
POLYNOMIAL IDENTITIES OF M2(G)

UZI VISHNE

Abstract. We describe an efficient way to use the Sn-module
structure in the computation of the multilinear identities of degree
n of a given algebra. The method was used to show that M2(G)
(where G is the Grassmann algebra) has identities of degree 8, but
of no smaller degree. Explicit identities of degree 8 are given. It
was also checked that PIdeg(M2,1(G)) ≥ 9 and that M3(F ) has
no identities of degree ≤ 8 apart from the consequences of the
standard identity s6.
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1. Introduction

Let F be a field of characteristic 0. The set of multilinear identities
of an (associative) F -algebra is an ideal of the (associative) free algebra
over F , closed under endomorphisms. Such an ideal is called a T -ideal.

Let G denote the Grassmann algebra over F . The verbally-prime
T -ideals of the free associative algebra (i.e. those prime with respect
to T -ideals) were classified by Kemer ([5],[6]), and are the ideals of
identities of three families of algebras: matrices over F , matrices over
G, and superalgebras of matrices over G.

A lot is known about the structure ’at infinity’ of the T -ideals of these
algebras, such as the codimension growth, the character multiplicities
and so on. But a complete description of the T -ideals (i.e. a set of
generators as a T -ideal) is known only for a field F , for the Grassmann
algebra G [7], for M1,1(G) [10] and for M2(F ) [11].

Any PI-algebra over a field of characteristic zero satisfies multilinear
identities. The smallest degree of such an identity is called the PI-
degree of the algebra. The PI-degree of Mn(F ) is known to be 2n by
Amitsur-Levitzki theorem, and obviously PIdeg(G) = 3. But the PI-
degree of Mn(G) (n ≥ 2) or the superalgebras Mn,m(G) (n + m ≥ 2,
n,m ≥ 1) is still not known.

In the next section we discuss the Sn-module structure of the ideal of
multilinear identities from the point of view of substitutions. We show
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how to compute the identities of small degree, and give the following
applications:

1. The PI-degree of M2(G) equals 8 (a lower bound PIdeg(M2(G)) >
6 was known before, [9]). Explicit identities are also given.

2. Any multilinear identity of M3(F ) which does not follow from the
Amitsur-Levitzki identity s6, must have degree ≥ 9 (the case of degree
7 is covered by [8]).

3. M3(F ) has central identities of degree 8 which are not conse-
quences of the Drenskey-Kasparian central identity [3].

4. PIdeg(M2,1(G)) ≥ 9.
Details are given in Sections 4–5.

Some special identity of the subspace

{(
x y
z −x

)
: x, y, z ∈ G

}
of

zero trace matrices in M2(G) is given in Section 6.
The author thanks Amitai Regev for several useful suggestions.

2. The Sn-Module of Identities

The applicability of the representation theory of the symmetric group
to multilinear identities is well recognized. In this section we describe
the basics of this connection from a practical point of view, emphasizing
the role of the ideal of substitutions. Throughout, F is an algebraically
closed field of characteristic 0, and A a PI-algebra over F .

Let Vn denote the F -vector space of multilinear polynomials in the
(non-commuting) variables X1, . . . , Xn, and F [Sn] the group algebra
of the symmetric group on n letters. We multiply permutations by
the rule (πσ)i = π(σ(i)). The map σ 7→ Xσ1 . . . Xσn is a natural
isomorphism of vector spaces F [Sn]→Vn, and the induced left action
of Sn on Vn is given by

π ·Xσ1 . . . Xσn = Xπσ1 . . . Xπσn.

An element f =
∑

ασXσ1 . . . Xσn ∈ Vn is an identity of A if for every
substitution Xi 7→ xi ∈ A we have that f(x1, . . . , xn) =

∑
ασxσ1 . . . xσn =

0. Let I = Idn(A) denote the set of multilinear identities of degree n
satisfied by the algebra A. Since π · f(X1, . . . , Xn) = f(Xπ1, . . . , Xπn),
this set is closed under the above left action of Sn, so that I is a sub-
module of Vn. We identify I with its pre-image in F [Sn], which is then
a left ideal.

More generally, let B ⊆ A be a linear subspace of A. IB denotes
the set of B-identities of A: multilinear expressions f ∈ Vn, such
that f(x1, . . . , xn) ∈ B for every substitution Xi 7→ xi. For exam-
ple 0-identities are just identities, and Cent(A)-identities are central
identities (this term includes 0-identities).
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For every additive functional µ : A→F and specialization Xi 7→ xi ∈
A, define

uµ(x1, . . . , xn) =
∑
σ∈Sn

µ(xσ1 . . . xσn)σ−1 ∈ F [Sn].

By B⊥ we denote set of all linear functionals µ : A→F , such that
µ(B) = 0. Let UB = {uµ(x1, . . . , xn)|xi ∈ A, µ ∈ B⊥} ⊆ F [Sn]. Note
that

uµ(xπ1, . . . , xπn) = uµ(x1, . . . , xn)π,

so that UB is a right ideal of F [Sn].
Let δπ : F [Sn]→F denote the map returning the coefficient of the

element π ∈ Sn.

Remark 2.1. f ∈ F [Sn] is a B-identity of A iff δ1(fu) = 0 for every
u ∈ UB.

Proof. Let f =
∑

σ∈Sn
fσσ. Compute that

f · uµ(x1, . . . , xn) =
∑
π∈Sn

(∑
σ∈Sn

fπσµ(xσ1 . . . xσn)

)
π.

Now, by definition f is a B-identity iff
∑

σ fσxσ1 . . . xσn ∈ B for every
x1, . . . , xn, which is the case iff for every functional µ : A→F such that
µ(B) = 0, we have that δ1(fu) = µ(

∑
σ fσxσ1 . . . xσn) = 0. ¤

Proposition 2.2. The set IB of B-identities is the left annihilator of
UB.

Proof. Let f ∈ F [Sn]. If fUB = 0 then f is a B-identity by the last
remark. On the other hand, suppose f ∈ IB is a B-identity, and let
u ∈ UB. Since IB is a left ideal, we have that δπ(fu) = δ1(π

−1f ·u) = 0
for every π ∈ Sn, and fu = 0. ¤

For the rest of this section we set B = 0, so that I = I0 is the left
ideal of identities.

Let {ρ} be the irreducible representations of Sn. Writing F [Sn] =
⊕ρMdimρ(F ), we can decompose the left ideal I as a sum of left ideals
of matrices, where every ρ-component is a row space in the respective
matrices, the left annihilator of the ρ-component of U .

Example 2.3. The standard identity sn =
∑

σ∈Sn
sgn(σ)σ generates

an ideal of dimension 1 in F [Sn]. It covers the component of the sign
representation, but is zero in any other representation.
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Note that every other identity generates a left ideal of dimension at
least n− 1 (since the trivial representation corresponds to

∑
σ which

is not an identity in characteristic 0). In this sense sn is the weakest
among all identities of degree n.

We recall some basic facts regarding the Grassmann algebra. If V
is an infinite dimensional vector space, T (V ) = F + V + V ⊗2 + . . .
denotes the tensor algebra of V . The Grassmann algebra of V is G =
T (V )/〈v⊗v|v ∈ V 〉. Note that every v1, v2 ∈ V anti-commute, so that
every monomial of even length is central. It is then easy to check that
every commutator is in the center, so that G satisfies [x, [y, z]] = 0 and
is PI. On the other hand it is known [7] that every identity of G is a
consequence of this identity.

Example 2.4. Consider the identity w = [x1, [x2, x3]] = x1x2x3 −
x1x3x2 − x2x3x1 + x3x2x1 of the Grassmann algebra G. The above
described correspondence between monomials and permutations, sends
w 7→ (1)− (23)− (123) + (13) ∈ F [S3].

Letting 1, sgn denote the trivial and the sign representations of F [S3],
it is easy to compute that 1(w) = sgn(w) = 0. The standard representa-
tion of S3 is given by the action on a basis {e1, e2, e3} by indices. Let φ
denote the irreducible representation of dimension 2 defined by the ac-

tion on span {e1 − e2, e2 − e3}. Computing, we get φ(w) =

(
0 0
−3 3

)
;

the left ideal generated by w is thus seen to have dimension 2.

3. Computation of Ideals of Identities

The basic strategy in finding the ideal I of identities of degree n of
a given algebra is simple: write down the ideal U , and compute its
left annihilator I. In order to prevent working with large subspaces of
the n!-dimensional space F [Sn], we decompose this algebra to its irre-
ducible components, corresponding to the irreducible representations
of Sn.

Computing with representations of Sn seems like a straightforward
task, but it becomes very quickly impractical, even using a computer.

We now describe the method used to compute the identities of degree
8 for M2(G). Slight changes are needed when working with other matrix
algebras, or when computing ideals of B-identities for B 6= 0.

The computation of ideals of identities for matrices over G is based
on the following observation.
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Remark 3.1. Let V = span {v1, . . . , vn, . . . } be a generating linear
space for the Grassmann algebra G. Let

f(X1, . . . , Xn) =
∑
σ∈Sn

ασXσ(1) . . . Xσ(n)

be a multilinear expression over the base field. Then f is an identity
of the matrix algebra Ms(G) iff, for every choice of matrix units eai,bi

and either v∗i = vi or v∗i = 1, the substitution Xi 7→ eai,bi
v∗i in f gives

zero.

Proof. The algebra Ms(G) is linearly spanned by elements of the form
ea,bw, where w is a monomial on the basis elements {vj}. Thus, in order
to check if f is an identity, it is enough to substitute elements of this
form. Then, f(X1, . . . , Xn) is a matrix over the base field, multiplied
by a monomial on {vj}. However, since every product vjvj′ is central,
the coefficient is not changed if we omit such products from the Xi, so
that we may assume Xi is either a matrix unit, or a matrix unit times a
basis element. Finally, reordering {vj}, we may assume Xi 7→ eai,bi

v∗i ,
as asserted. ¤

We are now ready to find the identities of M2(G).

Step 1. Prepare a list of all the directed graphs of n edges on 2
vertices, which have at least one Hamiltonian path (the graphs are
listed up to isomorphism with respect to the starting and ending point
of the pathes). An edge from i to j corresponds to a matrix unit eij,
so the Hamiltonian paths correspond to non-zero products of matrix
units. It speed things up if we sort the graphs so that those with
smaller number of paths come first. This correspondence of pathes in
graphs and products of matrix units was first exploited by R. Swan is
his graph-theoretic proof of Amitsur-Levitzki theorem [14].

Step 2. For every graph, consider the substitution Xi 7→ erisi
v∗i

where er1s1 . . . ernsn corresponds to a Hamiltonian path in the graph,
r1 is the starting point and sn the ending point. We compute the set
Z ⊆ Sn of all σ ∈ Sn such that eσs1,σr1 . . . eσsn,σrn = es1,rn .

We now go over all the subsets J ⊆ {1, . . . , n}, and take v∗i = 1 if i ∈
J , and v∗i = vi otherwise. For every σ ∈ Z, we reorder every monomial

v∗σ1 . . . v∗σn to the form c
(J)
σ · v∗1 . . . v∗n, with c

(J)
σ = ±1. The resulting

elements u(J) =
∑

σ∈Z c
(J)
σ σ are in U . By Remark 3.1, these elements

generate the ideal U . The u(J) have only |Z| non-zero coefficients, so
if this is a small number, it may happens that u(J) = u(J ′) for some
J 6= J ′, and for efficiency we keep only one occurence of each element.
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Step 3. For every representation ρ, compute the values ρ(u(J)).

Note that ρ(u(J)) = ρ(
∑

σ∈Z c
(J)
σ σ) =

∑
σ∈Z c

(J)
σ ρ(σ), so it is enough to

compute ρ(σ) only once for every σ ∈ Z. Then we add them according
to the different signs (at most) 2n times, and get ρ(u(J)) for every J .

Step 4. Compute the column space generated by all the matrices
ρ(u(J)), together with those from previous graphs. If, at some point,
the column space becomes the whole representation space, we don’t
need to check more graphs for this representation. Otherwise, go back
to step 2.

Step 5. Finally, after ρ(U) was computed for every ρ, we compute
its left annihilator which is ρ(I) by Proposition 2.2. An element f ∈ I is
determined by the images ρ(f). Thus, if an orthogonal representation
was used in the computations, we can recapture the coefficients of an
explicit identity f =

∑
σ ασσ ∈ I by

ασ =
1

|Sn|
∑

ρ

dim(ρ) · tr(ρ(f)ρ(σ−1)).

4. Multilinear Identities of M2(G)

The method described in the previous section was used to compute
the ideal of identities of degree n = 8 for the algebra A = M2(G).

Computing ρ(U) for every irreducible representations ρ of S7, we
were able to check the following.

Proposition 4.1. The PI-degree of M2(G) is at least 8.

It is interesting to note that one graph was enough to show that ρ(U)
is the whole representation space for all representations:

•664422 // • vvttrr

This graph has only 36 Hamiltonian paths (this is the minimum for
graphs with 7 edges on 2 vertices), so the representations were com-
puted for relatively few elements.

Even more is true: there is no multilinear polynomials of degree 7
such that always tr(f(X1, . . . , X7)) = 0, or such that f(X1, . . . , X7) is
always central.

In degree 8 we had to go through all the 37 different graphs. Con-
veniently, it was later found that here too one graph holds all the
information:

•33 ((## • vvttrr
hhcc

The ideal generated by substitutions in this graph contains the ideals of
all the other graphs. There are several other graphs with this property,
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but the one we choose has only 288 Hamiltonian paths, and is the most
efficient (there are four graphs with 144 Hamiltonian paths, but their
ideals are too small).

The ideal I of 8-degree multilinear identities of M2(G) has rank 18
(and dimension 880). Out of the 22 irreducible representations of S8,
there are 7 on which this ideal vanishes. It has rank 1 on 12 rep-
resentations (corresponding to the partitions 8 ` (2, 2, 1, 1, 1, 1), 8 `
(2, 2, 2, 1, 1), 8 ` (3, 1, 1, 1, 1, 1), 8 ` (3, 2, 1, 1, 1), 8 ` (3, 2, 2, 1), 8 `
(4, 1, 1, 1, 1), 8 ` (4, 3, 1), 8 ` (5, 1, 1, 1), 8 ` (5, 2, 1), 8 ` (5, 3), 8 `
(6, 1, 1) and 8 ` (6, 2)) and rank 2 on the remaining three ones (8 `
(3, 3, 1, 1), 8 ` (4, 2, 1, 1) and 8 ` (4, 2, 2)).

Each of these components was explicitly computed as a left ideal of
the respective matrix algebra. Even if one believes that every compo-
nent is generated by easy-to-describe identities (whatever that means),
a random element of the ideal is a random sum of permuted versions
of the generators, which can look very peculiar. Out of the 15 non-zero
components of I we got lucky in four cases (all of rank 1), for which
we present explicit identities.

To this end we need some notation. A pattern is a finite sequence
of the letters A,B. If π is a pattern with a appearances of A and
b of B, we denote by π(x1, . . . , xa; y1, . . . , yb) the product of variables
where the x’s and y’s are combined according to π. For example,
ABBA(x1, x2; y1, y2) = x1y1y2x2. A coefficient in front of a pattern π
means the monomial should be multiplied by that coefficient. Now let

P+
π =

∑
σ∈Sa,τ∈Sb

sgn(σ)π(xσ1, . . . xσa; yτ1, . . . , yτb),

(this is sometimes called a Capelli-type polynomial), and

P−
π =

∑
σ∈Sa,τ∈Sb

sgn(σ)sgn(τ)π(xσ1, . . . xσa; yτ1, . . . , yτb).

Let

P1 =

{
+AAAABAAB, +AABBAAAA, −AABAAAAB,
−AAAABBAA, −BAABAAAA, +BAAAABAA

}
.

The component of I in the representation 8 ` (2, 2, 1, 1, 1, 1) con-
tains (and is thus generated by)

∑
π∈P1

P−
π (x1, . . . , x6; y1, y2). Similarly,

the component of I in the representation 8 ` (3, 1, 1, 1, 1, 1) contains∑
π∈P1

P+
π (x1, . . . , x6; y1, y2). Note that in the sum

T1(x1, . . . , x6; y1, y2) =
∑
π∈P1

(P−
π + P+

π ),
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only the monomials with y1 preceding y2 appear; on the other hand
T1(. . . ; y1, y2)± T1(. . . ; y2, y1) gives back the original two identities.

The same phenomenon happens for another couple of representa-
tions. Let

P2 =





−AAABAABB, −AABBAABA, +ABBAABAA,
+AAABBAAB, +AABAABBA, −ABAABBAA,
−ABBAAAAB, +BAABBAAA, −BAAAABBA,
+ABAAAABB, −BBAABAAA, +BBAAAABA





.

The component in 8 ` (2, 2, 2, 1, 1) contains
∑

π∈P2
P−

π (x1, . . . , x5; y1, y2, y3),
and the component in 8 ` (4, 1, 1, 1, 1) contains

∑
π∈P2

P+
π (x1, . . . , x5; y1, y2, y3).

Again

T2(x1, . . . , x5; y1, y2, y3) =
∑
π∈P2

(P−
π + P+

π )

has only the monomials in which the order of y1, y2, y3 is even, and
T2(. . . ; y1, y2, y3)± T2(. . . ; y3, y2, y1) gives the original identities.

Corollary 4.2. T1, T2 are multilinear identities of degree 8 of M2(G).
In particular PIdegM2(G) = 8.

Let B = {a ∈ M2(G) : tr(a) = 0} and C = Cent(M2(G)). The ideals
of B-identities and C-identities of degree 8 of M2(G) were computed,
and found to be identical to the ideal of identities.

Corollary 4.3. Let f be a multilinear polynomial of degree 8. If

trf(x1, . . . , x8) = 0

for every x1, . . . , x8 ∈ M2(G), then f is an identity of M2(G).

Corollary 4.4. Every central identity of degree 8 of M2(G) is an iden-
tity.

Finally, from the general result on the PI-degree of matrix algebras
in [1], we get the following:

Corollary 4.5. If n is even, then PIdegMn(G) ≥ 4n.

5. Remarks on M3(F ) and M2,1(G)

The algebra M3(F ) of matrices over a field is known to satisfy the
standard identity s6. In degree 7 the consequences are identities of the
forms x1s6(x2, . . . , x7), s6(x1, . . . , x6)x7 and s6(x1x2, x3, . . . , x7). The
dimension of the generated ideal is 72 − 1 = 48 (see, e.g., [8]). We
directly computed the identities going over all representations of S7,
and got the same dimension.
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The same computation was done for n = 8. Let LI denote the ho-
mogeneous part of degree 8 of the T -ideal generated by s6. As a left
ideal of V8, it is generated by the following elements: x1x2s6(x3, . . . , x8),
x1s6(x2x3, x4, . . . , x8), x1s6(x2, . . . , x7)x8, s6(x1x2, x3 . . . , x7)x8, s6(x1, . . . , x6)x7x8,
s6(x1x2, x3x4, x5, . . . , x8) and s6(x1x2x3, x4, . . . , x8). The dimension of
LI was directly computed, and found to be 1469. On the other hand
we computed the left ideal of identities of M3(F ), and got precisely the
same dimension. We conclude the following:

Theorem 5.1. Any multilinear identity f of M3(F ) which does not
follow from s6, has degree ≥ 9.

Similar methods were used to study central identities of degree 8
for M3(F ). Recall that LI is the left ideal of identities. An explicit
central identity (which is not an identity) was found by Drensky and
Kasparian [3]; let LDK denote the left ideal of F [S8] generated by this
element. LI + LDK are the central identities currently known.

Let LC denote the left ideal of central identities of degree n = 8 of
M3(F ), so that obviously LI + LDK ⊆ LC.

For every irreducible representation ρ, the table below gives the rank
of each of these ideals in the corresponding component of F [S8] (the
representations for which ρ(LC) = 0 were omitted).

Young diagram dim(ρ) ρ(LDK) ρ(LI) ρ(LDK + LI) ρ(LC)
(1, 1, 1, 1, 1, 1, 1, 1) 1 1 1 1 1
(2, 1, 1, 1, 1, 1, 1) 7 1 5 5 5
(2, 2, 1, 1, 1, 1) 20 2 8 8 8
(2, 2, 2, 1, 1) 28 1 4 4 4
(2, 2, 2, 2) 14 1 0 1 1
(3, 1, 1, 1, 1, 1) 21 0 9 9 9
(3, 2, 1, 1, 1) 64 1 8 8 8
(3, 2, 2, 1) 70 0 2 2 3
(3, 3, 1, 1) 56 1 0 1 2
(4, 1, 1, 1, 1) 35 0 4 4 4
(4, 2, 1, 1) 90 0 2 2 2
Total rank 8 43 45 47
Total dimension 8! 210 1469 1539 1665

It follows that LI + LDK ⊂ LC, so we conclude the following.

Corollary 5.2. There exist central identities of degree 8 of M3(F )
which are not a consequence of the Drensky-Kasparian central identity.

It was also checked that the superalgebra M2,1(G) has no identites
of degree 8, that is
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Proposition 5.3. PIdegM2,1(G) ≥ 9.

This may be contrasted with [12], where it was proved that Mk,` has
(super)trace-identities of degree k` + k + `.

6. Zero Trace Matrices in M2(G)

For an algebra A and a multilinear polynomial f(X1, . . . , Xn), we de-
note by f(A) the vector space spanned by all the substitutions f(x1, . . . , xn),
xi ∈ A. This is a useful tool in finding identities of A, as it may happen
that certain verbal subspaces have smaller PI-degree than that of A.
If A1, . . . , An ⊆ A, f(A1, . . . , An) is the vector space spanned by the
substitutions f(x1, . . . , xn) for xi ∈ Ai.

Denote by sn the standard polynomial sn =
∑

σ∈Sn
sgn(σ)Xσ1 . . . Xσn,

and similarly an =
∑

σ∈Sn
Xσ1 . . . Xσn. Note that a2 = X1X2 + X2X1

is the multilinarization of f(X) = X2. The composition f ◦ g denotes
substitution of deg(f) distinct instances of g in f .

Let G = G0 + G1 be the decomposition of G into the even and odd
parts, respectively. G+

0 denotes the positive part of G0. Let

S =

(
0 G
G 0

)
, T = G

(
1 0
0 −1

)
,

and let B = S+T denote the subspace of zero-trace matrices in M2(G).
Let G+

0 = G(2) + G(4) + . . . be the decomposition into homogeneous
spaces, and G++

0 = G(4) + . . . . It is easy to check that s2(G) = G+
0

and that a2(G) = G. Direct computation shows that a2(S, S) =(
s2(G) 0

0 s2(G)

)
+a2(G) ·

(
1 0
0 1

)
=

(
G+

0 0
0 G+

0

)
+G ·

(
1 0
0 1

)
,

a2(S, T ) =

(
0 s2(G)

s2(G) 0

)
=

(
0 G+

0

G+
0 0

)
, and a2(T, T ) = a2(G) ·

(
1 0
0 1

)
= G ·

(
1 0
0 1

)
. Summing up, it follows that a2(B) =

M2(G
+
0 ) + G

(
1 0
0 1

)
. In a similar way one can check that (s2 ◦

a2)(B) = M2(G
++
0 ) + G(2) ·

(
1 0
0 1

)
⊆ M2(G

+
0 ) consists of matrices

over the commutative ring G+
0 .

Corollary 6.1. B satisfies the multilinear identity s4 ◦s2 ◦a2 of degree
16.
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