GENERATORS OF CENTRAL SIMPLE *p*-ALGEBRAS OF DEGREE 3

UZI VISHNE

ABSTRACT. We discuss standard pairs of generators of cyclic division p-algebras of degree p, and prove for p = 3 that any two Artin-Schreier elements are connected by a chain of standard pairs. This result has immediate applications to the presentations of such algebras.

Accepted to Israel Journal of Math., 6/2001.

1. INTRODUCTION

Let Q be a quaternion algebra over a field F. It is well known (for example, see [2, Lemma 6.3]), that if Q = (a, b) = (a', b') are two presentations of Q, then there is some $c \in F$ such that

$$(a,b) = (a,c) = (a',c) = (a',b').$$

Recently, a similar result for cyclic division algebras of degree 3 was proved by M. Rost [6]. If $A = (a, b)_3 = (a', b')_3$ are two presentations of A (where the base field contains 3-roots of unity), then there exist elements c, d, e in the base field, such that

$$(a,b)_3 \cong (a,c)_3 \cong (d,c)_3 \cong (d,e)_3 \cong (a',e)_3 \cong (a',b')_3$$

Chains of this form were also studied, in a more general context, in [4].

If the degree of a central simple algebra is a power of the characteristic p of the base field, it is called a p-algebra. Standard generators of cyclic p-algebras of degree p were studied in the author's dissertation [8, Chap. 1, Sec. 4]. Theorem 4.16 there is, in a sense, a chain lemma for arbitrary p, but it requires tensoring by matrices.

In Section 2 we describe the basic properties of standard pairs of generators and related definitions are given. We discuss the notion of distance between Artin-Schreier elements, and state the main result, Theorem 2.6, and the applications to presentations of cyclic p-algebras.

Date: Nov 3, 2000.

The research was done while the author held a post-doctoral position at UCL, Louvain-la-Neuve, Belgium.

We study short chains of pairs for p = 3 in Section 3, and this is applied in Section 4 to prove Theorem 2.6. Some large subgraphs of the graph of standard pairs of generators are given in Section 5.

I am indebted to Prof. J.-P. Tignol for pointing out references [4] and [6] and for his kind hospitality during my stay at UCL.

2. Standard generators of cyclic p-algebras of degree p

Let F be a field of characteristic p, and A a central simple cyclic algebra of degree p over F (that is, $\dim_F A = p^2$). By Wedderburn's structure theorem, A is either a division algebra, or the algebra of $p \times p$ matrices over F. The basic structure theory of p-algebras is given in [1], cf. also [5].

It is known that A can be given the following presentation, where $a, b \in F, b \neq 0$:

$$A = F[x, y] \quad x^{p} - x = a, \quad y^{p} = b, \quad yxy^{-1} = x + 1].$$

We call such x, y a standard pair of generators. Let

$$X_A = \{ x \in A : x^p - x \in F, [F[x]:F] = p \}, Y_A = \{ y \in A : y^p \in F^*, [F[y]:F] = p \}$$

be the possible components of a standard pair of generators. The elements of X_A are called *Artin-Schreier elements* of A; every cyclic subfield of A contains such an element.

Remark 2.1. If $x, y \in A$ satisfy $yxy^{-1} = x + 1$, then x, y form a standard pair of generators, that is, A = F[x, y], $x^p - x = a$ and $y^p = b$ for some $a, b \in F$.

Proof. We first show that x, y generate A. Indeed, F[x] is a separable extension of dimension p over F (with an automorphism $x \mapsto x + 1$ induced by y). Note that $[y^i, x] = y^i x - xy^i = iy^i$. Now suppose $f_0 + f_1 y + \cdots + f_{p-1} y^{p-1} = 0$ for $f_i \in F[x]$. Applying the derivation by x, we get $0 = f_1 y + 2f_2 y^2 + \cdots + (p-1)f_{p-1} y^{p-1}$. Repeating this, we get $0 = f_1 y + 2^j f_2 y^2 + \cdots + (p-1)^j f_{p-1} y^{p-1}$ for every $j = 1, \ldots, p-1$. Since the Vandermonde matrix of $0, \ldots, p-1$ is invertible, we get that $f_i y^i = 0$; but y is invertible, so that $f_i = 0$. It follows that $\sum F[x]y^i$ has dimension p^2 over F, and is thus equal to A.

Now, from the assumption it readily follows that $a = x^p - x$ and $b = y^p$ commute with x, y and are thus central, so x, y form a standard pair of generators.

Now let

$$XY_A = \{(x, y) \in X_A \times Y_A : yxy^{-1} = x + 1\}.$$

 $\mathbf{2}$

 XY_A may by viewed as a bipartite graph, where the vertices are the elements of X_A and Y_A , and there is an edge between x and y iff $(x, y) \in XY_A$. For an element to be in X_A or in Y_A depends on the characteristic polynomial, so we have p - 1 (non linear) equations for each set. It follows that X_A and Y_A are $(p^2 - p + 1)$ -dimensional varieties over F, and $XY_A \subseteq X_A \times Y_A$ is a $(p^2 + 1)$ -dimensional subvariety (as seen from Remark 2.3). In a sense, we study the geometry of XY_A .

Note that there are no isolated points on the graph:

- **Remark 2.2.** (i) For every $x \in X_A$ there is some $y \in A$ such that $(x, y) \in XY_A$.
 - (ii) Likewise for every $y \in Y_A$, there is some $x \in A$ such that $(x, y) \in XY_A$.

Proof. (i) It is easy to see that F[x] is either a subfield of dimension p of A, or isomorphic to the split ring $F^{\times p} = F \times \cdots \times F$. In both cases the automorphism induced by $x \mapsto x+1$ is inner (Skolem-Noether theorem, or the generalization to maximal separable commutative subalgebras in [3]), say induced by y. Then F[x, y] = A be Remark 2.1.

(ii) This is [1, Theorem IV.17].

Two elements z, z' of $X_A \cup Y_A$ are said to be at distance t/2 if there is a chain of elements $z = z_0, z_1, \ldots, z_t = z' \in X_A \cup Y_A$ such that for every $i = 1, \ldots, t$, the couple z_{i-1}, z_i is a standard pair of generators. We take half of the usual distance in the graph XY_A , since we are sometimes more interested in the induced patterns on X_A or Y_A . We denote this situation by saying that $z \leftrightarrow z_1 \leftrightarrow \ldots \leftrightarrow z_{t-1} \leftrightarrow z'$ is a chain, where necessarily elements of X_A and Y_A interchange. We write X_A and Y_A in appropriate places in the chain to state existence of appropriate elements. For example, elements $x, x' \in X_A$ are at distance 2 iff there is a chain $x \leftrightarrow Y_A \leftrightarrow X_A \leftrightarrow Y_A \leftrightarrow x'$.

Let (x, y) be a standard pair of generators. The close neighborhood of x, y is described in the following remark.

Remark 2.3. (i) The elements forming a standard pair of generators with x are of the form λy , where $\lambda \in F[x]^*$.

(ii) The elements forming a standard pair of generators with y are of the form $\mu + x$, where $\mu \in F[y]$.

Proof. (i) $y_1 x y_1^{-1} = x + 1$ iff $y_1 y^{-1} \in C_A(F[x]) = F[x]$, and $y_1 y^{-1}$ is invertible since y, y_1 are.

(ii)
$$yx_1y^{-1} = x_1 + 1$$
 iff $x_1 - x \in C_A(F[y]) = F[y].$

In particular, if $x \in X_A$, then $x + \alpha \in X_A$ for every $\alpha \in F$, and likewise for $y \in Y_A$, $\beta y \in Y$ for every $\beta \in F^*$. We have **Remark 2.4.** The actions of F^+ and F^* on X_A, Y_A , respectively, define equivalence relations.

In particular, if x, y are a standard pair of generators, $x' \equiv x$, and $y' \equiv y$, then x', y' are also a standard pair of generators.

The next proposition shows that there is essentially only one path connecting every two elements at distance 1.

Proposition 2.5. Let $x, x' \in X_A$ and $y, y' \in Y_A$. If (x, y), (x, y'), (x', y) and (x', y') are all standard pairs of generators, then $x' \equiv x$ or $y' \equiv y$.

Proof. By Remark 2.3, $\mu = x' - x \in F[y] \cap F[y']$, and $\lambda = y'y^{-1} \in F[x]$. Now $\lambda \mu \lambda^{-1} = \mu$, so that λ and μ commute. If A is a division ring, then we are done (as μ commutes with y, λ , so either $\mu \in F$ or $\lambda \in F$), but for the general case, write $\lambda = \sum \alpha_i x^i$ and $\mu = \sum \beta_j y^j$. Then compute $0 = [\mu, \lambda] = \sum \alpha_i \beta_j ((x + j)^i - x^i) y^j$, and compare the upper monomials with respect to y and x. We get a contradiction unless λ or μ are central. \Box

The main result of this paper is the following

Theorem 2.6. Let F be a field of characteristic p = 3, and let A be a (cyclic) division algebra of degree p over F. Then every two elements $x, z \in X_A$ are at distance at most 3.

The proof is given in Section 4. This theorem can be reformulated in terms of presentations of algebras. Recall that for $a, b \in F$, $[a, b)_p$ denotes the *p*-algebra

$$[a,b)_p = F[x,y]$$
 $x^p - x = a, y^p = b, yxy^{-1} = x + 1].$

Corollary 2.7. Suppose $[a, b)_3 \cong [a', b')_3$ are two presentations of the same division algebra. Then there exist $a_1, a_2 \in F$ and $b_1, b_2, b_3 \in F^*$, such that

$$[a,b) \cong [a,b_1) \cong [a_1,b_1) \cong [a_1,b_2) \cong [a_2,b_2) \cong [a_2,b_3) \cong [a',b_3) \cong [a',b').$$

One remark is in order concerning the split case. If $[a,b)_p \cong [a',b')_p$ are two presentations of $M_p(F)$, then

$$[a,b)\cong[0,b)\cong[0,b')\cong[a',b'),$$

so for a split algebra Corollary 2.7 holds, in a stronger form and for arbitrary p.

3. Elements at distance $1\frac{1}{2}$

Let A be a cyclic division p-algebra of degree p over F, where from now on we assume p = char F = 3.

Fix a standard pair of generators $x, y \in A$, and set $\gamma = y^3 \in F$. In this section we classify the elements $u \in Y_A$ which are at distance $1\frac{1}{2}$ from x, that is, elements for which there exists a chain

$$y \longleftrightarrow x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow u.$$

We denote by Tr the reduced trace map of A, and by tr the trace map of the extension F[x]/F. The action of y by conjugation on F[x]is denoted by σ , and the notation $N(\lambda)$ is preserved for the norm of elements in F[x]. Since $A = F[x, y] = \sum F[x]y^j$, we can write every $u \in A$ in the form $u = \lambda_0 + \lambda_1 y + \lambda_2 y^2$ for unique $\lambda_0, \lambda_1, \lambda_2 \in F[x]$. Set $\eta = \lambda_1 \cdot \sigma \lambda_2$.

Remark 3.1. Assuming $u \notin F$, we have that $u \in Y_A$ iff $\operatorname{Tr}(u) = \operatorname{Tr}(u^2) = 0$. As $\operatorname{Tr}(\lambda y) = \operatorname{Tr}(\lambda y^2) = 0$ for every $\lambda \in F[x]$, a simple computation yields the following equivalent conditions:

(1)
$$\operatorname{tr}(\lambda_0) = 0$$

(2)
$$\gamma \operatorname{tr}(\eta) = \operatorname{tr}(\lambda_0^2)$$

Under these assumptions, one can compute that $u^3 = N(\lambda_0) + \gamma N(\lambda_1) + \gamma^2 N(\lambda_2)$.

Lemma 3.2. The element u is at distance $1\frac{1}{2}$ from x if and only if the following equations have a solution with $f_1, f_2 \in F, \lambda \in F[x]^*$:

(3)
$$f_1\gamma(\lambda\cdot\sigma\lambda_2-\sigma^2\lambda\cdot\lambda_2)+f_2\gamma\cdot\sigma\lambda\cdot(\lambda\cdot\sigma^2\lambda_1-\sigma^2\lambda\cdot\lambda_1) = -\lambda_0$$

(4)
$$f_1(\sigma\lambda_0 - \lambda_0) + f_2\gamma(\sigma\lambda \cdot \sigma^2\lambda_2 - \sigma^2\lambda \cdot \lambda_2) = 0$$

(5)
$$f_1(\lambda \cdot \sigma \lambda_1 - \sigma \lambda \cdot \lambda_1) + f_2 \cdot \lambda \cdot \sigma \lambda \cdot (\sigma^2 \lambda_0 - \lambda_0) = \lambda_2$$

Proof. The elements x, u are at distance $1\frac{1}{2}$ iff there are some $y' \in Y_A$ and $x' \in X_A$ such that $x \leftrightarrow y' \leftrightarrow x' \leftrightarrow u$ form a chain. By Lemma 2.3, we can write $y' = \lambda y$ for some $\lambda \in F[x]$, and then $x' - x \in F[\lambda y]$. Thus $x' = x + f_0 + f_1\lambda y + f_2(\lambda y)^2$ for some $f_0, f_1, f_2 \in F$, and by Remark 2.4 we may take $f_0 = 0$. The only remaining condition is that ux' - x'u = u, and comparing coefficients of y in both sides, we get Equations (3)–(5).

Let K = F[x] be a cyclic extension of dimension 3 of F, as before. The following facts are easily checked.

Remark 3.3. (i) For every
$$\alpha_0, \alpha_1, \alpha_2 \in F$$
, we have that $\operatorname{tr}_{K/F}(\alpha_0 + \alpha_1 x + \alpha_2 x^2) = -\alpha_2$.

- (ii) For every $\phi \in K$, if $\operatorname{tr}_{K/F} \phi = \operatorname{tr}_{K/F} \phi^2 = 0$, then $\phi \in F$.
- (iii) The map $(\sigma 1) : K \to K$ defined by $(\sigma 1)a = \sigma(a) a$ is onto the subspace $\{\phi \in K : \operatorname{tr}_{K/F} \phi = 0\}.$
- (iv) $\operatorname{tr}_{K/F} \phi = 0$ iff $(\sigma 1)\phi \in F$.

Proof. (i) follows since the minimal polynomial of x is of the form $x^3 - x - \theta = 0$. (ii),(iii) follow trivially from (i), and (iv) follows since for every $\phi \in K$ we have that $(\sigma - 1)^2 \phi = (\sigma^2 + \sigma + 1)\phi$.

Proposition 3.4. Assume $u = \lambda_0 + \lambda_1 y + \lambda_2 y^2$ as before, and $\lambda_0 \in F$. Then u is at distance $1\frac{1}{2}$ from x if and only if the following holds:

- a. $\lambda_2 = 0$, or
- b. $\lambda_2 \neq 0, \ \lambda_1 \neq 0 \ and \ \eta \notin F$, or
- c. $\lambda_2 \neq 0, \ \lambda_1 \neq 0, \ \eta \in F, \ and \ \lambda_0 \operatorname{N}(\lambda_1) = \eta^2 \gamma.$

These conditions may look a little less random in light of the following observation: assuming $\lambda_0 \in F$, we have that $\eta \in F$ iff $F[u] = F[\lambda_1 y]$. If this is the case, then $u^2 \in F + F(\lambda_1 y)^2$ iff $\lambda_0 N(\lambda_1) = \eta^2 \gamma$.

Proof. Case 1: $\lambda_2 = 0$. We must have $\lambda_1 \neq 0$, for otherwise $u = \lambda_0 \in F[x]$ would be separable. If $\lambda_0 = 0$, then by Remark 2.3.(i) we have the chain $y \leftrightarrow x \leftrightarrow y \leftrightarrow x \leftrightarrow \lambda_1 y = u$. Otherwise, choose $f_1 = 0$. Substituting, we find that Equations (4) and (5) are satisfied, and Equation (3) becomes

$$f_2 \gamma \left(\sigma^2 \left(\frac{\lambda_1}{\lambda} \right) - \frac{\lambda_1}{\lambda} \right) \cdot \mathbf{N}(\lambda) = -\lambda_0,$$

which can be solved by choosing $\lambda = x^{-1}\lambda_1$ and $f_2 = \frac{\theta\lambda_0}{\gamma N(\lambda_1)}$, where $\theta = N(x) \in F$. This results in the chain

$$x \longleftrightarrow y' = x^{-1} \lambda_1 y \longleftrightarrow x + \lambda_0 {y'}^{-1} \longleftrightarrow u.$$

Case 2: $\lambda_2 \neq 0$. If $\lambda_1 = 0$ then equation (5) has no solution. Thus we assume $\lambda_1 \neq 0$. In particular, $\eta = \lambda_1 \cdot \sigma \lambda_2 \neq 0$.

Case 2.1: $\eta \notin F$. Choose $f_2 = 0$ and $f_1 = 1$. Then Equation (4) vanishes, and substituting $\lambda_2 = \sigma^2 \eta / \sigma^2 \lambda_1$, Equations (3),(5) become

$$\begin{aligned} &\eta\lambda/\lambda_1 - \sigma^2(\eta\lambda/\lambda_1) &= -\lambda_0/\gamma, \\ &\lambda/\lambda_1 - \sigma(\lambda/\lambda_1) &= \sigma^2(\eta)/\operatorname{N}(\lambda_1), \end{aligned}$$

which is solved by $\lambda = \frac{\lambda_2 \cdot \sigma^2(\lambda_2) - \gamma^{-1} \lambda_0 \lambda_1}{\sigma(\eta) - \eta}$. This satisfies $\lambda \neq 0$, for otherwise $\gamma N(\lambda_2) = \lambda_0 \eta$, contrary to the assumption $\eta \notin F$. Then we have the following chain: $x \leftrightarrow \lambda y \leftrightarrow x + \lambda y \leftrightarrow u$.

Case 2.2: $\eta \in F$. We cannot have $f_2 \neq 0$, for then Equation (4) will force $\lambda/\lambda_1 \in F$, and from Equation (5) we then get $\eta = 0$, contrary

 $\mathbf{6}$

to the assumption $\lambda_2 \neq 0$. Thus we have $f_2 = 0$, and the equations become

$$f_1\left(\sigma(\frac{\lambda}{\lambda_1}) - \frac{\lambda}{\lambda_1}\right) = \frac{-\lambda_0}{\gamma\eta} = \frac{-\sigma^2(\eta)}{N(\lambda_1)},$$

for which, by Remark 3.3.(iii), there is a solution λ iff $\lambda_0 N(\lambda_1) = \gamma \eta^2$. Indeed we can take $f_1 = 1$ and $\lambda = -\lambda_2 \sigma(\lambda_1)^{-1} x$, and the resulting chain is $x \leftrightarrow \lambda y \leftrightarrow x + \lambda y \leftrightarrow u$

Corollary 3.5. Let $x \in X_A$, then x and -x are at distance at least 3.

Proof. Choose y such that $(x, y) \in XY_A$. We show that there is no chain $y \longleftrightarrow x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow u \longleftrightarrow -x \longleftrightarrow y^2$. Every appropriate u is, by Remark 2.3.(i), of the form $u = \lambda y^2$ for some $\lambda \in F[-x] = F[x]$, and then the completion is impossible by the last proposition. \Box

Corollary 3.6. For every $y \in Y_A$, the distance between y and y^2 is at least 3.

Proof. Otherwise, there is a chain

$$y \longleftrightarrow x' \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow y^2,$$

but since $-x', y^2$ form a standard pair of generators, it follows that the distance between x' and -x' is at most 2, contrary to the former corollary.

For the rest of the section we no longer assume $\lambda_0 \in F$. Let $b = \sigma(\lambda_0) - \lambda_0$, then $b \in F$ by Equation (1) and Remark 3.3.(iv). Moreover, since $\operatorname{tr}(\lambda_0) = 0$, we have that $\lambda_0 = a + bx$ for $a \in F$.

Proposition 3.7. Let x, y form a standard pair of generators and $u = \lambda_0 + \lambda_1 y + \lambda_2 y^2 \in Y_A$ where $\lambda_0 = a + bx$ and $\eta = \lambda_1 \cdot \sigma \lambda_2$ as above. If $\lambda_0 \notin F$ and $\gamma(\sigma^2 \eta - \eta) = b\lambda_0$, then u is at distance $1\frac{1}{2}$ from x.

Proof. Set $x' = x - b^{-1}\lambda_2 y^2$ and $y' = \lambda_2 \cdot \sigma^2 \lambda_2 \cdot y$. Then the first two pairs in the chain

 $x \longleftrightarrow y' \longleftrightarrow x' \longleftrightarrow u$

follow from Remark 2.3. For the third pair, compute that $ux' - x'u = \gamma b^{-1}(\sigma^2 \eta - \eta) + \lambda_1 y + \lambda_2 y^2$, which equals u by the assumption.

Note that the assumption $\gamma(\sigma^2 \eta - \eta) = b\lambda_0$ implies (but is not implied by) Equation (2).

The following remark is given as a counterpart for Proposition 3.4, and is not needed later.

Remark 3.8. Assume $u = \lambda_0 + \lambda_1 y + \lambda_2 y^2$ as before, and $\lambda_0 \notin F$. Then there exist homogeneous quadratic forms Q_I, Q_{II} in two variables over F, explicitly stated in the proof, such that u is at distance $1\frac{1}{2}$ from x if and only there are $g, f_1 \in F$ such that

$$\begin{aligned} \mathcal{Q}_I(g, f_1) &= 0, \\ \mathcal{Q}_{I\!I}(g, f_1) &\neq 0. \end{aligned}$$

Proof. Since $\lambda_0 \notin F$, by Remark 3.3.(ii) we have that $\operatorname{tr} \lambda_0^2 \neq 0$, so by Equation (2), $\eta \neq 0$ and thus also $\lambda_1, \lambda_2 \neq 0$. Moreover, Equation (4) has no solution with $f_2 = 0$, so we may assume $f_2 \neq 0$.

We write

(6)
$$\lambda = \frac{g + f_1 \cdot \sigma^2 \lambda_0}{f_2 \gamma \cdot \sigma \lambda_2}$$

for $g \in K$. Then Equation (4) is equivalent to $g \in F$, and we assume this is the case. Recall that by Lemma 3.2 we need to solve Equations (3)–(5) with $f_1, f_2 \in F$ and $\lambda \in K$, so this now becomes solving Equations (3) and (5) with $f_1, f_2, g \in F$, $f_2 \neq 0$. Write $\lambda_0 = a + bx$ with $a, b \in F$. Note that from Equation (2) and Remark 3.3.(i), we get that $\gamma \operatorname{tr}(\eta) = \operatorname{tr}(\lambda_0^2) = -b^2$.

Denote by

$$\begin{aligned} \mathcal{Q}_{0}(s,t) &= (\sigma^{2}\eta - \eta)s^{2} + (\sigma^{2}\lambda_{0}\cdot\eta - \sigma\lambda_{0}\cdot\sigma^{2}\eta)st \\ &+ (\gamma b\,\mathrm{N}(\lambda_{2}) + \lambda_{0}(\sigma^{2}\lambda_{0}\cdot\sigma^{2}\eta - \sigma\lambda_{0}\cdot\eta))t^{2}, \\ \mathcal{Q}_{2}(s,t) &= -bs^{2} + (\gamma(\sigma\eta - \eta) + b\cdot\sigma\lambda_{0})st \\ &+ (\gamma(\sigma^{2}\lambda_{0}\cdot\sigma\eta - \lambda_{0}\eta) - b\lambda_{0}\cdot\sigma^{2}\lambda_{0})t^{2} \end{aligned}$$

the two quadratic forms in s, t over K.

Substituting (6) in Equations (3),(5), multiplying by $f_2 \gamma N(\lambda_2)$ in the first case and by $f_2 \gamma^2 \cdot \sigma \lambda_2 \cdot \sigma^2 \lambda_2$ in the second case, we get the following system of equations, in the variables $g, f_1 \in F, f_2 \in F^*$:

(7)
$$\mathcal{Q}_0(g, f_1) = -\lambda_0 f_2 \gamma \operatorname{N}(\lambda_2)$$

(8)
$$\mathcal{Q}_2(g, f_1) = f_2 \gamma^2 \operatorname{N}(\lambda_2).$$

It can be checked that Q_2 is actually a quadratic form over F. Q_0 , however, is not defined over F (the coefficient $\sigma^2 \eta - \eta \notin F$, for otherwise we would have $b^2 = \gamma \operatorname{tr} \eta = 0$ by Remark 3.3.(iv)).

Fortunately we have that tr $\mathcal{Q}_0 = 0$, so by Remark 3.3.(i), the coefficients of \mathcal{Q}_0 lay in the two dimensional *F*-space $F + F\lambda_0 \subset K$. Write

$$\mathcal{Q}_0 = \mathcal{Q}_I + \lambda_0 \mathcal{Q}_I$$

for the respective components. Then we can compute $Q_{I\!I} = \frac{1}{b}(\sigma(Q_0) - Q_0)$ to be

$$\mathcal{Q}_{I\!I}(s,t) = -\operatorname{tr}(\eta)/b \cdot s^2 + \operatorname{tr}(\lambda_0 \cdot \sigma \eta)/b \cdot st - \operatorname{tr}(\lambda_0 \cdot \eta \cdot \sigma \lambda_0)/b \cdot t^2$$

and so $Q_I = Q_0 - \lambda_0 Q_I$ is

$$\mathcal{Q}_{I}(s,t) = (\sigma^{2}\eta - \eta - b\lambda_{0}/\gamma)s^{2} + (\sigma^{2}\lambda_{0} \cdot \sigma^{2}\eta - \sigma\lambda_{0} \cdot \eta + b\lambda_{0}^{2}/\gamma)st + (\gamma b \operatorname{N}(\lambda_{2}) - b \operatorname{N}(\lambda_{0})/\gamma)t^{2}.$$

It may not be so obvious, but one can check that Q_I is indeed defined over F.

Using this decomposition, Equation (7) now becomes

(9)
$$\mathcal{Q}_I(g, f_1) = 0$$

(10)
$$\mathcal{Q}_{I\!I}(g, f_1) = -f_2 \gamma \operatorname{N}(\lambda_2)$$

Again this is not immediate, but one can compute that $Q_2 = -\gamma Q_{II}$. Thus solving Equations (7),(8) is equivalent to solving Equations (9) and (10). Recall that we only assumed $f_2 \neq 0$, so all we have to do is find a zero of Q_I which is not a zero of Q_{II} , as claimed.

Example 3.9. Suppose $\gamma(\sigma^2\eta - \eta) = b\lambda_0$ as in Proposition 3.7. The coefficient $-tr(\eta)/b = b/\gamma$ of s^2 in the form $\mathcal{Q}_{I\!I}(s,t)$ is nonzero, so if we substitute $f_1 = 0$ and g = 1 in $\mathcal{Q}_I, \mathcal{Q}_{I\!I}$ we get $\mathcal{Q}_I(1,0) = \sigma^2\eta - \eta - b\lambda_0/\gamma = 0$ and $\mathcal{Q}_{I\!I}(1,0) = -tr(\eta)/b \neq 0$. By Remark 3.8, u is at distance $1\frac{1}{2}$ from x, in accordance with the above mentioned proposition.

4. A Proof of Theorem 2.6

Let A be a division p-algebra of degree p = 3. We are given two elements $x, z \in X_A$, and wish to find a chain

$$x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow Y_A \longleftrightarrow z.$$

Choose (using Remark 2.2.(i)) elements y, u, such that x, y and z, uare standard pairs of generators. For x, y, u we use the notations of the previous section: σ is the action of conjugation by y on F[x], $N(\lambda)$ is preserved for the norm of elements in F[x], $u = \lambda_0 + \lambda_1 y + \lambda_2 y^2$ for $\lambda_0, \lambda_1, \lambda_2 \in F[x]$, and $\eta = \lambda_1 \cdot \sigma \lambda_2$. Also $b = \sigma \lambda_0 - \lambda_0$, and $\lambda_0 = a + bx$ for $a, b \in F$. Similarly, whenever we specify an element u', the same notation is used: $u' = \lambda'_0 + \lambda'_1 y + \lambda'_2 y^2$, $\eta' = \lambda'_1 \cdot \sigma \lambda'_2$, and $\lambda'_0 = a' + b'x$.

Remark 4.1. For every $\alpha \in F$ we have that $u + \alpha$ is at distance $1\frac{1}{2}$ from z.

Proof. Case 1 of Proposition 3.4 (with z, u in place of x, y and $u + \alpha$ in place of u) gives the chain

$$u + \alpha \longleftrightarrow z + \alpha u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z \longleftrightarrow u.$$

Proof of Theorem 2.6. Case 1: $\lambda_0 \in F$. Note that $tr(\eta) = 0$ by Equation (2). If $\lambda_2 = 0$, then we have the chain

$$y \longleftrightarrow x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow u \longleftrightarrow z$$

by Proposition 3.4. So we assume $\lambda_2 \neq 0$.

Case 1.1: $\lambda_1 = 0$. Then $u = \lambda_0 + \lambda_2 y^2$. Set $\tilde{z} = -x - \frac{\lambda_0 x}{\gamma \cdot \sigma \lambda_2} y$, and check that \tilde{z}, u form a standard pair of generators. Compute that $\tilde{z}u = \lambda_0 x - \frac{\lambda_0^2 x}{\gamma \cdot \sigma \lambda_2} y - x\lambda_2 y^2$, and set $u' = \tilde{z}u$. Then for u' we have $b' = \sigma(\lambda_0 x) - \lambda_0 x = \lambda_0$, $a' = \lambda'_0 - b' x = 0$, and $\eta' = \lambda'_1 \cdot \sigma \lambda'_2 = \frac{1}{\gamma} \lambda_0^2 (x + x^2)$.

Case 1.1.1: $\lambda_0 \neq 0$ (so that $\lambda'_0 \notin F$). Compute that $\gamma(\sigma^2 \eta' - \eta') = x\lambda_0^2 = b'\lambda'_0$, so by Proposition 3.7, u' is at distance $1\frac{1}{2}$ from x, and we have the following chain:

$$y \longleftrightarrow x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow u' \longleftrightarrow \tilde{z} \longleftrightarrow u \longleftrightarrow z.$$

Case 1.1.2: $\lambda_0 = 0$. Then $u = \lambda_2 y^2$ and thus -x + u, u form a standard pair of generators. Choose $u' = (-x + u)u = (\gamma\lambda_2 \cdot \sigma^2\lambda_2)y - (x\lambda_2)y^2$, so that we have $\lambda'_0 = 0$, $\lambda'_2 \neq 0$, $\lambda'_1 \neq 0$, and $\eta' = \lambda'_1 \cdot \sigma\lambda'_2 = -\gamma \operatorname{N}(\lambda_2)\sigma(x) \notin F$. By Case b. of Proposition 3.4, u' is at distance $1\frac{1}{2}$ from x, and the resulting chain is

$$y \longleftrightarrow x \longleftrightarrow \lambda y \longleftrightarrow x + \lambda y \longleftrightarrow u' \longleftrightarrow -x + \lambda_2 y^2 \longleftrightarrow \lambda_2 y^2 = u \longleftrightarrow z$$

for $\lambda = -\frac{x(x-1)}{x-1}$.

Case 1.2: $\lambda_1 \neq 0$. If $\lambda_2 = 0$, or $\lambda_2 \neq 0$ but $\eta \notin F$, there is a chain

 $y \longleftrightarrow x \longleftrightarrow Y_A \longleftrightarrow X_A \longleftrightarrow u \longleftrightarrow z$

by Proposition 3.4. So suppose $\lambda_2 \neq 0$, and $\eta \in F^*$. Choose $\alpha = \frac{\gamma \eta^2}{N(\lambda_1)} - \lambda_0$, then for $u' = u + \alpha$ we have that $\lambda'_1 = \lambda_1 \neq 0$, $\lambda'_2 = \lambda_2 \neq 0$, $\lambda'_0 = \alpha + \lambda_0 \in F$, and $\eta' = \eta$. But now we have $\lambda'_0 N(\lambda'_1) = {\eta'}^2 \gamma$, so from Case c. of Proposition 3.4 and Remark 4.1, we get the chain

$$y \longleftrightarrow x \longleftrightarrow \lambda y \longleftrightarrow x + \lambda y \longleftrightarrow u' \longleftrightarrow z_{\alpha} u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z \longleftrightarrow u$$

where $\lambda = -\frac{x\lambda_2}{z\lambda_2}$.

Case 2: $\lambda_0 \notin F$. In view of the Remark 4.1, it is enough to show that there is some $\alpha \in F$ such that $x, u + \alpha$ are at distance $1\frac{1}{2}$. Recall that $\lambda_0 = bx + a$ where $a, b \in F$, so by Equation (2) we also have $\gamma \eta = \eta_0 + \eta_1 x + b^2 x^2$ for $\eta_0, \eta_1 \in F$. Choose $\alpha = b - a - \eta_1/b$, then for

 $u' = u + \alpha$ we have that $\eta' = \eta$, and $\gamma(\sigma^2 \eta - \eta) = b^2(x+1) - \eta_1 = b\lambda_0 + b\alpha = b\lambda'_0$. By Proposition 3.7 we thus have the chain

$$x \longleftrightarrow \lambda_2 \cdot \sigma^2 \lambda_2 \cdot y \longleftrightarrow x - b^{-1} \lambda_2 y^2 \longleftrightarrow u' \longleftrightarrow z + \alpha u^{-1} z \longleftrightarrow z^{-1} u \longleftrightarrow z,$$

and we are done.

5. The geometry of XY_A

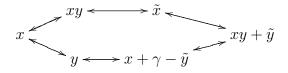
Let A be a division algebra of degree 3 over a field F of characteristic p = 3. In this section we describe some properties of the graph XY_A and the graphs induced on X_A and Y_A, and present some special subgraphs. It seems reasonable to slightly alter the notation for this purpose.

Recall the equivalence relations defined in Remark 2.4. In this section we let X_A, Y_A denote the sets of equivalence classes (rather than the sets of points, as done previously). Again, XY_A is the bipartite graph whose vertices are $X_A \cup Y_A$, with an edge connecting the classes [x], [y] iff x, y are a standard pair of generators. We view X_A and Y_A as subgraphs of XY_A , where two points $x, x' \in X_A$ are connected iff there is there is some $y \in Y_A$ such that $(x, y), (x', y) \in XY_A$. Thus the distance induced by XY_A on X_A and Y_A is the usual distance in graphs.

Theorem 2.6 bounds the diameter of X_A to be ≤ 3 , and this bound is shown to be exact in Corollary 3.5. Applying Remark 2.2, we see that the diameter of Y_A is bounded by 4. A lower bound of 3 is given by Corollary 3.6

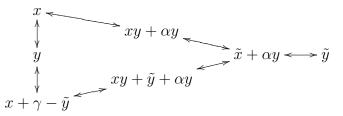
Fix some $y \in Y_A$. The elements $x \in X_A$ connected to y are at distance 1 from one another, so they form a complete subgraph in X_A . The same thing happens in Y_A around any $x \in X_A$.

Subgraphs of XY_A are more interesting. Proposition 2.5 shows that X_A and Y_A are simple graphs (i.e., there are no multiple paths between neighbors). It follows that XY_A does not contain squares. Let x, y be a fixed standard pair of generators, and let $\gamma = y^3$. Set $\tilde{y} = \gamma + y - y^2$, and $\tilde{x} = x + xy$. Then we get the following hexagon:



11

This can be generalized, to the following:



For every $\alpha \in F$, this figure is a triangle in X_A , together with the corresponding triangle in Y_A . As α varies, the complex is rotated along the fixed axis $x \leftrightarrow y \leftrightarrow x + \gamma - \tilde{y}$, but with all the heads of the resulting triangles connected to a single point \tilde{y} . In particular, we get infinitely many different chains of length $1\frac{1}{2}$ connecting x and \tilde{y} . It also shows a point (x) connected to a star (the points $\{\tilde{x} + ay\}$ around \tilde{y}) but not to its center, and other similar phenomenon.

References

- A. A. Albert, Structure of Algebras, Amer. Math. Soc. Coll. Publ., Vol. XXIV, Providence, 1961.
- [2] S. Amitsur, L. H. Rowen and J.-P. Tignol, Division Algebras of Degree 4 and 8 with Involution, Israel J. Math. 33(2), 133–148, (1979).
- [3] S. U. Chase, Two Results on Central Simple Algebras, Comm. Algebra 12, 2279–2289, (1984).
- [4] W. Fischer, On Twisted Cyclic Algebras and the Chain Equivalence of Kummer Elements, Doctoral Dissertation, Regensburg Univ., Germany, July 1999.
- [5] N. Jacobson, Finite Dimensional Division Algebras over Fields, Springer, 1996.
- [6] M. Rost, The chain lemma for Kummer elements of degree 3, C. R. Acad. Sci. Paris, t. 328, Série I, 185-190, (1999).
- [7] L. H. Rowen, Ring Theory, Academic Press, 1988.
- [8] U. Vishne, Central Simple Algebras, Doctoral Dissertation, Bar-Ilan Univ., Israel, July 2000.

E-mail address: vishne@math.huji.ac.il