth of monomial algebras, Lecture Notes in Pure and Appl. Math., 151, (1994), 99-109.
- [6] I.M.Gelfand and A.A.Kirillov, Sur les corps liés aux algèbres enveloppantes des algèbres de Lie, Pub. IHES 31 (1966), 5-19.
- [7] R.S.Irving, Affine Algebras with any Set of Integers as the Dimensions of Simple Modules, Bull. London Math. Soc. 17 (1985), 243-247.
- [8] R.S.Irving and R.B.Warfield, Simple Modules and Primitive Algebras with Arbitrary Gelfand-Kirillov Dimension, J.London Math. Soc. (2) 36 (1987), 219-228.
- [9] G.Krause and T.H.Lenagan, Growth of Algebras and Gelfand-Kirillov Dimension, in "Research Notes in Math," Vol. 116, Pitman, London, 1985.
- [10] R. Lidl and H. Niederreiter, Finite Fields, in "Encyclopedia of Mathematics and its Applications," vol. 20, Cambridge Univ. Press, Cambridge, 1983.
- [11] J. Okniński, On monomial algebras, Arch. Math. 50 (5) (1988), 417-423.
- [12] A.Salwa, Rings that are sums of two locally nilpotent subrings, II, Comm. Alg. 25(12), (1997), 3965-3972.
- [13] L.W.Small and R.B.Warfield Jr., Prime affine algebras of Gelfand-Kirillov one, J. Algebra 91, (1984), 386-389.
- [14] L.W.Small, J.T.Stafford and R.B.Warfield, Affine algebras of Gelfand-Kirillov dimension one are PI, Math. Proc. Camb. Philos. Soc. 97 (1985), 407-414.
- [15] R.B.Warfield, The Gelfand-Kirillov dimension of a Tensor Product, Math. Z. 185 (1984), 441-447.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, 52900 RAMAT-GAN, ISRAEL

E-mail address: vishne@macs.biu.ac.il