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Abstract. We discuss standard pairs of generators of cyclic di-
vision p-algebras of degree p, and prove for p = 3 that any two
Artin-Schreier elements are connected by a chain of standard pairs.
This result has immediate applications to the presentations of such
algebras.
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1. Introduction

Let Q be a quaternion algebra over a field F . It is well known (for
example, see [2, Lemma 6.3]), that if Q = (a, b) = (a′, b′) are two
presentations of Q, then there is some c ∈ F such that

(a, b) = (a, c) = (a′, c) = (a′, b′).

Recently, a similar result for cyclic division algebras of degree 3 was
proved by M. Rost [6]. If A = (a, b)3 = (a′, b′)3 are two presentations
of A (where the base field contains 3-roots of unity), then there exist
elements c, d, e in the base field, such that

(a, b)3∼=(a, c)3∼=(d, c)3∼=(d, e)3∼=(a′, e)3∼=(a′, b′)3.

Chains of this form were also studied, in a more general context, in [4].
If the degree of a central simple algebra is a power of the character-

istic p of the base field, it is called a p-algebra. Standard generators of
cyclic p-algebras of degree p were studied in the author’s dissertation
[8, Chap. 1, Sec. 4]. Theorem 4.16 there is, in a sense, a chain lemma
for arbitrary p, but it requires tensoring by matrices.

In Section 2 we describe the basic properties of standard pairs of
generators and related definitions are given. We discuss the notion of
distance between Artin-Schreier elements, and state the main result,
Theorem 2.6, and the applications to presentations of cyclic p-algebras.
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We study short chains of pairs for p = 3 in Section 3, and this is
applied in Section 4 to prove Theorem 2.6. Some large subgraphs of
the graph of standard pairs of generators are given in Section 5.

I am indebted to Prof. J.-P. Tignol for pointing out references [4]
and [6] and for his kind hospitality during my stay at UCL.

2. Standard generators of cyclic p-algebras of degree p

Let F be a field of characteristic p, and A a central simple cyclic
algebra of degree p over F (that is, dimF A = p2). By Wedderburn’s
structure theorem, A is either a division algebra, or the algebra of p×p
matrices over F . The basic structure theory of p-algebras is given in
[1], cf. also [5].

It is known that A can be given the following presentation, where
a, b ∈ F , b ̸= 0:

A = F [x, y| xp − x = a, yp = b, yxy−1 = x+ 1].

We call such x, y a standard pair of generators. Let

XA = {x ∈ A : xp − x ∈ F, [F [x] :F ] = p},
YA = {y ∈ A : yp ∈ F ∗, [F [y] :F ] = p}

be the possible components of a standard pair of generators. The
elements of XA are called Artin-Schreier elements of A; every cyclic
subfield of A contains such an element.

Remark 2.1. If x, y ∈ A satisfy yxy−1 = x + 1, then x, y form a
standard pair of generators, that is, A = F [x, y], xp − x = a and yp = b
for some a, b ∈ F .

Proof. We first show that x, y generate A. Indeed, F [x] is a separable
extension of dimension p over F (with an automorphism x 7→ x + 1
induced by y). Note that [yi, x] = yix − xyi = iyi. Now suppose
f0 + f1y+ · · ·+ fp−1y

p−1 = 0 for fi ∈ F [x]. Applying the derivation by
x, we get 0 = f1y + 2f2y

2 + · · · + (p− 1)fp−1y
p−1. Repeating this, we

get 0 = f1y+2jf2y
2 + · · ·+ (p− 1)jfp−1y

p−1 for every j = 1, . . . , p− 1.
Since the Vandermonde matrix of 0, . . . , p− 1 is invertible, we get that
fiy

i = 0; but y is invertible, so that fi = 0. It follows that
∑

F [x]yi

has dimension p2 over F , and is thus equal to A.
Now, from the asssumption it readily follows that a = xp − x and

b = yp commute with x, y and are thus central, so x, y form a standard
pair of generators. �

Now let

XYA = {(x, y) ∈ XA × YA : yxy−1 = x+ 1}.
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XYA may by viewed as a bipartite graph, where the vertices are
the elements of XA and YA, and there is an edge between x and y iff
(x, y) ∈ XYA. For an element to be in XA or in YA depends on the
characteristic polynomial, so we have p − 1 (non linear) equations for
each set. It follows that XA and YA are (p2−p+1)-dimensional varieties
over F , and XYA ⊆ XA × YA is a (p2 + 1)-dimensional subvariety (as
seen from Remark 2.3). In a sense, we study the geometry of XYA.

Note that there are no isolated points on the graph:

Remark 2.2. (i) For every x ∈ XA there is some y ∈ A such that
(x, y) ∈ XYA.

(ii) Likewise for every y ∈ YA, there is some x ∈ A such that
(x, y) ∈ XYA.

Proof. (i) It is easy to see that F [x] is either a subfield of dimension p of
A, or isomorphic to the split ring F×p = F ×· · ·×F . In both cases the
automorphism induced by x 7→ x+1 is inner (Skolem-Noether theorem,
or the generalization to maximal separable commutative subalgebras
in [3]), say induced by y. Then F [x, y] = A be Remark 2.1.

(ii) This is [1, Theorem IV.17]. �
Two elements z, z′ of XA∪YA are said to be at distance t/2 if there is

a chain of elements z = z0, z1, . . . , zt = z′ ∈ XA∪YA such that for every
i = 1, . . . , t, the couple zi−1, zi is a standard pair of generators. We take
half of the usual distance in the graph XYA, since we are sometimes
more interested in the induced patterns on XA or YA. We denote this
situation by saying that z←→z1←→. . .←→zt−1←→z′ is a chain, where
necessarily elements of XA and YA interchange. We write XA and YA

in appropriate places in the chain to state existence of appropriate
elements. For example, elements x, x′ ∈ XA are at distance 2 iff there
is a chain x←→YA←→XA←→YA←→x′.

Let (x, y) be a standard pair of generators. The close neighborhood
of x, y is described in the following remark.

Remark 2.3. (i) The elements forming a standard pair of gener-
ators with x are of the form λy, where λ ∈ F [x]∗.

(ii) The elements forming a standard pair of generators with y are
of the form µ+ x, where µ ∈ F [y].

Proof. (i) y1xy
−1
1 = x + 1 iff y1y

−1 ∈ CA(F [x]) = F [x], and y1y
−1 is

invertible since y, y1 are.
(ii) yx1y

−1 = x1 + 1 iff x1 − x ∈ CA(F [y]) = F [y]. �
In particular, if x ∈ XA, then x + α ∈ XA for every α ∈ F , and

likewise for y ∈ YA, βy ∈ Y for every β ∈ F ∗. We have
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Remark 2.4. The actions of F+ and F ∗ on XA,YA, respectively, de-
fine equivalence relations.

In particular, if x, y are a standard pair of generators, x′ ≡ x, and
y′ ≡ y, then x′, y′ are also a standard pair of generators.

The next proposition shows that there is essentially only one path
connecting every two elements at distance 1.

Proposition 2.5. Let x, x′ ∈ XA and y, y′ ∈ YA. If (x, y),(x, y
′),(x′, y)

and (x′, y′) are all standard pairs of generators, then x′ ≡ x or y′ ≡ y.

Proof. By Remark 2.3, µ = x′−x ∈ F [y]∩F [y′], and λ = y′y−1 ∈ F [x].
Now λµλ−1 = µ, so that λ and µ commute. If A is a division ring, then
we are done (as µ commutes with y, λ, so either µ ∈ F or λ ∈ F ),
but for the general case, write λ =

∑
αix

i and µ =
∑

βjy
j. Then

compute 0 = [µ, λ] =
∑

αiβj((x + j)i − xi)yj, and compare the upper
monomials with respect to y and x. We get a contradiction unless λ or
µ are central. �

The main result of this paper is the following

Theorem 2.6. Let F be a field of characteristic p = 3, and let A be a
(cyclic) division algebra of degree p over F .

Then every two elements x, z ∈ XA are at distance at most 3.

The proof is given in Section 4. This theorem can be reformulated
in terms of presentations of algebras. Recall that for a, b ∈ F , [a, b)p
denotes the p-algebra

[a, b)p = F [x, y| xp − x = a, yp = b, yxy−1 = x+ 1].

Corollary 2.7. Suppose [a, b)3∼=[a′, b′)3 are two presentations of the
same division algebra. Then there exist a1, a2 ∈ F and b1, b2, b3 ∈ F ∗,
such that

[a, b)∼=[a, b1)∼=[a1, b1)∼=[a1, b2)∼=[a2, b2)∼=[a2, b3)∼=[a′, b3)∼=[a′, b′).

One remark is in order concerning the split case. If [a, b)p∼=[a′, b′)p
are two presentations of Mp(F ), then

[a, b)∼=[0, b)∼=[0, b′)∼=[a′, b′),

so for a split algebra Corollary 2.7 holds, in a stronger form and for
arbitrary p.
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3. Elements at distance 11
2

Let A be a cyclic division p-algebra of degree p over F , where from
now on we assume p = charF = 3.

Fix a standard pair of generators x, y ∈ A, and set γ = y3 ∈ F . In
this section we classify the elements u ∈ YA which are at distance 11

2
from x, that is, elements for which there exists a chain

y←→x←→YA←→XA←→u.

We denote by Tr the reduced trace map of A, and by tr the trace
map of the extension F [x]/F . The action of y by conjugation on F [x]
is denoted by σ, and the notation N(λ) is preserved for the norm of
elements in F [x]. Since A = F [x, y] =

∑
F [x]yj, we can write every

u ∈ A in the form u = λ0+λ1y+λ2y
2 for unique λ0, λ1, λ2 ∈ F [x]. Set

η = λ1 · σλ2.

Remark 3.1. Assuming u ̸∈ F , we have that u ∈ YA iff Tr(u) =
Tr(u2) = 0. As Tr(λy) = Tr(λy2) = 0 for every λ ∈ F [x], a simple
computation yields the following equivalent conditions:

tr(λ0) = 0(1)

γ tr(η) = tr(λ2
0)(2)

Under these assumptions, one can compute that u3 = N(λ0) +
γ N(λ1) + γ2N(λ2).

Lemma 3.2. The element u is at distance 11
2
from x if and only if the

following equations have a solution with f1, f2 ∈ F , λ ∈ F [x]∗:

f1γ(λ · σλ2 − σ2λ · λ2) + f2γ · σλ · (λ · σ2λ1 − σ2λ · λ1) = −λ0(3)

f1(σλ0 − λ0) + f2γ(σλ · σ2λ2 − σ2λ · λ2) = 0(4)

f1(λ · σλ1 − σλ · λ1) + f2 · λ · σλ · (σ2λ0 − λ0) = λ2(5)

Proof. The elements x,u are at distance 11
2
iff there are some y′ ∈ YA

and x′ ∈ XA such that x←→y′←→x′←→u form a chain. By Lemma
2.3, we can write y′ = λy for some λ ∈ F [x], and then x′ − x ∈ F [λy].
Thus x′ = x + f0 + f1λy + f2(λy)

2 for some f0, f1, f2 ∈ F , and by
Remark 2.4 we may take f0 = 0. The only remaining condition is that
ux′ − x′u = u, and comparing coefficients of y in both sides, we get
Equations (3)–(5). �

Let K = F [x] be a cyclic extension of dimension 3 of F , as before.
The following facts are easily checked.

Remark 3.3. (i) For every α0, α1, α2 ∈ F , we have that trK/F (α0+
α1x+ α2x

2) = −α2.
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(ii) For every ϕ ∈ K, if trK/F ϕ = trK/F ϕ
2 = 0, then ϕ ∈ F .

(iii) The map (σ−1) : K→K defined by (σ−1)a = σ(a)−a is onto
the subspace {ϕ ∈ K: trK/F ϕ = 0}.

(iv) trK/F ϕ = 0 iff (σ − 1)ϕ ∈ F .

Proof. (i) follows since the minimal polynomial of x is of the form
x3 − x− θ = 0. (ii),(iii) follow trivially from (i), and (iv) follows since
for every ϕ ∈ K we have that (σ − 1)2ϕ = (σ2 + σ + 1)ϕ. �
Proposition 3.4. Assume u = λ0 +λ1y+λ2y

2 as before, and λ0 ∈ F .
Then u is at distance 11

2
from x if and only if the following holds:

a. λ2 = 0, or
b. λ2 ̸= 0, λ1 ̸= 0 and η ̸∈ F , or
c. λ2 ̸= 0, λ1 ̸= 0, η ∈ F , and λ0 N(λ1) = η2γ.

These conditions may look a little less random in light of the fol-
lowing observation: assuming λ0 ∈ F , we have that η ∈ F iff F [u] =
F [λ1y]. If this is the case, then u2 ∈ F + F (λ1y)

2 iff λ0 N(λ1) = η2γ.

Proof. Case 1: λ2 = 0. We must have λ1 ̸= 0, for otherwise u =
λ0 ∈ F [x] would be separable. If λ0 = 0, then by Remark 2.3.(i)
we have the chain y←→x←→y←→x←→λ1y = u. Otherwise, choose
f1 = 0. Substituting, we find that Equations (4) and (5) are satisfied,
and Equation (3) becomes

f2γ

(
σ2(

λ1

λ
)− λ1

λ

)
· N(λ) = −λ0,

which can be solved by choosing λ = x−1λ1 and f2 = θλ0

γN(λ1)
, where

θ = N(x) ∈ F . This results in the chain

x←→y′ = x−1λ1y←→x+ λ0y
′−1←→u.

Case 2: λ2 ̸= 0. If λ1 = 0 then equation (5) has no solution. Thus
we assume λ1 ̸= 0. In particular, η = λ1 · σλ2 ̸= 0.

Case 2.1: η ̸∈ F . Choose f2 = 0 and f1 = 1. Then Equation (4)
vanishes, and substituting λ2 = σ2η/σ2λ1, Equations (3),(5) become

ηλ/λ1 − σ2(ηλ/λ1) = −λ0/γ,

λ/λ1 − σ(λ/λ1) = σ2(η)/N(λ1),

which is solved by λ = λ2·σ2(λ2)−γ−1λ0λ1

σ(η)−η
. This satisfies λ ̸= 0, for

otherwise γ N(λ2) = λ0η, contrary to the assumption η ̸∈ F . Then we
have the following chain: x←→λy←→x+ λy←→u.

Case 2.2: η ∈ F . We cannot have f2 ̸= 0, for then Equation (4) will
force λ/λ1 ∈ F , and from Equation (5) we then get η = 0, contrary
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to the assumption λ2 ̸= 0. Thus we have f2 = 0, and the equations
become

f1

(
σ(

λ

λ1

)− λ

λ1

)
=
−λ0

γη
=
−σ2(η)

N(λ1)
,

for which, by Remark 3.3.(iii), there is a solution λ iff λ0 N(λ1) = γη2.
Indeed we can take f1 = 1 and λ = −λ2σ(λ1)

−1x, and the resulting
chain is x←→λy←→x+ λy←→u �

Corollary 3.5. Let x ∈ XA, then x and −x are at distance at least 3.

Proof. Choose y such that (x, y) ∈ XYA. We show that there is no
chain y←→x←→YA←→XA←→u←→−x←→y2. Every appropriate u
is, by Remark 2.3.(i), of the form u = λy2 for some λ ∈ F [−x] = F [x],
and then the completion is impossible by the last proposition. �

Corollary 3.6. For every y ∈ YA, the distance between y and y2 is at
least 3.

Proof. Otherwise, there is a chain

y←→x′←→YA←→XA←→y2,

but since −x′, y2 form a standard pair of generators, it follows that
the distance between x′ and −x′ is at most 2, contrary to the former
corollary. �

For the rest of the section we no longer assume λ0 ∈ F . Let b =
σ(λ0)−λ0, then b ∈ F by Equation (1) and Remark 3.3.(iv). Moreover,
since tr(λ0) = 0, we have that λ0 = a+ bx for a ∈ F .

Proposition 3.7. Let x, y form a standard pair of generators and u =
λ0 + λ1y + λ2y

2 ∈ YA where λ0 = a+ bx and η = λ1 · σλ2 as above. If
λ0 ̸∈ F and γ(σ2η − η) = bλ0, then u is at distance 11

2
from x.

Proof. Set x′ = x − b−1λ2y
2 and y′ = λ2 · σ2λ2 · y. Then the first two

pairs in the chain

x←→y′←→x′←→u

follow from Remark 2.3. For the third pair, compute that ux′ − x′u =
γb−1(σ2η − η) + λ1y + λ2y

2, which equals u by the assumption. �

Note that the assumption γ(σ2η−η) = bλ0 implies (but is not implied
by) Equation (2).

The following remark is given as a counterpart for Proposition 3.4,
and is not needed later.
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Remark 3.8. Assume u = λ0 + λ1y + λ2y
2 as before, and λ0 ̸∈ F .

Then there exist homogeneous quadratic forms QI ,QII in two variables
over F , explicitly stated in the proof, such that u is at distance 11

2
from

x if and only there are g, f1 ∈ F such that

QI(g, f1) = 0,

QII(g, f1) ̸= 0.

Proof. Since λ0 ̸∈ F , by Remark 3.3.(ii) we have that trλ2
0 ̸= 0, so by

Equation (2), η ̸= 0 and thus also λ1, λ2 ̸= 0. Moreover, Equation (4)
has no solution with f2 = 0, so we may assume f2 ̸= 0.

We write

(6) λ =
g + f1 · σ2λ0

f2γ · σλ2

for g ∈ K. Then Equation (4) is equivalent to g ∈ F , and we assume
this is the case. Recall that by Lemma 3.2 we need to solve Equations
(3)–(5) with f1, f2 ∈ F and λ ∈ K, so this now becomes solving Equa-
tions (3) and (5) with f1, f2, g ∈ F , f2 ̸= 0. Write λ0 = a + bx with
a, b ∈ F . Note that from Equation (2) and Remark 3.3.(i), we get that
γ tr(η) = tr(λ2

0) = −b2.
Denote by

Q0(s, t) = (σ2η − η)s2 + (σ2λ0 · η − σλ0 · σ2η)st

+ (γbN(λ2) + λ0(σ
2λ0 · σ2η − σλ0 · η))t2,

Q2(s, t) = −bs2 + (γ(ση − η) + b · σλ0)st

+ (γ(σ2λ0 · ση − λ0η)− bλ0 · σ2λ0)t
2

the two quadratic forms in s, t over K.
Substituting (6) in Equations (3),(5), multiplying by f2γ N(λ2) in

the first case and by f2γ
2 · σλ2 · σ2λ2 in the second case, we get the

following system of equations, in the variables g, f1 ∈ F , f2 ∈ F ∗:

Q0(g, f1) = −λ0f2γ N(λ2)(7)

Q2(g, f1) = f2γ
2 N(λ2).(8)

It can be checked that Q2 is actually a quadratic form over F . Q0,
however, is not defined over F (the coefficient σ2η−η ̸∈ F , for otherwise
we would have b2 = γ tr η = 0 by Remark 3.3.(iv)).

Fortunately we have that trQ0 = 0, so by Remark 3.3.(i), the co-
efficients of Q0 lay in the two dimensional F -space F + Fλ0 ⊂ K.
Write

Q0 = QI + λ0QII
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for the respective components. Then we can compute QII =
1
b
(σ(Q0)−

Q0) to be

QII(s, t) = − tr(η)/b · s2 + tr(λ0 · ση)/b · st
− tr(λ0 · η · σλ0)/b · t2

and so QI = Q0 − λ0QII is

QI(s, t) = (σ2η − η − bλ0/γ)s
2 + (σ2λ0 · σ2η − σλ0 · η + bλ2

0/γ)st

+ (γbN(λ2)− bN(λ0)/γ)t
2.

It may not be so obvious, but one can check that QI is indeed defined
over F .

Using this decomposition, Equation (7) now becomes

QI(g, f1) = 0(9)

QII(g, f1) = −f2γ N(λ2)(10)

Again this is not immediate, but one can compute that Q2 = −γQII .
Thus solving Equations (7),(8) is equivalent to solving Equations (9)
and (10). Recall that we only assumed f2 ̸= 0, so all we have to do is
find a zero of QI which is not a zero of QII , as claimed. �

Example 3.9. Suppose γ(σ2η − η) = bλ0 as in Proposition 3.7. The
coefficient −tr(η)/b = b/γ of s2 in the form QII(s, t) is nonzero, so if
we substitute f1 = 0 and g = 1 in QI ,QII we get QI(1, 0) = σ2η −
η − bλ0/γ = 0 and QII(1, 0) = − tr(η)/b ̸= 0. By Remark 3.8, u is at
distance 11

2
from x, in accordance with the above mentioned proposition.

4. A Proof of Theorem 2.6

Let A be a division p-algebra of degree p = 3. We are given two
elements x, z ∈ XA, and wish to find a chain

x←→YA←→XA←→YA←→XA←→YA←→z.

Choose (using Remark 2.2.(i)) elements y, u, such that x, y and z, u
are standard pairs of generators. For x, y, u we use the notations of the
previous section: σ is the action of conjugation by y on F [x], N(λ) is
preserved for the norm of elements in F [x], u = λ0 + λ1y + λ2y

2 for
λ0, λ1, λ2 ∈ F [x], and η = λ1 · σλ2. Also b = σλ0− λ0, and λ0 = a+ bx
for a, b ∈ F . Similarly, whenever we specify an element u′, the same
notation is used: u′ = λ′

0 + λ′
1y+ λ′

2y
2, η′ = λ′

1 · σλ′
2, and λ′

0 = a′ + b′x.

Remark 4.1. For every α ∈ F we have that u + α is at distance 11
2

from z.
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Proof. Case 1 of Proposition 3.4 (with z, u in place of x, y and u + α
in place of u) gives the chain

u+ α←→z + αu−1z←→z−1u←→z←→u.

�
Proof of Theorem 2.6. Case 1: λ0 ∈ F . Note that tr(η) = 0 by Equa-
tion (2). If λ2 = 0, then we have the chain

y←→x←→YA←→XA←→u←→z

by Proposition 3.4. So we assume λ2 ̸= 0.
Case 1.1: λ1 = 0. Then u = λ0 + λ2y

2. Set z̃ = −x − λ0x
γ·σλ2

y,

and check that z̃, u form a standard pair of generators. Compute that

z̃u = λ0x− λ2
0x

γ·σλ2
y − xλ2y

2, and set u′ = z̃u. Then for u′ we have b′ =

σ(λ0x)− λ0x = λ0, a
′ = λ′

0 − b′x = 0, and η′ = λ′
1 · σλ′

2 =
1
γ
λ2
0(x+ x2).

Case 1.1.1: λ0 ̸= 0 (so that λ′
0 ̸∈ F ). Compute that γ(σ2η′ − η′) =

xλ2
0 = b′λ′

0, so by Proposition 3.7, u′ is at distance 11
2
from x, and we

have the following chain:

y←→x←→YA←→XA←→u′←→z̃←→u←→z.

Case 1.1.2: λ0 = 0. Then u = λ2y
2 and thus −x + u, u form a

standard pair of generators. Choose u′ = (−x+ u)u = (γλ2 · σ2λ2)y −
(xλ2)y

2, so that we have λ′
0 = 0, λ′

2 ̸= 0, λ′
1 ̸= 0, and η′ = λ′

1 · σλ′
2 =

−γ N(λ2)σ(x) ̸∈ F . By Case b. of Proposition 3.4, u′ is at distance 11
2

from x, and the resulting chain is

y←→x←→λy←→x+ λy←→u′←→−x+ λ2y
2←→λ2y

2 = u←→z

for λ = −x(x−1)
γ·σλ2

.

Case 1.2: λ1 ̸= 0. If λ2 = 0, or λ2 ̸= 0 but η ̸∈ F , there is a chain

y←→x←→YA←→XA←→u←→z

by Proposition 3.4. So suppose λ2 ̸= 0, and η ∈ F ∗. Choose α =
γη2

N(λ1)
− λ0, then for u′ = u+ α we have that λ′

1 = λ1 ̸= 0, λ′
2 = λ2 ̸= 0,

λ′
0 = α + λ0 ∈ F , and η′ = η. But now we have λ′

0N(λ
′
1) = η′2γ, so

from Case c. of Proposition 3.4 and Remark 4.1, we get the chain

y←→x←→λy←→x+ λy←→u′←→zαu
−1z←→z−1u←→z←→u

where λ = −xλ2

σλ1
.

Case 2: λ0 ̸∈ F . In view of the Remark 4.1, it is enough to show
that there is some α ∈ F such that x, u+ α are at distance 11

2
. Recall

that λ0 = bx + a where a, b ∈ F , so by Equation (2) we also have
γη = η0 + η1x+ b2x2 for η0, η1 ∈ F . Choose α = b− a− η1/b, then for
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u′ = u + α we have that η′ = η, and γ(σ2η − η) = b2(x + 1) − η1 =
bλ0 + bα = bλ′

0. By Proposition 3.7 we thus have the chain

x←→λ2 · σ2λ2 · y←→x− b−1λ2y
2←→u′←→z + αu−1z←→z−1u←→z,

and we are done. �

5. The geometry of XYA

Let A be a division algebra of degree 3 over a field F of character-
istic p = 3. In this section we describe some properties of the graph
XYA and the graphs induced on XA and YA, and present some special
subgraphs. It seems reasonable to slightly alter the notation for this
purpose.

Recall the equivalence relations defined in Remark 2.4. In this sec-
tion we let XA,YA denote the sets of equivalence classes (rather than
the sets of points, as done previously). Again, XYA is the bipartite
graph whose vertices are XA ∪YA, with an edge connecting the classes
[x], [y] iff x, y are a standard pair of generators. We view XA and YA

as subgraphs of XYA, where two points x, x′ ∈ XA are connected iff
there is there is some y ∈ YA such that (x, y), (x′, y) ∈ XYA. Thus
the distance induced by XYA on XA and YA is the usual distance in
graphs.

Theorem 2.6 bounds the diameter of XA to be ≤ 3, and this bound
is shown to be exact in Corollary 3.5. Applying Remark 2.2, we see
that the diameter of YA is bounded by 4. A lower bound of 3 is given
by Corollary 3.6

Fix some y ∈ YA. The elements x ∈ XA connected to y are at
distance 1 from one another, so they form a complete subgraph in XA.
The same thing happens in YA around any x ∈ XA.

Subgraphs of XYA are more interesting. Proposition 2.5 shows that
XA and YA are simple graphs (i.e., there are no multiple paths between
neighbors). It follows that XYA does not contain squares. Let x, y be
a fixed standard pair of generators, and let γ = y3. Set ỹ = γ+ y− y2,
and x̃ = x+ xy. Then we get the following hexagon:

xy //

vvmmmm
mm

x̃oo
++WWWW

WWWWW
W

x

66mmmmmm

((QQ
QQQ

Q xy + ỹ
ssggggg

kkWWWWWWWWWW

y //

hhQQQQQQ
x+ γ − ỹoo

33ggggg
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This can be generalized, to the following:

x ll
,,YYYYYY

YYYYYYOO

��
xy + αy kk

++XXXXX
XXX

y
OO

��

x̃+ αy33
ssfffff

ỹ//oo

xy + ỹ + αy22rrfffff
x+ γ − ỹ

For every α ∈ F , this figure is a triangle in XA, together with the
corresponding triangle in YA. As α varies, the complex is rotated
along the fixed axis x←→y←→x+ γ − ỹ, but with all the heads of
the resulting triangles connected to a single point ỹ. In particular, we
get infinitely many different chains of length 11

2
connecting x and ỹ. It

also shows a point (x) connected to a star (the points {x̃+ ay} around
ỹ) but not to its center, and other similar phenomenon.
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