GENERATORS OF CENTRAL SIMPLE p-ALGEBRAS OF DEGREE 3

UZI VISHNE

Abstract

We discuss standard pairs of generators of cyclic division p-algebras of degree p, and prove for $p=3$ that any two Artin-Schreier elements are connected by a chain of standard pairs. This result has immediate applications to the presentations of such algebras.

Accepted to Israel Journal of Math., 6/2001.

1. Introduction

Let Q be a quaternion algebra over a field F. It is well known (for example, see [2, Lemma 6.3]), that if $Q=(a, b)=\left(a^{\prime}, b^{\prime}\right)$ are two presentations of Q, then there is some $c \in F$ such that

$$
(a, b)=(a, c)=\left(a^{\prime}, c\right)=\left(a^{\prime}, b^{\prime}\right) .
$$

Recently, a similar result for cyclic division algebras of degree 3 was proved by M. Rost [6]. If $A=(a, b)_{3}=\left(a^{\prime}, b^{\prime}\right)_{3}$ are two presentations of A (where the base field contains 3-roots of unity), then there exist elements c, d, e in the base field, such that

$$
(a, b)_{3} \cong(a, c)_{3} \cong(d, c)_{3} \cong(d, e)_{3} \cong\left(a^{\prime}, e\right)_{3} \cong\left(a^{\prime}, b^{\prime}\right)_{3} .
$$

Chains of this form were also studied, in a more general context, in [4].
If the degree of a central simple algebra is a power of the characteristic p of the base field, it is called a p-algebra. Standard generators of cyclic p-algebras of degree p were studied in the author's dissertation [8, Chap. 1, Sec. 4]. Theorem 4.16 there is, in a sense, a chain lemma for arbitrary p, but it requires tensoring by matrices.

In Section 2 we describe the basic properties of standard pairs of generators and related definitions are given. We discuss the notion of distance between Artin-Schreier elements, and state the main result, Theorem 2.6, and the applications to presentations of cyclic p-algebras.

[^0]We study short chains of pairs for $p=3$ in Section 3, and this is applied in Section 4 to prove Theorem 2.6. Some large subgraphs of the graph of standard pairs of generators are given in Section 5 .

I am indebted to Prof. J.-P. Tignol for pointing out references [4] and [6] and for his kind hospitality during my stay at UCL.

2. Standard Generators of cyclic p-algebras of degree p

Let F be a field of characteristic p, and A a central simple cyclic algebra of degree p over F (that is, $\operatorname{dim}_{F} A=p^{2}$). By Wedderburn's structure theorem, A is either a division algebra, or the algebra of $p \times p$ matrices over F. The basic structure theory of p-algebras is given in [1], cf. also [5].

It is known that A can be given the following presentation, where $a, b \in F, b \neq 0$:

$$
A=F\left[x, y \mid \quad x^{p}-x=a, \quad y^{p}=b, \quad y x y^{-1}=x+1\right] .
$$

We call such x, y a standard pair of generators. Let

$$
\begin{array}{lll}
\mathrm{X}_{A}=\{x \in A: & x^{p}-x \in F, & [F[x]: F]=p\}, \\
\mathrm{Y}_{A}=\{y \in A: & y^{p} \in F^{*}, & [F[y]: F]=p\}
\end{array}
$$

be the possible components of a standard pair of generators. The elements of X_{A} are called Artin-Schreier elements of A; every cyclic subfield of A contains such an element.

Remark 2.1. If $x, y \in A$ satisfy $y x y^{-1}=x+1$, then x, y form a standard pair of generators, that is, $A=F[x, y], x^{p}-x=a$ and $y^{p}=b$ for some $a, b \in F$.
Proof. We first show that x, y generate A. Indeed, $F[x]$ is a separable extension of dimension p over F (with an automorphism $x \mapsto x+1$ induced by y). Note that $\left[y^{i}, x\right]=y^{i} x-x y^{i}=i y^{i}$. Now suppose $f_{0}+f_{1} y+\cdots+f_{p-1} y^{p-1}=0$ for $f_{i} \in F[x]$. Applying the derivation by x, we get $0=f_{1} y+2 f_{2} y^{2}+\cdots+(p-1) f_{p-1} y^{p-1}$. Repeating this, we get $0=f_{1} y+2^{j} f_{2} y^{2}+\cdots+(p-1)^{j} f_{p-1} y^{p-1}$ for every $j=1, \ldots, p-1$. Since the Vandermonde matrix of $0, \ldots, p-1$ is invertible, we get that $f_{i} y^{i}=0$; but y is invertible, so that $f_{i}=0$. It follows that $\sum F[x] y^{i}$ has dimension p^{2} over F, and is thus equal to A.

Now, from the asssumption it readily follows that $a=x^{p}-x$ and $b=y^{p}$ commute with x, y and are thus central, so x, y form a standard pair of generators.

Now let

$$
\mathrm{XY}_{A}=\left\{(x, y) \in \mathrm{X}_{A} \times \mathrm{Y}_{A}: \quad y x y^{-1}=x+1\right\}
$$

XY_{A} may by viewed as a bipartite graph, where the vertices are the elements of X_{A} and Y_{A}, and there is an edge between x and y iff $(x, y) \in \mathrm{XY}_{A}$. For an element to be in X_{A} or in Y_{A} depends on the characteristic polynomial, so we have $p-1$ (non linear) equations for each set. It follows that X_{A} and Y_{A} are $\left(p^{2}-p+1\right)$-dimensional varieties over F, and $\mathrm{XY}_{A} \subseteq \mathrm{X}_{A} \times \mathrm{Y}_{A}$ is a ($p^{2}+1$)-dimensional subvariety (as seen from Remark 2.3). In a sense, we study the geometry of XY_{A}.

Note that there are no isolated points on the graph:
Remark 2.2. (i) For every $x \in \mathrm{X}_{A}$ there is some $y \in A$ such that $(x, y) \in \mathrm{XY}_{A}$.
(ii) Likewise for every $y \in \mathrm{Y}_{A}$, there is some $x \in A$ such that $(x, y) \in \mathrm{XY}_{A}$.
Proof. (i) It is easy to see that $F[x]$ is either a subfield of dimension p of A, or isomorphic to the split ring $F^{\times p}=F \times \cdots \times F$. In both cases the automorphism induced by $x \mapsto x+1$ is inner (Skolem-Noether theorem, or the generalization to maximal separable commutative subalgebras in [3]), say induced by y. Then $F[x, y]=A$ be Remark 2.1.
(ii) This is [1, Theorem IV.17].

Two elements z, z^{\prime} of $\mathrm{X}_{A} \cup \mathrm{Y}_{A}$ are said to be at distance $t / 2$ if there is a chain of elements $z=z_{0}, z_{1}, \ldots, z_{t}=z^{\prime} \in \mathrm{X}_{A} \cup \mathrm{Y}_{A}$ such that for every $i=1, \ldots, t$, the couple z_{i-1}, z_{i} is a standard pair of generators. We take half of the usual distance in the graph XY_{A}, since we are sometimes more interested in the induced patterns on X_{A} or Y_{A}. We denote this situation by saying that $z \longleftrightarrow z_{1} \longleftrightarrow \ldots \longleftrightarrow z_{t-1} \longleftrightarrow z^{\prime}$ is a chain, where necessarily elements of X_{A} and Y_{A} interchange. We write X_{A} and Y_{A} in appropriate places in the chain to state existence of appropriate elements. For example, elements $x, x^{\prime} \in \mathrm{X}_{A}$ are at distance 2 iff there is a chain $x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow x^{\prime}$.

Let (x, y) be a standard pair of generators. The close neighborhood of x, y is described in the following remark.

Remark 2.3. (i) The elements forming a standard pair of generators with x are of the form λy, where $\lambda \in F[x]^{*}$.
(ii) The elements forming a standard pair of generators with y are of the form $\mu+x$, where $\mu \in F[y]$.
Proof. (i) $y_{1} x y_{1}^{-1}=x+1$ iff $y_{1} y^{-1} \in C_{A}(F[x])=F[x]$, and $y_{1} y^{-1}$ is invertible since y, y_{1} are.
(ii) $y x_{1} y^{-1}=x_{1}+1$ iff $x_{1}-x \in C_{A}(F[y])=F[y]$.

In particular, if $x \in \mathrm{X}_{A}$, then $x+\alpha \in \mathrm{X}_{A}$ for every $\alpha \in F$, and likewise for $y \in \mathrm{Y}_{A}, \beta y \in Y$ for every $\beta \in F^{*}$. We have

Remark 2.4. The actions of F^{+}and F^{*} on $\mathrm{X}_{A}, \mathrm{Y}_{A}$, respectively, define equivalence relations.

In particular, if x, y are a standard pair of generators, $x^{\prime} \equiv x$, and $y^{\prime} \equiv y$, then x^{\prime}, y^{\prime} are also a standard pair of generators.

The next proposition shows that there is essentially only one path connecting every two elements at distance 1 .

Proposition 2.5. Let $x, x^{\prime} \in \mathrm{X}_{A}$ and $y, y^{\prime} \in \mathrm{Y}_{A}$. If $(x, y),\left(x, y^{\prime}\right),\left(x^{\prime}, y\right)$ and $\left(x^{\prime}, y^{\prime}\right)$ are all standard pairs of generators, then $x^{\prime} \equiv x$ or $y^{\prime} \equiv y$.

Proof. By Remark 2.3, $\mu=x^{\prime}-x \in F[y] \cap F\left[y^{\prime}\right]$, and $\lambda=y^{\prime} y^{-1} \in F[x]$. Now $\lambda \mu \lambda^{-1}=\mu$, so that λ and μ commute. If A is a division ring, then we are done (as μ commutes with y, λ, so either $\mu \in F$ or $\lambda \in F$), but for the general case, write $\lambda=\sum \alpha_{i} x^{i}$ and $\mu=\sum \beta_{j} y^{j}$. Then compute $0=[\mu, \lambda]=\sum \alpha_{i} \beta_{j}\left((x+j)^{i}-x^{i}\right) y^{j}$, and compare the upper monomials with respect to y and x. We get a contradiction unless λ or μ are central.

The main result of this paper is the following
Theorem 2.6. Let F be a field of characteristic $p=3$, and let A be a (cyclic) division algebra of degree p over F.

Then every two elements $x, z \in \mathrm{X}_{A}$ are at distance at most 3 .
The proof is given in Section 4. This theorem can be reformulated in terms of presentations of algebras. Recall that for $a, b \in F,[a, b)_{p}$ denotes the p-algebra

$$
[a, b)_{p}=F\left[x, y \mid \quad x^{p}-x=a, \quad y^{p}=b, \quad y x y^{-1}=x+1\right] .
$$

Corollary 2.7. Suppose $[a, b)_{3} \cong\left[a^{\prime}, b^{\prime}\right)_{3}$ are two presentations of the same division algebra. Then there exist $a_{1}, a_{2} \in F$ and $b_{1}, b_{2}, b_{3} \in F^{*}$, such that

$$
[a, b) \cong\left[a, b_{1}\right) \cong\left[a_{1}, b_{1}\right) \cong\left[a_{1}, b_{2}\right) \cong\left[a_{2}, b_{2}\right) \cong\left[a_{2}, b_{3}\right) \cong\left[a^{\prime}, b_{3}\right) \cong\left[a^{\prime}, b^{\prime}\right) .
$$

One remark is in order concerning the split case. If $[a, b)_{p} \cong\left[a^{\prime}, b^{\prime}\right)_{p}$ are two presentations of $M_{p}(F)$, then

$$
[a, b) \cong[0, b) \cong\left[0, b^{\prime}\right) \cong\left[a^{\prime}, b^{\prime}\right),
$$

so for a split algebra Corollary 2.7 holds, in a stronger form and for arbitrary p.

3. Elements at distance $1 \frac{1}{2}$

Let A be a cyclic division p-algebra of degree p over F, where from now on we assume $p=\operatorname{char} F=3$.

Fix a standard pair of generators $x, y \in A$, and set $\gamma=y^{3} \in F$. In this section we classify the elements $u \in \mathrm{Y}_{A}$ which are at distance $1 \frac{1}{2}$ from x, that is, elements for which there exists a chain

$$
y \longleftrightarrow x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow u
$$

We denote by Tr the reduced trace map of A, and by tr the trace map of the extension $F[x] / F$. The action of y by conjugation on $F[x]$ is denoted by σ, and the notation $\mathrm{N}(\lambda)$ is preserved for the norm of elements in $F[x]$. Since $A=F[x, y]=\sum F[x] y^{j}$, we can write every $u \in A$ in the form $u=\lambda_{0}+\lambda_{1} y+\lambda_{2} y^{2}$ for unique $\lambda_{0}, \lambda_{1}, \lambda_{2} \in F[x]$. Set $\eta=\lambda_{1} \cdot \sigma \lambda_{2}$.

Remark 3.1. Assuming $u \notin F$, we have that $u \in \mathrm{Y}_{A}$ iff $\operatorname{Tr}(u)=$ $\operatorname{Tr}\left(u^{2}\right)=0$. As $\operatorname{Tr}(\lambda y)=\operatorname{Tr}\left(\lambda y^{2}\right)=0$ for every $\lambda \in F[x]$, a simple computation yields the following equivalent conditions:

$$
\begin{align*}
\operatorname{tr}\left(\lambda_{0}\right) & =0 \tag{1}\\
\gamma \operatorname{tr}(\eta) & =\operatorname{tr}\left(\lambda_{0}^{2}\right) \tag{2}
\end{align*}
$$

Under these assumptions, one can compute that $u^{3}=\mathrm{N}\left(\lambda_{0}\right)+$ $\gamma \mathrm{N}\left(\lambda_{1}\right)+\gamma^{2} \mathrm{~N}\left(\lambda_{2}\right)$.
Lemma 3.2. The element u is at distance $1 \frac{1}{2}$ from x if and only if the following equations have a solution with $f_{1}, f_{2} \in F, \lambda \in F[x]^{*}$:

$$
\begin{align*}
f_{1} \gamma\left(\lambda \cdot \sigma \lambda_{2}-\sigma^{2} \lambda \cdot \lambda_{2}\right)+f_{2} \gamma \cdot \sigma \lambda \cdot\left(\lambda \cdot \sigma^{2} \lambda_{1}-\sigma^{2} \lambda \cdot \lambda_{1}\right) & =-\lambda_{0} \tag{3}\\
f_{1}\left(\sigma \lambda_{0}-\lambda_{0}\right)+f_{2} \gamma\left(\sigma \lambda \cdot \sigma^{2} \lambda_{2}-\sigma^{2} \lambda \cdot \lambda_{2}\right) & =0 \tag{4}\\
f_{1}\left(\lambda \cdot \sigma \lambda_{1}-\sigma \lambda \cdot \lambda_{1}\right)+f_{2} \cdot \lambda \cdot \sigma \lambda \cdot\left(\sigma^{2} \lambda_{0}-\lambda_{0}\right) & =\lambda_{2} \tag{5}
\end{align*}
$$

Proof. The elements x, u are at distance $1 \frac{1}{2}$ iff there are some $y^{\prime} \in \mathrm{Y}_{A}$ and $x^{\prime} \in \mathrm{X}_{A}$ such that $x \longleftrightarrow y^{\prime} \longleftrightarrow x^{\prime} \longleftrightarrow u$ form a chain. By Lemma 2.3, we can write $y^{\prime}=\lambda y$ for some $\lambda \in F[x]$, and then $x^{\prime}-x \in F[\lambda y]$. Thus $x^{\prime}=x+f_{0}+f_{1} \lambda y+f_{2}(\lambda y)^{2}$ for some $f_{0}, f_{1}, f_{2} \in F$, and by Remark 2.4 we may take $f_{0}=0$. The only remaining condition is that $u x^{\prime}-x^{\prime} u=u$, and comparing coefficients of y in both sides, we get Equations (3)-(5).

Let $K=F[x]$ be a cyclic extension of dimension 3 of F, as before. The following facts are easily checked.
Remark 3.3. (i) For every $\alpha_{0}, \alpha_{1}, \alpha_{2} \in F$, we have that $\operatorname{tr}_{K / F}\left(\alpha_{0}+\right.$ $\left.\alpha_{1} x+\alpha_{2} x^{2}\right)=-\alpha_{2}$.
(ii) For every $\phi \in K$, if $\operatorname{tr}_{\mathrm{K} / \mathrm{F}} \phi=\operatorname{tr}_{\mathrm{K} / \mathrm{F}} \phi^{2}=0$, then $\phi \in F$.
(iii) The map $(\sigma-1): K \rightarrow K$ defined by $(\sigma-1) a=\sigma(a)-a$ is onto the subspace $\left\{\phi \in K: \operatorname{tr}_{K / F} \phi=0\right\}$.
(iv) $\operatorname{tr}_{K / F} \phi=0$ iff $(\sigma-1) \phi \in F$.

Proof. (i) follows since the minimal polynomial of x is of the form $x^{3}-x-\theta=0$. (ii),(iii) follow trivially from (i), and (iv) follows since for every $\phi \in K$ we have that $(\sigma-1)^{2} \phi=\left(\sigma^{2}+\sigma+1\right) \phi$.

Proposition 3.4. Assume $u=\lambda_{0}+\lambda_{1} y+\lambda_{2} y^{2}$ as before, and $\lambda_{0} \in F$. Then u is at distance $1 \frac{1}{2}$ from x if and only if the following holds:
a. $\lambda_{2}=0$, or
b. $\lambda_{2} \neq 0, \lambda_{1} \neq 0$ and $\eta \notin F$, or
c. $\lambda_{2} \neq 0, \lambda_{1} \neq 0, \eta \in F$, and $\lambda_{0} \mathrm{~N}\left(\lambda_{1}\right)=\eta^{2} \gamma$.

These conditions may look a little less random in light of the following observation: assuming $\lambda_{0} \in F$, we have that $\eta \in F$ iff $F[u]=$ $F\left[\lambda_{1} y\right]$. If this is the case, then $u^{2} \in F+F\left(\lambda_{1} y\right)^{2}$ iff $\lambda_{0} \mathrm{~N}\left(\lambda_{1}\right)=\eta^{2} \gamma$.

Proof. Case 1: $\lambda_{2}=0$. We must have $\lambda_{1} \neq 0$, for otherwise $u=$ $\lambda_{0} \in F[x]$ would be separable. If $\lambda_{0}=0$, then by Remark 2.3.(i) we have the chain $y \longleftrightarrow x \longleftrightarrow y \longleftrightarrow x \longleftrightarrow \lambda_{1} y=u$. Otherwise, choose $f_{1}=0$. Substituting, we find that Equations (4) and (5) are satisfied, and Equation (3) becomes

$$
f_{2} \gamma\left(\sigma^{2}\left(\frac{\lambda_{1}}{\lambda}\right)-\frac{\lambda_{1}}{\lambda}\right) \cdot \mathrm{N}(\lambda)=-\lambda_{0},
$$

which can be solved by choosing $\lambda=x^{-1} \lambda_{1}$ and $f_{2}=\frac{\theta \lambda_{0}}{\gamma \mathrm{~N}\left(\lambda_{1}\right)}$, where $\theta=\mathrm{N}(x) \in F$. This results in the chain

$$
x \longleftrightarrow y^{\prime}=x^{-1} \lambda_{1} y \longleftrightarrow x+\lambda_{0} y^{\prime-1} \longleftrightarrow u .
$$

Case 2: $\lambda_{2} \neq 0$. If $\lambda_{1}=0$ then equation (5) has no solution. Thus we assume $\lambda_{1} \neq 0$. In particular, $\eta=\lambda_{1} \cdot \sigma \lambda_{2} \neq 0$.

Case 2.1: $\eta \notin F$. Choose $f_{2}=0$ and $f_{1}=1$. Then Equation (4) vanishes, and substituting $\lambda_{2}=\sigma^{2} \eta / \sigma^{2} \lambda_{1}$, Equations (3),(5) become

$$
\begin{aligned}
\eta \lambda / \lambda_{1}-\sigma^{2}\left(\eta \lambda / \lambda_{1}\right) & =-\lambda_{0} / \gamma \\
\lambda / \lambda_{1}-\sigma\left(\lambda / \lambda_{1}\right) & =\sigma^{2}(\eta) / \mathrm{N}\left(\lambda_{1}\right),
\end{aligned}
$$

which is solved by $\lambda=\frac{\lambda_{2} \cdot \sigma^{2}\left(\lambda_{2}\right)-\gamma^{-1} \lambda_{0} \lambda_{1}}{\sigma(\eta)-\eta}$. This satisfies $\lambda \neq 0$, for otherwise $\gamma \mathrm{N}\left(\lambda_{2}\right)=\lambda_{0} \eta$, contrary to the assumption $\eta \notin F$. Then we have the following chain: $x \longleftrightarrow \lambda y \longleftrightarrow x+\lambda y \longleftrightarrow u$.

Case 2.2: $\eta \in F$. We cannot have $f_{2} \neq 0$, for then Equation (4) will force $\lambda / \lambda_{1} \in F$, and from Equation (5) we then get $\eta=0$, contrary
to the assumption $\lambda_{2} \neq 0$. Thus we have $f_{2}=0$, and the equations become

$$
f_{1}\left(\sigma\left(\frac{\lambda}{\lambda_{1}}\right)-\frac{\lambda}{\lambda_{1}}\right)=\frac{-\lambda_{0}}{\gamma \eta}=\frac{-\sigma^{2}(\eta)}{\mathrm{N}\left(\lambda_{1}\right)},
$$

for which, by Remark 3.3.(iii), there is a solution λ iff $\lambda_{0} \mathrm{~N}\left(\lambda_{1}\right)=\gamma \eta^{2}$. Indeed we can take $f_{1}=1$ and $\lambda=-\lambda_{2} \sigma\left(\lambda_{1}\right)^{-1} x$, and the resulting chain is $x \longleftrightarrow \lambda y \longleftrightarrow x+\lambda y \longleftrightarrow u$

Corollary 3.5. Let $x \in \mathrm{X}_{A}$, then x and $-x$ are at distance at least 3 .
Proof. Choose y such that $(x, y) \in \mathrm{XY}_{A}$. We show that there is no chain $y \longleftrightarrow x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow u \longleftrightarrow-x \longleftrightarrow y^{2}$. Every appropriate u is, by Remark 2.3.(i), of the form $u=\lambda y^{2}$ for some $\lambda \in F[-x]=F[x]$, and then the completion is impossible by the last proposition.

Corollary 3.6. For every $y \in \mathrm{Y}_{A}$, the distance between y and y^{2} is at least 3.

Proof. Otherwise, there is a chain

$$
y \longleftrightarrow x^{\prime} \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow y^{2},
$$

but since $-x^{\prime}, y^{2}$ form a standard pair of generators, it follows that the distance between x^{\prime} and $-x^{\prime}$ is at most 2 , contrary to the former corollary.

For the rest of the section we no longer assume $\lambda_{0} \in F$. Let $b=$ $\sigma\left(\lambda_{0}\right)-\lambda_{0}$, then $b \in F$ by Equation (1) and Remark 3.3.(iv). Moreover, since $\operatorname{tr}\left(\lambda_{0}\right)=0$, we have that $\lambda_{0}=a+b x$ for $a \in F$.

Proposition 3.7. Let x, y form a standard pair of generators and $u=$ $\lambda_{0}+\lambda_{1} y+\lambda_{2} y^{2} \in \mathrm{Y}_{A}$ where $\lambda_{0}=a+b x$ and $\eta=\lambda_{1} \cdot \sigma \lambda_{2}$ as above. If $\lambda_{0} \notin F$ and $\gamma\left(\sigma^{2} \eta-\eta\right)=b \lambda_{0}$, then u is at distance $1 \frac{1}{2}$ from x.

Proof. Set $x^{\prime}=x-b^{-1} \lambda_{2} y^{2}$ and $y^{\prime}=\lambda_{2} \cdot \sigma^{2} \lambda_{2} \cdot y$. Then the first two pairs in the chain

$$
x \longleftrightarrow y^{\prime} \longleftrightarrow x^{\prime} \longleftrightarrow u
$$

follow from Remark 2.3. For the third pair, compute that $u x^{\prime}-x^{\prime} u=$ $\gamma b^{-1}\left(\sigma^{2} \eta-\eta\right)+\lambda_{1} y+\lambda_{2} y^{2}$, which equals u by the assumption.

Note that the assumption $\gamma\left(\sigma^{2} \eta-\eta\right)=b \lambda_{0}$ implies (but is not implied by) Equation (2).

The following remark is given as a counterpart for Proposition 3.4, and is not needed later.

Remark 3.8. Assume $u=\lambda_{0}+\lambda_{1} y+\lambda_{2} y^{2}$ as before, and $\lambda_{0} \notin F$. Then there exist homogeneous quadratic forms $\mathcal{Q}_{I}, \mathcal{Q}_{I I}$ in two variables over F, explicitly stated in the proof, such that u is at distance $1 \frac{1}{2}$ from x if and only there are $g, f_{1} \in F$ such that

$$
\begin{aligned}
\mathcal{Q}_{I}\left(g, f_{1}\right) & =0, \\
\mathcal{Q}_{I I}\left(g, f_{1}\right) & \neq 0
\end{aligned}
$$

Proof. Since $\lambda_{0} \notin F$, by Remark 3.3.(ii) we have that $\operatorname{tr} \lambda_{0}^{2} \neq 0$, so by Equation (2), $\eta \neq 0$ and thus also $\lambda_{1}, \lambda_{2} \neq 0$. Moreover, Equation (4) has no solution with $f_{2}=0$, so we may assume $f_{2} \neq 0$.

We write

$$
\begin{equation*}
\lambda=\frac{g+f_{1} \cdot \sigma^{2} \lambda_{0}}{f_{2} \gamma \cdot \sigma \lambda_{2}} \tag{6}
\end{equation*}
$$

for $g \in K$. Then Equation (4) is equivalent to $g \in F$, and we assume this is the case. Recall that by Lemma 3.2 we need to solve Equations (3)-(5) with $f_{1}, f_{2} \in F$ and $\lambda \in K$, so this now becomes solving Equations (3) and (5) with $f_{1}, f_{2}, g \in F, f_{2} \neq 0$. Write $\lambda_{0}=a+b x$ with $a, b \in F$. Note that from Equation (2) and Remark 3.3.(i), we get that $\gamma \operatorname{tr}(\eta)=\operatorname{tr}\left(\lambda_{0}^{2}\right)=-b^{2}$.

Denote by

$$
\begin{aligned}
\mathcal{Q}_{0}(s, t)=\left(\sigma^{2} \eta-\eta\right) s^{2} & +\left(\sigma^{2} \lambda_{0} \cdot \eta-\sigma \lambda_{0} \cdot \sigma^{2} \eta\right) s t \\
& +\left(\gamma b \mathrm{~N}\left(\lambda_{2}\right)+\lambda_{0}\left(\sigma^{2} \lambda_{0} \cdot \sigma^{2} \eta-\sigma \lambda_{0} \cdot \eta\right)\right) t^{2} \\
\mathcal{Q}_{2}(s, t)=-b s^{2} & +\left(\gamma(\sigma \eta-\eta)+b \cdot \sigma \lambda_{0}\right) s t \\
& +\left(\gamma\left(\sigma^{2} \lambda_{0} \cdot \sigma \eta-\lambda_{0} \eta\right)-b \lambda_{0} \cdot \sigma^{2} \lambda_{0}\right) t^{2}
\end{aligned}
$$

the two quadratic forms in s, t over K.
Substituting (6) in Equations (3),(5), multiplying by $f_{2} \gamma \mathrm{~N}\left(\lambda_{2}\right)$ in the first case and by $f_{2} \gamma^{2} \cdot \sigma \lambda_{2} \cdot \sigma^{2} \lambda_{2}$ in the second case, we get the following system of equations, in the variables $g, f_{1} \in F, f_{2} \in F^{*}$:

$$
\begin{align*}
& \mathcal{Q}_{0}\left(g, f_{1}\right)=-\lambda_{0} f_{2} \gamma \mathrm{~N}\left(\lambda_{2}\right) \tag{7}\\
& \mathcal{Q}_{2}\left(g, f_{1}\right)=f_{2} \gamma^{2} \mathrm{~N}\left(\lambda_{2}\right) \tag{8}
\end{align*}
$$

It can be checked that \mathcal{Q}_{2} is actually a quadratic form over F. \mathcal{Q}_{0}, however, is not defined over F (the coefficient $\sigma^{2} \eta-\eta \notin F$, for otherwise we would have $b^{2}=\gamma \operatorname{tr} \eta=0$ by Remark 3.3.(iv)).

Fortunately we have that $\operatorname{tr} \mathcal{Q}_{0}=0$, so by Remark 3.3.(i), the coefficients of \mathcal{Q}_{0} lay in the two dimensional F-space $F+F \lambda_{0} \subset K$. Write

$$
\mathcal{Q}_{0}=\mathcal{Q}_{I}+\lambda_{0} \mathcal{Q}_{I I}
$$

for the respective components. Then we can compute $\mathcal{Q}_{\text {II }}=\frac{1}{b}\left(\sigma\left(\mathcal{Q}_{0}\right)-\right.$ \mathcal{Q}_{0}) to be

$$
\begin{aligned}
\mathcal{Q}_{I I}(s, t)=-\operatorname{tr}(\eta) / b \cdot s^{2} & +\operatorname{tr}\left(\lambda_{0} \cdot \sigma \eta\right) / b \cdot s t \\
& -\operatorname{tr}\left(\lambda_{0} \cdot \eta \cdot \sigma \lambda_{0}\right) / b \cdot t^{2}
\end{aligned}
$$

and so $\mathcal{Q}_{I}=\mathcal{Q}_{0}-\lambda_{0} \mathcal{Q}_{I I}$ is

$$
\begin{aligned}
\mathcal{Q}_{I}(s, t)=\left(\sigma^{2} \eta-\eta-b \lambda_{0} / \gamma\right) s^{2} & +\left(\sigma^{2} \lambda_{0} \cdot \sigma^{2} \eta-\sigma \lambda_{0} \cdot \eta+b \lambda_{0}^{2} / \gamma\right) s t \\
& +\left(\gamma b \mathrm{~N}\left(\lambda_{2}\right)-b \mathrm{~N}\left(\lambda_{0}\right) / \gamma\right) t^{2} .
\end{aligned}
$$

It may not be so obvious, but one can check that \mathcal{Q}_{I} is indeed defined over F.

Using this decomposition, Equation (7) now becomes

$$
\begin{align*}
\mathcal{Q}_{I}\left(g, f_{1}\right) & =0 \tag{9}\\
\mathcal{Q}_{I I}\left(g, f_{1}\right) & =-f_{2} \gamma \mathrm{~N}\left(\lambda_{2}\right) \tag{10}
\end{align*}
$$

Again this is not immediate, but one can compute that $\mathcal{Q}_{2}=-\gamma \mathcal{Q}_{I I}$. Thus solving Equations (7),(8) is equivalent to solving Equations (9) and (10). Recall that we only assumed $f_{2} \neq 0$, so all we have to do is find a zero of \mathcal{Q}_{I} which is not a zero of $\mathcal{Q}_{I I}$, as claimed.

Example 3.9. Suppose $\gamma\left(\sigma^{2} \eta-\eta\right)=b \lambda_{0}$ as in Proposition 3.7. The coefficient $-\operatorname{tr}(\eta) / b=b / \gamma$ of s^{2} in the form $\mathcal{Q}_{I I}(s, t)$ is nonzero, so if we substitute $f_{1}=0$ and $g=1$ in $\mathcal{Q}_{I}, \mathcal{Q}_{I I}$ we get $\mathcal{Q}_{I}(1,0)=\sigma^{2} \eta-$ $\eta-b \lambda_{0} / \gamma=0$ and $\mathcal{Q}_{I I}(1,0)=-\operatorname{tr}(\eta) / b \neq 0$. By Remark 3.8, u is at distance $1 \frac{1}{2}$ from x, in accordance with the above mentioned proposition.

4. A Proof of Theorem 2.6

Let A be a division p-algebra of degree $p=3$. We are given two elements $x, z \in \mathrm{X}_{A}$, and wish to find a chain

$$
x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow z
$$

Choose (using Remark 2.2.(i)) elements y, u, such that x, y and z, u are standard pairs of generators. For x, y, u we use the notations of the previous section: σ is the action of conjugation by y on $F[x], \mathrm{N}(\lambda)$ is preserved for the norm of elements in $F[x], u=\lambda_{0}+\lambda_{1} y+\lambda_{2} y^{2}$ for $\lambda_{0}, \lambda_{1}, \lambda_{2} \in F[x]$, and $\eta=\lambda_{1} \cdot \sigma \lambda_{2}$. Also $b=\sigma \lambda_{0}-\lambda_{0}$, and $\lambda_{0}=a+b x$ for $a, b \in F$. Similarly, whenever we specify an element u^{\prime}, the same notation is used: $u^{\prime}=\lambda_{0}^{\prime}+\lambda_{1}^{\prime} y+\lambda_{2}^{\prime} y^{2}, \eta^{\prime}=\lambda_{1}^{\prime} \cdot \sigma \lambda_{2}^{\prime}$, and $\lambda_{0}^{\prime}=a^{\prime}+b^{\prime} x$.

Remark 4.1. For every $\alpha \in F$ we have that $u+\alpha$ is at distance $1 \frac{1}{2}$ from z.

Proof. Case 1 of Proposition 3.4 (with z, u in place of x, y and $u+\alpha$ in place of u) gives the chain

$$
u+\alpha \longleftrightarrow z+\alpha u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z \longleftrightarrow u
$$

Proof of Theorem 2.6. Case 1: $\lambda_{0} \in F$. Note that $\operatorname{tr}(\eta)=0$ by Equation (2). If $\lambda_{2}=0$, then we have the chain

$$
y \longleftrightarrow x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow u \longleftrightarrow z
$$

by Proposition 3.4. So we assume $\lambda_{2} \neq 0$.
Case 1.1: $\lambda_{1}=0$. Then $u=\lambda_{0}+\lambda_{2} y^{2}$. Set $\tilde{z}=-x-\frac{\lambda_{0} x}{\gamma \cdot \sigma \lambda_{2}} y$, and check that \tilde{z}, u form a standard pair of generators. Compute that $\tilde{z} u=\lambda_{0} x-\frac{\lambda_{0}^{2} x}{\gamma \cdot \sigma \lambda_{2}} y-x \lambda_{2} y^{2}$, and set $u^{\prime}=\tilde{z} u$. Then for u^{\prime} we have $b^{\prime}=$ $\sigma\left(\lambda_{0} x\right)-\lambda_{0} x=\lambda_{0}, a^{\prime}=\lambda_{0}^{\prime}-b^{\prime} x=0$, and $\eta^{\prime}=\lambda_{1}^{\prime} \cdot \sigma \lambda_{2}^{\prime}=\frac{1}{\gamma} \lambda_{0}^{2}\left(x+x^{2}\right)$.

Case 1.1.1: $\lambda_{0} \neq 0$ (so that $\left.\lambda_{0}^{\prime} \notin F\right)$. Compute that $\gamma\left(\sigma^{2} \eta^{\prime}-\eta^{\prime}\right)=$ $x \lambda_{0}^{2}=b^{\prime} \lambda_{0}^{\prime}$, so by Proposition 3.7, u^{\prime} is at distance $1 \frac{1}{2}$ from x, and we have the following chain:

$$
y \longleftrightarrow x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow u^{\prime} \longleftrightarrow \tilde{z} \longleftrightarrow u \longleftrightarrow z
$$

Case 1.1.2: $\lambda_{0}=0$. Then $u=\lambda_{2} y^{2}$ and thus $-x+u, u$ form a standard pair of generators. Choose $u^{\prime}=(-x+u) u=\left(\gamma \lambda_{2} \cdot \sigma^{2} \lambda_{2}\right) y-$ $\left(x \lambda_{2}\right) y^{2}$, so that we have $\lambda_{0}^{\prime}=0, \lambda_{2}^{\prime} \neq 0, \lambda_{1}^{\prime} \neq 0$, and $\eta^{\prime}=\lambda_{1}^{\prime} \cdot \sigma \lambda_{2}^{\prime}=$ $-\gamma \mathrm{N}\left(\lambda_{2}\right) \sigma(x) \notin F$. By Case b. of Proposition 3.4, u^{\prime} is at distance $1 \frac{1}{2}$ from x, and the resulting chain is

$$
y \longleftrightarrow x \longleftrightarrow \lambda y \longleftrightarrow x+\lambda y \longleftrightarrow u^{\prime} \longleftrightarrow-x+\lambda_{2} y^{2} \longleftrightarrow \lambda_{2} y^{2}=u \longleftrightarrow z
$$

for $\lambda=-\frac{x(x-1)}{\gamma \cdot \sigma \lambda_{2}}$.
Case 1.2: $\lambda_{1} \neq 0$. If $\lambda_{2}=0$, or $\lambda_{2} \neq 0$ but $\eta \notin F$, there is a chain

$$
y \longleftrightarrow x \longleftrightarrow \mathrm{Y}_{A} \longleftrightarrow \mathrm{X}_{A} \longleftrightarrow u \longleftrightarrow z
$$

by Proposition 3.4. So suppose $\lambda_{2} \neq 0$, and $\eta \in F^{*}$. Choose $\alpha=$ $\frac{\gamma \eta^{2}}{\mathrm{~N}\left(\lambda_{1}\right)}-\lambda_{0}$, then for $u^{\prime}=u+\alpha$ we have that $\lambda_{1}^{\prime}=\lambda_{1} \neq 0, \lambda_{2}^{\prime}=\lambda_{2} \neq 0$, $\lambda_{0}^{\prime}=\alpha+\lambda_{0} \in F$, and $\eta^{\prime}=\eta$. But now we have $\lambda_{0}^{\prime} \mathrm{N}\left(\lambda_{1}^{\prime}\right)=\eta^{\prime 2} \gamma$, so from Case c. of Proposition 3.4 and Remark 4.1, we get the chain

$$
y \longleftrightarrow x \longleftrightarrow \lambda y \longleftrightarrow x+\lambda y \longleftrightarrow u^{\prime} \longleftrightarrow z_{\alpha} u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z \longleftrightarrow u
$$

where $\lambda=-\frac{x \lambda_{2}}{\sigma \lambda_{1}}$.
Case 2: $\lambda_{0} \notin F$. In view of the Remark 4.1, it is enough to show that there is some $\alpha \in F$ such that $x, u+\alpha$ are at distance $1 \frac{1}{2}$. Recall that $\lambda_{0}=b x+a$ where $a, b \in F$, so by Equation (2) we also have $\gamma \eta=\eta_{0}+\eta_{1} x+b^{2} x^{2}$ for $\eta_{0}, \eta_{1} \in F$. Choose $\alpha=b-a-\eta_{1} / b$, then for
$u^{\prime}=u+\alpha$ we have that $\eta^{\prime}=\eta$, and $\gamma\left(\sigma^{2} \eta-\eta\right)=b^{2}(x+1)-\eta_{1}=$ $b \lambda_{0}+b \alpha=b \lambda_{0}^{\prime}$. By Proposition 3.7 we thus have the chain

$$
x \longleftrightarrow \lambda_{2} \cdot \sigma^{2} \lambda_{2} \cdot y \longleftrightarrow x-b^{-1} \lambda_{2} y^{2} \longleftrightarrow u^{\prime} \longleftrightarrow z+\alpha u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z,
$$

and we are done.

5. The geometry of XY_{A}

Let A be a division algebra of degree 3 over a field F of characteristic $p=3$. In this section we describe some properties of the graph XY_{A} and the graphs induced on X_{A} and Y_{A}, and present some special subgraphs. It seems reasonable to slightly alter the notation for this purpose.

Recall the equivalence relations defined in Remark 2.4. In this section we let $\mathrm{X}_{A}, \mathrm{Y}_{A}$ denote the sets of equivalence classes (rather than the sets of points, as done previously). Again, XY_{A} is the bipartite graph whose vertices are $\mathrm{X}_{A} \cup \mathrm{Y}_{A}$, with an edge connecting the classes $[x],[y]$ iff x, y are a standard pair of generators. We view X_{A} and Y_{A} as subgraphs of XY_{A}, where two points $x, x^{\prime} \in \mathrm{X}_{A}$ are connected iff there is there is some $y \in \mathrm{Y}_{A}$ such that $(x, y),\left(x^{\prime}, y\right) \in \mathrm{XY}_{A}$. Thus the distance induced by XY_{A} on X_{A} and Y_{A} is the usual distance in graphs.

Theorem 2.6 bounds the diameter of X_{A} to be ≤ 3, and this bound is shown to be exact in Corollary 3.5. Applying Remark 2.2, we see that the diameter of Y_{A} is bounded by 4 . A lower bound of 3 is given by Corollary 3.6

Fix some $y \in \mathrm{Y}_{A}$. The elements $x \in \mathrm{X}_{A}$ connected to y are at distance 1 from one another, so they form a complete subgraph in X_{A}. The same thing happens in Y_{A} around any $x \in \mathrm{X}_{A}$.

Subgraphs of XY_{A} are more interesting. Proposition 2.5 shows that X_{A} and Y_{A} are simple graphs (i.e., there are no multiple paths between neighbors). It follows that XY_{A} does not contain squares. Let x, y be a fixed standard pair of generators, and let $\gamma=y^{3}$. Set $\tilde{y}=\gamma+y-y^{2}$, and $\tilde{x}=x+x y$. Then we get the following hexagon:

This can be generalized, to the following:

For every $\alpha \in F$, this figure is a triangle in X_{A}, together with the corresponding triangle in Y_{A}. As α varies, the complex is rotated along the fixed axis $x \longleftrightarrow y \longleftrightarrow x+\gamma-\tilde{y}$, but with all the heads of the resulting triangles connected to a single point \tilde{y}. In particular, we get infinitely many different chains of length $1 \frac{1}{2}$ connecting x and \tilde{y}. It also shows a point (x) connected to a star (the points $\{\tilde{x}+a y\}$ around \tilde{y}) but not to its center, and other similar phenomenon.

References

[1] A. A. Albert, Structure of Algebras, Amer. Math. Soc. Coll. Publ., Vol. XXIV, Providence, 1961.
[2] S. Amitsur, L. H. Rowen and J.-P. Tignol, Division Algebras of Degree 4 and 8 with Involution, Israel J. Math. 33(2), 133-148, (1979).
[3] S. U. Chase, Two Results on Central Simple Algebras, Comm. Algebra 12, 2279-2289, (1984).
[4] W. Fischer, On Twisted Cyclic Algebras and the Chain Equivalence of Kummer Elements, Doctoral Dissertation, Regensburg Univ., Germany, July 1999.
[5] N. Jacobson, Finite Dimensional Division Algebras over Fields, Springer, 1996.
[6] M. Rost, The chain lemma for Kummer elements of degree 3, C. R. Acad. Sci. Paris, t. 328, Série I, 185-190, (1999).
[7] L. H. Rowen, Ring Theory, Academic Press, 1988.
[8] U. Vishne, Central Simple Algebras, Doctoral Dissertation, Bar-Ilan Univ., Israel, July 2000.
E-mail address: vishne@math.huji.ac.il

[^0]: Date: Nov 3, 2000.
 The research was done while the author held a post-doctoral position at UCL, Louvain-la-Neuve, Belgium.

