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Abstract. We construct, for every real β ≥ 2, a primitive affine
algebra with Gelfand-Kirillov dimension β. Unlike earlier construc-
tions, there are no assumptions on the base field. In particular, this
is the first construction over R or C.

Given a recursive sequence {vn} of elements in a free monoid,
we investigate the quotient of the free associative algebra by the
ideal generated by all non-subwords in {vn}.

We bound the dimension of the resulting algebra in terms of the
growth of {vn}. In particular, if |vn| is less than doubly-exponential
then the dimension is 2. This also answers affirmatively a conjec-
ture of Salwa [12].

Appeared in J. Algebra, 211(1), (1999), 151-158

1. Preliminaries

Let A be an affine k-algebra. The Gelfand-Kirillov dimension [6]
of A is defined as

GKdim(A) = lim sup
s→∞

log dim(V + V 2 + V 3 + · · ·+ V s)

log s

where V is a finite-dimensional subspace that generates A as an algebra.
(see [9] for details).

It is easily seen that GKdim(A) = 0 iff A is finite dimensional.
Otherwise GKdim(A) ≥ 1, and by Bergman’s gap theorem [3], ei-
ther GKdim(A) = 1 (in which case A is a PI-algebra by [14]), or
GKdim(A) ≥ 2.

If A is PI then GKdim(A) equals the transcendence degree of A
over k [2], and is thus an integer.

Affine algebras with GKdim arbitrary real β ≥ 2 were constructed by
Borho-Kraft [4] and by Warfield [15] (cf. also [9, 2.9]). These examples
fail to be prime. For a semiprime example, see [7].
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In [8] Irving and Warfield constructed primitive algebras with ar-
bitrary GKdim, under the restriction that the base field F has an
infinite-dimensional algebraic extension.

In this note we provide straightforward examples of primitive affine
algebras over an arbitrary field, having arbitrary GKdim≥ 2.

Our construction is a generalization of the Morse algebra. It is a
monomial algebra, that is, the quotient of a free associative algebra
by an ideal generated by monomials. The growth of such algebras has
been studied, for example, in [1], [5] and [11].

We assume the ideal to be generated by all monomials that are not
subwords in a given sequence {vn} of elements in a free monoid, and
relate properties of the resulting algebra A to the sequence {vn}.

In section 2 we prove that under conditions (1), (2) below, GKdim(A)

is bounded in terms of log |vn+1|
log |vn| . If |vn| is less then doubly-exponential

(as is the case if vn is defined by a constant recursion rule), then
GKdim(A) ≤ 2. Some theory of recurring sequences over finite fields
is used in section 3 to choose {vn} that achieve the bound, thus pro-
ducing prime algebras of arbitrary GKdim. These examples are shown
to be primitive in section 4.

2. monomial algebras

Let S be a free finitely-generated monoid. If L is an ideal of S, then
A = k[S/L] ∼= k[S]/k[L] is an affine monomial algebra.

Fix a group T of permutation automorphisms of S. If M < S is a
submonoid, let MT denote the closure of M under the operation of T .

Let {vn} be a sequence in S. Evidently, the set L of words that are
not subwords in any vn, is an ideal. In this case {subwords of length s
in vn: all n} is a basis for the s’th homogeneous part of A.

All algebras discussed below are defined over a fixed (but arbitrary)
field k, with ideals L as above, where we assume

(1) ∀n : |vn| ≤ |vn+1|

(2) ∀n : vn+κ ∈< vn, vn+1, . . . , vn+κ−1 >T

for some fixed κ.

Write x ≤ y if x is a subword in y. As in Salwa [12], there is an
obvious criterion for A to be prime.

Remark 2.1. A is prime iff for any i, j there exist w ∈ S such that
viwvj < vk for some k.
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If x ∈ S, X ⊆ S, let Ws(x) = {w : w ≤ x, |w| = s} and Ws(X) =∪
x∈X Ws(x). Obviously, |Ws(x)| < |x| if s > 1.
Write ws = |Ws({vn})|. Then

GKdim(A) = lim sup
s→∞

log(w1 + w2 + · · ·+ ws)

log s
.

Note that GKdim(A) = 0 iff |vn| is bounded. We assume henceforth
that this is not the case, so by Bergman’s gap theorem GKdim(A) = 1
or GKdim(A) ≥ 2.

The main tool we use to compute GKdim(A) is the following simple
lemma.

Lemma 2.2. If |x2|, |x3|, . . . , |xm−1| ≥ s, then

Ws(x1x2 . . . xm) = Ws(x1x2) ∪Ws(x2x3) ∪ · · · ∪Ws(xm−1xm).

Proof. A subword of length s of x1x2 . . . xm can never intersect more
then two consecutive xi’s. �
Theorem 2.3. Let d = lim sup log |vn+1|

log |vn| . Then GKdim(A) ≤ 1 + dκ.

Proof. Fix s and some ϵ > 0.
There is some µ such that |vµ| < s ≤ |vµ+1|. Iterating assumption

(2), we get vµ+i ∈< vµ+1, . . . , vµ+κ >T for all i ≥ 1. Thus, by Lemma
2.2,

ws = |Ws({vµ+i : i ≥ 1})|
≤ |

∪
τ1,τ2∈T ,0<j1,j2≤κ

Ws(τ1(vµ+j1)τ2(vµ+j2))|

≤
∑

τ1,τ2∈T ,0<j1,j2≤κ

|Ws(τ1(vµ+j1)τ2(vµ+j2))|

<
∑

τ1,τ2∈T ,0<j1,j2≤κ

|τ1(vµ+j1)τ2(vµ+j2)|

≤ 2|T |2κ2|vµ+κ|
Let c = 2|T |2κ2. We have that w1 + w2 + · · · + ws < cs|vµ+κ|, so

log(w1+···+ws)
log s

< log cs
log s

+ log |vµ+κ|
log |vµ| ≤ 1 + dκ + ϵ for large enough s.

�
If |vn| is less then doubly exponential, i.e., log log |vn+1|−log log |vn| →

0, then d = 1 and GKdim(A) ≤ 2.
It can be shown that GKdim(A) = 1 iff for some constant C, almost

all the words vn are periodic with period < C. We omit the details of
the proof.
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In many natural examples vn are defined recursively. In this case we
have

Corollary 2.4. Suppose that {vn} is defined by a constant recursion
rule (i.e. the formula for vn as a function of vn−1, . . . , vn−κ does not
involve n), such that assumption (1) is satisfied.

Then |vn+1| < M |vn| for some constant M , and by Theorem 2.3 we
have that GKdim(A) ≤ 2.

In particular Salwa’s example [12] has Gelfand-Kirillov dimension 2.
We end this section with

Lemma 2.5. Assume that for any i, vi < vk for some k. Then
GKdim(A) ≥ 1 + limsup logws

log s
.

Proof. The assumption implies that ws is nondecreasing. Now

GKdim(A) = limsup
log(w1 + · · ·+ w2s)

log 2s

≥ limsup
log sws

log 2s

= 1 + limsup
logws

log s
.

�

3. prime affine algebras with arbitrary dimension

In this section we present sequences {vn} that define prime algebras
with arbitrary GKdim > 2. These examples are shown to be primitive
in Section 4.

Some preliminaries from the theory of linear recurring sequences are
needed. The reader is referred to [10, Chap. 8] for more details and
proofs.

Proposition 3.1. Let m ≥ 1 be a natural number. Let K be the field
of order 2m. Pick a generator u of the multiplicative group K∗. Let
g(x) = g0 + g1x+ · · ·+ xm be the minimal polynomial of u over Z2.

Define a sequence {bi} over Z2 by b0 = · · · = bm−2 = 0, bm−1 = 1,
and the recursion rule bi+m = g0bi + g1bi+1 + · · ·+ gm−1bi+m−1 (i ≥ 0).

Then {bi} has period 2m − 1, and for every non-zero w ∈ Zm
2 , there

is a unique 0 ≤ i < 2m − 1 such that w = bibi+1 . . . bi+m−1.
Moreover, if w and w′ are opposite non-zero words (i.e. w + w′ =

(11 . . . 1)) of length m + 1, then exactly one of them appears in {bi}
((11 . . . 1), (00 . . . 0) do not appear at all).
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Definition 3.2. Lm denotes a word of length 2m + m − 1 over Z2,
constructed as the first 2m +m − 2 elements of a sequence defined as
in Proposition 3.1, preceded by a single 0.

For example, we can take L1 = 01, L2 = 00110, L3 = 0001011100
and L4 = 0000100110101111000.

Remark 3.3. Every word of length m appears exactly once as a sub-
word of Lm. Two opposite words of length m+1 do not appear both in
Lm except for the couple (00 . . . 01), (11 . . . 10). No opposite words of
length m+ 2 appear in Lm.

Let S =< x, y > be the free monoid on two generators, with the
automorphism v 7→ v̄ defined by x̄ = y, ȳ = x. The substitution of a
word v in Lm is defined as the replacement of all 0’s in Lm by v and
all 1’s by v. For example, L1(v) = vv.

Fix a sequence of integers rn. We define {vn} ⊆ S as follows:

v1 = x, vn+1 = Lrn(vn).

Define an algebra A using {vn} as in the beginning of section 2. Note
that assumptions (1) and (2) are satisfied (with κ = 1).

Note that if rn > 1 then vn+1 starts with vnvn and ends with vn. The
case rn = 1 gives the well known Morse algebra.

Theorem 3.4. A is prime.

Proof. By Remark 2.1 we must show for any vi, vj that viwvj < vk for
some k and a word w. Pick n = max{i, j}, then vi, vj < vn, so pick
wi, wj such that viwi is a tail of vn and wjvj a head of vn.

If rn > 1 then viwiwjvj < vnvn < vn+1 by definition of Lrn . Other-
wise suppose rn = 1; if rn+1 > 1 then viwivnwjvj < vn+1vn+1 < vn+2,
and if rn+2 = 1 then viwivnvnwjvj < vn+1vn+1 = vn+2. �

From now on we assume that rn ≥ 3.

Lemma 3.5. If m ≥ (rn + 2)|vn|, then the subwords of length m in
vn+1 and in vn+1 are all different.

Proof. Let k = rn + 2. It is enough to prove the assertion in the case
m = k|vn|. For n = 1 the result follows from 3.3. Let n > 1.

Let a, b be two equal subwords of vn+1 or vn+1. Write vn+1 as a word
on the letters vn, vn which we call full letters. Then a, b are determined
by the full letter (vn or vn) in vn+1 or in vn+1 in which they start, and
the relative position in this full letter. The strategy is to show first
that a and b start at the same relative position, and then show that
they actually start at the same full letter.
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Write a = a0u1 . . . uk−1a1 where |a0|, |a1| ≤ |vn|, and each ui equals
one of the full letters vn, vn; write b = b0w1 . . . wk−1b1 in the same
manner. W.l.o.g. we assume |a0| ≥ |b0|.

Write a0 = a00a01 and b1 = b10b11 where a00 = b0 and b11 = a1. Also
factor ui = u′

iu
′′
i and wi = w′′

i w
′
i where |u′′

i | = |w′′
i | = |a0| − |b0|.

Assume |a0|− |b0| ≤ 1
2
|vn| (the other case is treated similarly). Then

u′
1 = w′

1 is an equality of words of length ≥ 1
2
|vn|.

Since 1
2
|vn| ≥ rn−1+2

2rn−1+rn−1−1
|vn| = (rn−1 + 2)|vn−1|, the induction hy-

pothesis force u′
i, w

′
i to begin in the same relative position. But then it

follows that u′′
i , w

′′
i are empty words and each of u′

i, w
′
i is a full letter,

vn or vn. By Remark 3.3, the rn + 1 equalities ui = u′
i = w′

i = wi force
one of two cases: a, b begin in the same position in vn+1 or in vn+1, in
which case we are done, or u1 . . . uk−1 = w1 . . . wk−1 = vn . . . vnvn and
a ≤ vn+1, b ≤ vn+1 (or vice versa). But vn . . . vnvn is the header of vn+1,
so a0, b0 must be empty. Then we have that a1 = b1, the (rn + 2)’th
equality of full letters, a contradiction of Remark 3.3. �

We can now compute the Gelfand-Kirillov dimension of A.

Theorem 3.6. Let d = lim sup r1+···+rn
r1+···+rn−1

. Then GKdim(A) = d+ 1.

Proof. Note that |vn| = |Lr1 ||Lr2| . . . |Lrn−1 |, so

r1 + · · ·+ rn−1 < log2 |vn| < n+ r1 + · · ·+ rn−1.

By Theorem 2.3 we have

GKdim(A) ≤ 1 + lim sup
log2 |vn+1|
log2 |vn|

= 2 + lim sup
log2 |Lrn |
log2 |vn|

≤

≤ 2 + lim sup
rn + 1

r1 + · · ·+ rn−1

= 1 + d.

For the other direction, recall that by Lemma 3.5 all of the subwords
of length s = (rn + 2)|vn| in vn+1 are different. Thus

ws ≥ |vn+1| − s = (2rn − 3)|vn|

(where ws is the number of subwords of length s in any vn), and, if
d > 1,

log2ws

log2 s
>

log2(2
rn − 3) + log2 |vn|

log2(rn + 2) + log2 |vn|
>

r1 + · · ·+ rn − 1

log2(rn) + n+ r1 + · · ·+ rn−1

.

The limsup of the lower bound is d (whether d is finite or infinite). If
d = 1, then the expression in the middle already apporaches 1. �
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Finally, let β ∈ R, β ≥ 1.
Take rn = max([βn], 3), and define an algebra A as above. Checking

the conditions of Theorem 3.6, we arrive at

Theorem 3.7. A is an affine prime algebra with GKdim(A) = β +1.

In particular, the bound in 2.3 is tight (at least for κ = 1).

4. our examples are primitive

In this section we show that A is primitive. We assume that rn ≥ 3,
and rn > 3 infinitely often (note that for dimension 2 we must take
rn = 4).

Definition 4.1. For u, v ∈ S, let u ≤l v (u ≤r v) denote that u is a
head (tail) of v. An element a ∈ A is a left (right) tower if the set
of monomials of a is linearly ordered by ≤l (≤r).

Being a left tower is invariant under multiplication by a monomial
from the left.

Lemma 4.2. Let L < A be a left ideal. Then L contains a left tower.
Moreover, for every a ∈ A, wa is a left tower for some monomial w.

Proof. It is enough to show that if a1, a2 are monomials, and wa1 = 0 iff
wa2 = 0 (all w ∈ S), then a1, a2 are≤l-comparable. Assume |a1| ≥ |a2|.

For some n we have a2 ≤ vn and rn > 3. Write vn = αa2β, vn+1 =
uvn.

By assumption uαa1 ̸= 0, so uαa1 ≤ vm for some m. Writing vm as a
word in the letters vn+1, vn+1, the intersection of u with some letter is of
length > 1

2
|u| > (rn+2)|vn|. By Lemma 3.5, u (and thus uαa1) appears

in vm as a header of vn+1, and we get uαa2 ≤l uαa1, as desired. �
Corollary 4.3. Let I�A be an ideal. Then I contains a monomial.

Proof. By Lemma 4.2 and left-right symmetry, there is some a ∈ I that
is a left and right tower.

Let u,w be two different monomials in a, |u| ≤ |w|. Multiplying by
long enough monomials from both sides we may assume that w = vn,
and 1

2
|vn| < |u|.

Now u ≤r vn and u ≤l vn implies by Lemma 3.5 that u = vn, a
contradiction. �

Let J =< x, y > �A, a maximal ideal in A.
Recall that if J1, . . . Jn�R are maximal ideals in a (unital) ring R,

and J1J2 . . . Jn ⊆ I ̸= R, then I ⊆ Ji for some i (for taking a maximal
ideal I1 ⊇ I we have some Ji ⊆ I1, implying Ji = I1 ⊇ I).
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Corollary 4.4. J is the unique maximal ideal in A. Moreover, for any
I�A, the quotient A/I is a finite dimensional k-algebra and Jac(A/I) =
J/I.

Proof. By Corollary 4.3, vn ∈ I for some n. Now every monomial of
length > 2|vn+1| contains vn+1 or vn+1 and thus vn as a subword, so
Jm ⊆ I for m = 2|vn+1|, and thus I ⊆ J .

A/I is finite dimensional spanned by { words of length < m }, and
Jac(A/I) = Jac(A/Jm)/(I/Jm) = (J/Jm)/(I/Jm) = J/I. �

Corollary 4.5. The only prime ideals of A are 0, J .
In particular, the (classical) Krull dimension of A is one.

Proof. 0 is prime by Remark 2.1. If I ̸= 0 is prime then J/I =
Jac(A/I) = 0 so I = J . �

Theorem 4.6. A is primitive.

Proof. Assume, on the contrary, that A is non-primitive. Then the
only primitive ideal of A is J , so this is the Jacobson radical of A. In
particular, x+ y ∈ J should be quasi-regular.

But if a(1−x−y) = 1, let w be a longest monomial in a. Necessarily
wx ̸= 0 or wy ̸= 0, so wx (say) appears on the left hand side of the
equality but not on the right hand side, a contradiction. �

From Corollary 4.4 it follows that A satisfies ACC on two-sided ideals
(since a chain going up from I�A has length < dim(A/I) as a k-
algebra). For one-sided ideals the situation is not that pleasant.

Remark 4.7. A is a not left-Noetherian.

Proof. We construct a left ideal that is not finitely-generated.
Ordering the monomials in A by <r we get a tree T1, in which every

node is a root for a tree with at least two, and thus infinitely many,
branches (indeed, if w < vn is a monomial write vn = αwβ, then
w <r vnαw and w <r vnαw). Now define a tree Tn and wn ∈ Tn

(n ≥ 1) as follows: Let w ∈ Tn be a monomial with wx,wy ∈ Tn. Take
wn = wx, and Tn+1 the tree with root wy.

Then L = Aw1 + Aw2 + . . . is definitely not f.g., since the wi are
≤l-incomparable. �
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