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Abstract. We find a semigroup Qn, whose category of partial representations
contains the representation category Rep(Fn) of the free left regular band Fn.

We use this to construct a resolution for the absolute kernel of a representation

of Fn, for which the kernel Spn of the Markov operation in the Tsetlin library
model is a prominent example. We obtain a formula for the dimension of

the absolute kernel, generalizing the equality of the dimension of Spn to the

number of derangements of order n.

1. Introduction

Counting derangements (namely permutations without fixed points) is a com-

pulsory exercise on the inclusion-exclusion formula. This number is naturally en-

countered in a classical Markov model called the Tsetlin library: The state space of

the Tsetlin library is the set Sn of permutations on n books placed on a single shelf;

in each step, one of the books is selected (at random) and re-stacked at the end of

the shelf. The n possible moves, ϵ1, . . . , ϵn, generate a semigroup Fn, which is the

free “left regular band” on n generators. Viewing F [Sn] as a linear representation

of Fn, where F is a field, the dimension of the “absolute kernel”, K =
⋂
Ker(ϵj),

is equal to the number of derangements, which is [e−1n!].

This paper studies the absolute kernel of an arbitrary representation of Fn. The
key idea is to factor the generators ϵj as ϵj = µjπj , where πj and µj are partial

linear transformations on a larger space, so that πj and µj are weak inverses of each

other, and all the πj commute. This setup defines an ambient semigroup Qn ⊃ Fn,
whose partial representations correspond to representations of Fn, with Ker(ϵj) =

Ker(πj). This approach lets us explicitly construct a resolution (11) for K, based

on inclusion-exclusion operators, cf. Theorem 5.3.

Motivated by [2], let us spell out an application in the language of noncommuta-

tive polynomials, which uses and extends exactness of (11) at Pn−1. Fix k < n. For

each subset S ⊆ {1, . . . , n} of cardinality k, let fS be a multilinear polynomial in

the variables {xi | i ∈ S}∪{y1, y2, . . .}. We say that this system S = {fS : |S| = k}
is coherent if for every S of cardinality k − 1, and every i, i′ ̸∈ S, we have that
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(fS∪{i})|xi=1 = (fS∪{i′})|xi′=1. We say that a multilinear polynomial g in the vari-

ables {x1, . . . , xn} ∪ {y1, y2, . . .} is a common ancestor of S = {fS} if for every

subset S of cardinality k, g|xi 7→1,i̸∈S = fS .

Theorem (Corollary 12.1). Every coherent system of multilinear polynomials has

a common ancestor.

Having a resolution at hand leads to a general formula for the dimension of the

absolute kernel:

Theorem (Theorem 13.4). Let V be a finite dimensional representation space

of Fn, whose action is generated by endomorphisms ϵj ∈ End(V ). The absolute

kernel has dimension

dim(
⋂
j

Ker(ϵj)) =

n∑
k=1

(−1)k−1
∑

i1<···<ik

dim(Ker(ϵi1 · · · ϵik)).

This paper has three parts. In Section 2 we define the semigroup Qn and show

that it contains the free regular band Fn. In Section 3 we define inclusion-exclusion

systems, which are partial representations of Qn, and show that they induce repre-

sentations of Fn. In Section 4 we prove that every representation of Fn corresponds

to a unique inclusion-exclusion system, establishing (in Theorem 4.6) the equiva-

lence of categories Rep(Fn)∼= IE(Qn).

Inclusion-exclusion systems are used in the second part to construct a resolu-

tion for the absolute kernel K of a representation of Fn, namely the subspace⋂
e ̸=1 Ker(e). For the Tsetlin library, this kernel can be viewed as the space of

Spechtian polynomials. The resolution is described in Section 5, and we prove

that it is indeed a resolution in Sections 6–8 by proving a relation of the form

∂k = ∂k ◦ sk − sk−1 ◦ ∂k−1, where sk is the multilayered Tseltin library operator.

The final part provides some applications. We specialize to the case n = 2 in

Section 9 and provide explicit formulas. This is generalized in Section 10, where

we show that coherence is always a result of a common ancestor. This is used

to prove in Section 11 the exactness at Pn−1 by an explicit, characteristic free,

inclusion-exclusion formula. Further applications are given in Section 12, where we

characterize systems of multilinear polynomials, on all subsets of a given variable

set, that are obtained by substitution from a common polynomial. Diverging some-

what from the main theme of this paper, we also discuss distributions on partial

permutations which are induced by a distribution on permutations of the full index

set. Finally in Section 13 we derive, from the resolution, dimension formulas for

the absolute kernel of any representation of Fn.

2. An ambient semigroup for the free left regular band

Left regular bands are an important class of semigroups (see [3]). Of particular

interest for us is the free left regular band Fn, which can be used to analyze a famous
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Markov chain model called the Tsetlin library [9, Section 15.3.1]. We construct a

semigroup Qn containing Fn, and use it to find the eigenvalues for the Markov

model.

2.1. The free left regular band. A band (also called an idempotent semigroup)

is a semigroup whose elements are all idempotents (so that u2 = u for every u). A

band satisfying the identity uvu = uv is called a left regular band. Being defined

by identities, the collection of left regular bands is a variety. The free left regular

band on n generators e1, . . . , en is composed of the products ei1 · · · eit , for distinct
indices i1, . . . , it, and can be defined by the relations

(1) ei1 · · · eitei1 = ei1 · · · eit distinct i1, . . . , it,

see for example [7, Example 2.2]. We denote this semigroup by Fn.
Left regular bands appear in various contexts. For example, the faces in a hyper-

plane arrangement in the Euclidean space form a left regular band with respect to

Tits projection operation (see [6]). The irreducible representations of finite bands

over any field are 1-dimensional [3, Thm 3.1]. However, our main motivation is

a natural n!-dimensional representation, which we generalize and describe in the

language of noncommutative polynomials.

Example 2.1. Fixing an arbitrary set Y , let Wn,Y be the space of multilinear

polynomials in the non-commuting variables {x1, . . . , xn} ∪ Y . The semigroup Fn
acts on Wn,Y by

ei : f(x1, . . . , xn;Y ) 7→ f(x1, . . . , 1, . . . , xn;Y )xi.

This representation (for Y = ∅) describes the “Tsetlin library”, whose “books”

are the letters x1, . . . , xn. The word xσ(1) · · ·xσ(n) corresponds to a permutation

σ ∈ Sn of the books on a single shelf. The generator ei can be viewed as re-

stacking the book xi at the end of the line. Applying the ei at random (via some

fixed distribution, reflecting the popularity of the books) defines a Markov chain

on the n! permutations. Taking a linear perspective, Fn acts on the space Wn,∅. In

particular it acts on its subset of distribution elements, namely elements whose

coefficients sum up to 1, as they encode (over the real numbers when the coefficients

are positive) distributions on the n! permutations. Likewise it acts on the space of

elements whose coefficients sum up to zero, which is of interest in PI-theory. The

eigenvalues and eigenstates of this action on Wn,∅ are known, [9, Section 15.6.1].

2.2. An ambient semigroup. What if we borrow a book and do not immediately

restack it? The library will not hold the complete set of books, and we still want to

keep track of the distribution of partial permutations. We will do that by studying

partial representations of a semigroup Qn ⊃ Fn.
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Let Qn denote the semigroup generated by a1, . . . , an and b1, . . . , bn, subject to

the relations

biaibi = bi;(2)

aibiai = ai;(3)

biaj = ajbi (i ̸= j);(4)

bibj = bjbi.(5)

Further, let Q′
n denote the semigroup obtained from Qn by adding the relation

(6) biai = 1

(equivalently Q′
n is defined by (4), (5) and (6)). There is a natural projection

Qn → Q′
n.

Lemma 2.2. In the semigroup Qn, for any distinct i1, . . . , it, we have that

(ai1bi1) · · · (aitbit) = ai1 · · · aitbi1 · · · bit .

Proof. By induction on t and the relation (4),

(ai1bi1) · · · (aitbit) = ai1 · · · ait−1
bi1 · · · bit−1

aitbit = ai1 · · · ait−1
aitbi1 · · · bit−1

bit .

□

Proposition 2.3. The map Fn → Qn, sending ei 7→ aibi, is a well-defined embed-

ding.

Proof. We first show that the map Fn → Qn is well defined. Since (1) gives a

complete set of defining relations for Fn, it suffices to verify its image in Qn. For

any distinct indices i1, . . . , it we have by Lemma 2.2, (5) and (2) that:

(ai1bi1)(ai2bi2) · · · (aitbit)(ai1bi1) = ai1 · · · aitbi1 · · · bitai1bi1
= ai1 · · · aitbi2 · · · bitbi1ai1bi1
= ai1 · · · aitbi2 · · · bitbi1
= ai1 · · · aitbi1bi2 · · · bit
= (ai1bi1)(ai2bi2) · · · (aitbit).

Next, in Q′
n there are reduction rules for every instance of biaj , so every el-

ement in Q′
n can be uniquely presented as a product aj1 · · · ajsbj′1 · · · bj′s′ where

j1, . . . , js are arbitrary and j′1 ≤ · · · ≤ j′s′ . It follows that ranging over distinct

indices i1, . . . , it, the elements (ai1bi1)(ai2bi2) · · · (aitbit) = ai1 · · · aitbi1 · · · bit are

distinct in Q′
n, so the composition of maps Fn → Qn → Q′

n is injective. □

Remark 2.4. The proof above shows that Q′
n (and thus Qn) contains a free semi-

group ⟨a1, . . . , an⟩.
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2.3. The sum of generators. Let F be a field. After embedding Fn ↪→ Qn in

Proposition 2.3, we are interested in the sum s = e1 + · · · + en, an element of

the semigroup algebra F [Qn]. The minimal polynomial of weighted sums
∑
ωiei,

in its action on the Tsetlin library of Example 2.1, can be computed from the

representation theory of Fn [9, Section 15.5], but a proof over Qn requires less

machinery.

Proposition 2.5. The element s satisfies the polynomial

hn(λ) = λ(λ− 1) · · · (λ− n).

(The action of s on the Tsetlin library satisfies hn(λ)/(λ− (n− 1)); but this is

irrelevant for us).

Proof. An element of Qn is k-standard if it has the form eS = ai1 · · · aikbi1 · · · bik
where S = (i1, . . . , ik) is an ordered set with distinct indices. There are n!

(n−k)!
k-standard monomials, corresponding to ordered subsets of cardinality k.

We claim that eSeS′ = eS∪S′ . Indeed, for every common index i ∈ S ∩ S′, one

can “push” the first and second appearances of bi until they are adjacent to the ai

in between, and then replace biaibi by bi by (2) and move this generator to the

right-hand side of the product.

Fix ℓ ≤ k, k′. There are
(

n
ℓ , k−ℓ , k′−ℓ , n−(k+k′−ℓ)

)
k!k′! pairs of unordered sets

(S, S′) of cardinalities k, k′ with |S ∩ S′| = ℓ, corresponding to choosing the index

sets S ∩ S′, S − S′ and S′ − S, and then ordering S and S′.

For k = 1, . . . , n, let ck denote the sum of all the k-standard monomials. In

particular s = c1. By the previous argument, ckck′ =
∑
ℓ

(
k
ℓ

)(
k′

ℓ

)
ℓ!ck+k′−ℓ, where

the sum is over ℓ = max {0, k + k′ − n}, . . . ,min {k, k′}.
In particular, for k = 1, . . . , n−1 we have that c1ck = ck+1+kck; and c1cn = ncn.

It follows that (c1 − k)ck = ck+1, so 0 = (c1 − n)cn = (c1 − n)(c1 − (n− 1))cn−1 =

· · · = (c1 − n) · · · (c1 − 1)c1, proving our claim. □

3. Partial representations of Qn

We now discuss partial representations of Qn, the semigroup introduced in the

previous section, in connection with (full) representations of Fn.

3.1. Partial transformations. Let V be a vector space. A partial linear trans-

formation f :V → V is a linear transformation defined on a subspace dom(f). The

composition f ◦ g of partial linear transformations has domain g−1(dom(f)), so it

is defined by (f ◦ g)(x) = f(g(x)) where both evaluations in the right-hand side

make sense. The set PEnd(V ) of partial linear transformations is thus a monoid

under composition, where the identity map serves as the identity element. The

subgroup of invertible elements is GL(V ). Every partial zero map is a right zero in

the monoid, so there are no left zeros (unless V = 0). See, for example, [8]. Partial

transformations (regardless of linearity) are discussed in [9, Section 5.6].
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Figure 1. Conditions (3b) and (3c) for inclusion-exclusion systems

A partial representation of a semigroup G over the field F is a homomorphism

from G to PEnd(V ), where V is a vector space over F . A morphism from ρ :G→
PEnd(V ) to ρ′ :G → PEnd(V ′) is a linear transformation ψ :V → V ′ such that

for every g ∈ G and every x ∈ dom(ρg), ψ((ρg)x) = (ρ′g)(ψx). This defines a

category PRep(G) of partial representations of G over F . The classical category

Rep(G) of (full) representations is a subcategory of PRep(G). For example, if G

is a group then PRep(G) = Rep(G).

3.2. Inclusion-exclusion systems. Any partial representation of Qn induces a

partial representation of the subsemigroup Fn. We construct partial representations

with “built-in” homogeneity, which restrict in a natural way to a full representation

of Fn. We will use the term index set for subsets of {1, . . . , n}.

Definition 3.1. An inclusion-exclusion system ({PS}, {πj , µj}) (of order n)

is composed of vector spaces PS for each subset S ⊆ {1, . . . , n}, and partial linear

transformations π1, . . . , πn and µ1, . . . , µn on the direct sum P =
⊕
PS, such that:

(1) For every j:

(a) the domain of πj is
⊕

j∈S PS, and

(b) the domain of µj is
⊕

j∈S PS−{j};

(2) For every j and every subset S containing j:

(a) πj restricts to a map PS → PS−{j}, and

(b) µj restricts to a map PS−{j} → PS;

(3) The maps satisfy:

(a) πjµj is the identity on each summand PS−{j} (j ∈ S),

(b) πiµj = µjπi (i ̸= j) and

(c) πiπj = πjπi.

Notice that (3a) does not mean that πjµj = 1; indeed, πjµj is a partial identity,

defined on the components PS−{j}. This equality does imply that πjµjπj = πj

and µjπjµj = µj as partial linear transformations on the full space P. Likewise,

(3b) and (3c) are equalities of partial linear transformations (defined on the same

subspace, and equal when defined). Figure 1 depicts conditions (3b) and (3c).
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It is useful to view the maps πj as going “downwards” from the top space

P{1,...,n} of the system, and the µj as going “upwords”. The relations provide the

following:

Proposition 3.2. An inclusion-exclusion system defines a partial representation

of Qn, by sending aj 7→ µj and bj 7→ πj.

Perhaps more significantly:

Proposition 3.3. An inclusion-exclusion system induces a full representation of Fn
on the space P{1,...,n} by letting the generators ej act via ϵj = µjπj.

Proof. Since ej 7→ ajbj defines an embedding Fn ↪→ Qn by Proposition 2.3, we

clearly have a partial representation of Fn on P =
⊕
PS . But the generators ϵj

are fully defined on the top space, so the restriction to the top space is a full

representation. □

We say that an inclusion-exclusion system {PS} of order n extends a repre-

sentation ρ :Fn → End(V ) if V = P{1,...,n} is the top space, and the induced

representation of Proposition 3.3 coincides with ρ. We offer a natural extension of

the Tsetlin representation from Example 2.1.

Example 3.4. Consider the “Tsetlin inclusion-exclusion system”. Fix a set Y

(which could be empty). For any subset S = {i1, . . . , ik} of {1, . . . , n}, let PS be the

space of multilinear polynomials in the letters {xi1 , . . . , xik} ∪ Y .

The map πj is defined on polynomials containing xj, by substituting xj 7→ 1.

The map µj is defined on polynomials not containing xj, by µj(f) = fxj.

This example continues Example 2.1: πj is now the operation of taking out the

book xj (assuming it is on the shelf), and µj is the operation of returning xj to the

back of the shelf (when it is not already on the shelf). It is easy to verify that:

(a) πjµj is the identity on each summand PS−{j} (j ∈ S);

(b) the operations of taking out xi and returning xj (j ̸= i) commute; and

(c) when taking out two books, the order of the removals does not matter.

We thus have verified that Example 3.4 is indeed an inclusion-exclusion system.

Notice that µiµj ̸= µjµi, because the order of the books at the end of the shelf is

xjxi in one case, and xixj in the other.

4. Extending representations

In this section we define the category IE(Qn) of inclusion-exclusion systems, and

show that it is equivalent to the category Rep(Fn) of representations of Fn.

4.1. Extensions. We first show that every representation of Fn extends to an

inclusion-exclusion system.

Proposition 4.1. Let ϵ1, . . . , ϵt ∈ End(V ) be idempotents generating a left regular

band. The kernel Ker(ϵσ(1) · · · ϵσ(t)) is independent of the permutation σ ∈ St.
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Proof. If ϵσ(1) · · · ϵσ(t)x = 0 then ϵσ(t)ϵσ(1) · · · ϵσ(t−1)x = ϵσ(t)ϵσ(1) · · · ϵσ(t)x = 0

by the identity uvu = uv, which proves that Ker(ϵσ(1) · · · ϵσ(t)) is invariant under

cyclic permutations of the indices. By the same argument applied to the first two

idempotents, if ϵσ(1) · · · ϵσ(t)x = 0 we also have that ϵσ(2)ϵσ(1)ϵσ(3) · · · ϵσ(t)x = 0,

so that the kernel is invariant under transpositions of the first two indices. But

together these two operations generate the symmetric group St. □

Needless to say, the product ϵσ(1) · · · ϵσ(t) itself does depend on σ.

Corollary 4.2. Let ϵ1, . . . , ϵt ∈ End(V ) be idempotents generating a left regular

band. For every permutation σ ∈ St, the map ϵ1 · · · ϵtx 7→ ϵσ(1) · · · ϵσ(t)x is well-

defined on ϵ1 · · · ϵtV .

We will let S̄ denote the complement of an index set S with respect to {1, . . . , n}.

Theorem 4.3. Every representation of Fn extends to an inclusion-exclusion sys-

tem.

Proof. We are given a representation of Fn on a vector space V , generated by

idempotent maps ϵ1, . . . , ϵn on V . For any index set S = {i1, . . . , it}, where i1 <
· · · < it, write ϵS = ϵi1 · · · ϵit .

We define an inclusion-exclusion system as follows. For every subset S, we take

(7) PS = ϵS̄V.

Thus the top space is P{1,...,n} = ϵ∅V = V , and the bottom space is P∅ = ϵ1 · · · ϵnV .

Next, let j be an index. For an index set S containing j, we define the operator

πj :PS → PS−{j} by

πj(ϵS̄x) = ϵS̄∪{j}x;

inserting, so to speak, ϵj in its natural place among the idempotents indexed

by S. This map is well-defined because ϵjϵS̄x is clearly determined by ϵS̄x, and we

can then apply Corollary 4.2 to reorder and obtain ϵS̄∪{j}x. Similarly, we define

µj :PS−{j} → PS by

µj(ϵS̄∪{j}x) = ϵS̄ϵjx,

which is again well-defined by Corollary 4.2. Here we simply push ϵj to the right,

retaining the other operators in their original order.

It remains to verify the relations (3a)–(3c) of Definition 3.1. Let S be an index

set containing j. For every x ∈ V we have that

πjµj(ϵS̄∪{j}x) = πjϵS̄(ϵjx) = ϵS̄∪{j}ϵjx = ϵS̄∪{j}x

by the identity uvu = uv, which proves (3a). For (3b) we need to verify that

πiµj = µjπi on PS−{j}, where i, j are distinct indices. Indeed, by definition

πiµjϵS̄∪{j}x = πiϵS̄ϵjx = ϵS̄∪{i}ϵjx = µjϵS̄∪{i,j}x = µjπiϵS̄∪{j}x.

Moreover if i, j ∈ S then

πiπjϵS̄x = πiϵS̄∪{j}x = ϵS̄∪{i,j}x = πjϵS̄∪{i}x = πjπiϵS̄x,
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so (3c) holds and we constructed an inclusion-exclusion system.

Finally, for every j ∈ S we have that

µjπjϵS̄x = µjϵS̄∪{j}x = ϵS̄ϵjx;

in particular for S = {1, . . . , n} we obtain that µjπj = ϵj on the top level, so the

system extends the given representation, as asserted. □

4.2. Morphisms. LetP = ({PS}, {πj , µj}) andP′ = ({P ′
S},
{
π′
j , µ

′
j

}
) be inclusion-

exclusion systems of the same order n. A morphism ψ :P → P′ is a set of linear

transformations ψS :PS → P ′
S such that for every index set S and every j ∈ S, the

following diagrams commute:

PS

πj

��

ψS // P ′
S

π′
j

��
PS−{j}

ψS−{j} // P ′
S−{j}

PSOO
µj

ψS // P ′
SOO
µ′
j

PS−{j}
ψS−{j} // P ′

S−{j}

Composition of morphisms is defined in the obvious manner. We thus have de-

fined the category IE(Qn), whose objects are inclusion-exclusion systems of order n.

Since every inclusion-exclusion system is in particular a partial representation ofQn,

IE(Qn) is a sub-category of PRep(Qn) defined above.

One can restrict an inclusion-exclusion system to the representation of Fn on the

top space, and a morphism ψ of inclusion-exclusion systems to a morphism ψ1,...,n of

the top spaces as representations of Fn. We say that ψ is an extension of ψ1,...,n. It

follows from the next remark that restriction defines a functor IE(Qn) → Rep(Fn):

Remark 4.4. Let ϕ :V → V ′ and ϕ′ :V ′ → V ′′ be morphisms of Fn-representations.
If ψ,ψ′ are extensions of ϕ, ϕ′, then ψ ◦ ψ′ is an extension of ϕ ◦ ϕ′.

The following theorem is the key in relating the two categories.

Theorem 4.5. Let ϕ :V → V ′ be a morphism of representations of Fn. Let P

and P′ be inclusion-exclusion systems extending V and V ′ respectively. Then there

is a unique morphism ψ :P → P′ extending ϕ.

Proof. Write P = ({PS}, {πj , µj}) and P′ = ({P ′
S},
{
π′
j , µ

′
j

}
). Let ϵ1, . . . , ϵn and

ϵ′1, . . . , ϵ
′
n be the generating idempotents for the given representations of Fn on V

and V ′, respectively. Thus ϵj = µjπj and ϵ′j = µ′
jπ

′
j on the top components

V = P{1,...,n} and V ′ = P ′
{1,...,n}.

For any index set S, write

(8) πS = πi1 · · ·πit

and

(9) µS = µi1 · · ·µit
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where S = {i1, . . . , it} is the set in increasing order; and similarly for π′
S and µ′

S .

By Lemma 2.2 we have that ϵS = µSπS , and ϵ′S = µ′
Sπ

′
S . Since the πj are sur-

jective on each component where they are defined, we have that PS̄ = πSV . And

since the µj are injective, we have that Ker(πS) = Ker(ϵS), which is contained in

Ker(e′S) = Ker(π′
S) because ϕ is a morphism of representations. We can therefore

define ψS̄ :PS̄ → P ′
S̄
by

ψS̄(πSx) = π′
Sϕ(x).

These maps clearly satisfy commutativity with respect to the πj and π′
j , and are

inductively defined by this condition. It remains to prove commutativity with

respect to µj and µ′
j . Let S be an index set containing j. Let x ∈ V , so that

πS̄∪{j}x ∈ PS−{j}. We need to prove that ψSµj(πS̄∪{j}x) = µ′
jψS−{j}(πS̄∪{j}x).

By definition of ψS we have that

ψSµj(πS̄∪{j}x) = ψSπS̄µjπjx = π′
S̄ϕµjπjx = π′

S̄ϕ ϵjx,

where we have used µjπi = πiµj for i ̸= j. On the other hand

µ′
jψS−{j}(πS̄∪{j}x) = µ′

jπ
′
S̄∪{j}ϕx = π′

S̄µ
′
jπ

′
jϕx = π′

S̄ϵ
′
jϕx,

and these are equal because ϕ(ϵjx) = ϵ′jϕ(x). □

Theorem 4.6. Every representation of Fn extends to a unique inclusion-exclusion

system.

Proof. Existence is Theorem 4.3. Let V be a representation of Fn, and let P

and P′ be extensions. By Theorem 4.5 there are unique extensions ψ :P → P′ and

ψ′ :P′ → P of the identity map V → V , so by Remark 4.4, ψ′ ◦ ψ is the identity

morphism of P and ψ ◦ ψ′ the identity morphism of P′, implying that ψ is an

isomorphism. □

In particular, the “dimension cube” of an inclusion-exclusion system {PS}, namely

the function S 7→ dim(PS), is determined by the representation of Fn on the top

component:

Proposition 4.7. Let V be a representation space of Fn, generated by endomor-

phisms ϵ1, . . . , ϵn. Let ({PS}, {πj , µj}) be an extension of V . Then, for any index

set S = {i1, . . . , it}, dimPS̄ = dim((ϵi1 · · · ϵit)V ).

Proof. In the extension constructed in Theorem 4.3, the dimensions are as stated

by (7). This extension is unique up to isomorphism by Theorem 4.6, so these are

the dimensions in any extension. □

5. The complex

We are interested in the absolute kernel of a representation V of the semi-

group Fn, which is the intersection of the kernels of all the elements 1 ̸= e ∈ Fn,
equivalently the intersection K =

⋂
Ker(ϵj) where ϵ1, . . . , ϵn are the maps defined
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by the generators e1, . . . , en of Fn. We study this space by constructing a resolution

of K, starting from 0 → K → V .

Let ({PS}, {πj , µj}) be the inclusion-exclusion system extending V (which exists

by Theorem 4.6). In particular µjπj = ϵj . Since each µj is injective, we also have

that

(10) K =
⋂

Ker(πj),

where the maps are considered when they are all defined, namely on the top space

V = P{1,...,n}.

We fix the following notation:

Notation 5.1. For i1 < · · · < ik, always in the range [1, n], we write Pi1,...,ik for the

space P{i1,...,ik}. For k = 0, . . . , n, let Pk =
⊕

i1<···<ik Pi1,...,ik be the direct sum,

composed of elements f =
∑
fi1,...,ik for vectors fi1,...,ik ∈ Pi1,...,ik . In particular

P0 = F and Pn = P1,...,n.

We tautologically set each component fi1,...,ik of an element f ∈ Pk to be an

alternating function of the indices. This agreement is critical to the symbol manip-

ulation throughout the paper.

The partial maps πj and µj respect the grading P =
⊕n

k=0 Pk, in the sense that

for every k > 0, πj is a partial linear transformation Pk → Pk−1, and µj a partial

linear transformation Pk−1 → Pk. In what follows we are always careful to apply

those maps only where they are defined.

Because of the equality (10), the absolute kernel K is equal to the kernel of the

map ∂n :Pn → Pn−1 defined by ∂n(f) =
∑n−1
j=0 (−1)jπj(f). This observation leads

us to define the chain complex

(11) 0 // K �
� // Pn

∂n // Pn−1

∂n−1 // · · · ∂2 // P1
∂1 // P0

// 0

where the boundary maps ∂k+1 :Pk+1 → Pk are defined for k = 0, . . . , n− 1 by

(12) ∂k+1(
∑

i0<···<ik

fi0,...,ik) =
∑

i0<···<ik

k∑
j=0

(−1)jπij (fi0,...,ik).

Proposition 5.2. (11) is indeed a chain complex.

Proof. A standard argument, using the fact that the πj commute, shows that

(13) ∂k ◦ ∂k+1 = 0.

□

Our goal in the coming sections is:

Theorem 5.3. The complex (11) is exact, provided that n! is nonzero in F .

Remark 5.4. In general (11) is a complex of vector spaces. Nevertheless, the sym-

metric group Sn acts on Fn and on Qn by permuting the generators, and for our key

example of the Tsetlin library, Example 3.4, the representation is Sn-equivariant.
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Since the boundary maps (and all other maps defined below) are symmetric with

respect to this external operation on the spaces Pk and the operators πj, we obtain

in this case a complex of Sn-modules.

Proposition 5.5. Writing f =
∑
i0<···<ik fi0,...,ik (for some k = 0, . . . , n− 1), we

have that

(∂k+1f)r1,...,rk =
∑

t̸∈{r1,...,rk}

πt(ft,r1,...,rk).

Proof. We are given an element f ∈ Pk+1. Fix r1 < · · · < rk. A summand

(−1)jπij (fi0,...,ik) in the right-hand side of (12) falls into the component Pr1,...,rk
precisely when (i0, . . . , îj , . . . , ik) = (r1, . . . , rk). This is the case when, for some

j = 0, . . . , k and t ∈ (rj , rj+1) (formally setting r0 = 0 and rk+1 = n+ 1), we have

that (i0, . . . , ij−1, ij , ij+1, . . . , ik) = (r1, . . . , rj , t, rj+1, . . . , rk); and then the entry

is

(−1)jπij (fi0,...,ik) = (−1)jπt(fr1,...,rj ,t,rj+1,...,rk) = πt(ft,r1,...,rj ,rj+1,...,rk).

□

6. Local Tsetlin libraries

Fix k = 0, . . . , n, and define the map sk :Pk → Pk by

(14) (skf)p1,...,pk =
∑
i

µpiπpi(fp1,...,pk).

This map acts on each summand Pp1,...,pk , because the (p1, . . . , pk)th entry of skf

is defined in terms of the same entry of f . The idempotents ϵpi = µpiπpi define a

representation of Fk on the space Pp1,...,pk . By Proposition 2.5, we have that sk

satisfies the polynomial

(15) hk(λ) = λ(λ− 1) · · · (λ− k).

The sk participate in the following connection with the differntials:

Proposition 6.1. We have (for k = 1, . . . , n) that

(16) ∂k ◦ sk − sk−1 ◦ ∂k = ∂k.
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Proof. Let f ∈ Pk, and compute by Proposition 5.5:

∂k(skf) =
∑

r1<···<rk−1

∑
t ̸∈{r1,...,rk−1}

πt((skf)t,r1,...,rk−1
)

=
∑

r1<···<rk−1

∑
t ̸∈{r1,...,rk−1}

πt

(
µtπt(ft,r1,...,rk−1

) +

k−1∑
i=1

µriπri(ft,r1,...,rk−1
)

)

=
∑

r1<···<rk−1

∑
t ̸∈{r1,...,rk−1}

(
πt(ft,r1,...,rk−1

) +

k−1∑
i=1

µriπtπri(ft,r1,...,rk−1
)

)

=
∑

r1<···<rk−1

 ∑
t ̸∈{r1,...,rk−1}

πt(ft,r1,...,rk−1
)

+

k−1∑
i=1

µriπri

 ∑
t ̸∈{r1,...,rk−1}

πt(ft,r1,...,rk−1
)


=

∑
r1<···<rk−1

[
(∂kf)r1,...,rk−1

+

k−1∑
i=1

µriπri
(
(∂kf)r1,...,rk−1

)]
= (∂kf) + sk−1(∂kf).

□

Let Zk = Ker(∂k) = {f ∈ Pk | ∂kf = 0} and Bk = Im(∂k−1), so as usual, by (13),

we have that Bk ⊆ Zk.

Proposition 6.2. The map sk :Pk → Pk preserves both Bk and Zk.

Proof. Suppose ∂kf = 0. Then 0 = (∂k ◦ sk − sk−1 ◦ ∂k − ∂k)f = ∂k(skf). Next

suppose f = ∂k+1g for some g ∈ Pk. Then skf = sk∂k+1g = ∂k+1(sk+1g − g) ∈
Im(∂k+1). □

7. Going up

For k = 0, . . . , n− 1, define a map θk :Pk → Pk+1 by

(17) θkf =
∑

i0<···<ik

 k∑
j=0

(−1)jµij (fi0,...,îj ,...,ik)

 .
When a set r∗ = {r1, . . . , rk−1} is fixed, we let j(x) be defined as the only index

for which rj(x) < x < rj(x)+1, with j(x) = 0 for x < r1 and j(x) = k − 1 for

rk−1 < x.

Proposition 7.1. Let k = 1, . . . , n. For g ∈ Pk−1,

θk−1g =
∑

r1<···<rk−1

∑
s̸∈r∗

(−1)j(s)µs(gr1,...,rk−1
).

Proof. Fix i1 < · · · < ik. A summand (−1)j(s)µs(fr1,...,rk−1
) belongs to the

component Pi1,...,ik if and only if (r1, . . . , rj(s), s, rj(s)+1, . . . , rk) = (i1, . . . , ik), in
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which case it is equal to (−1)j−1µij (gi1,...,îj ,...,ik) for j = j(s) + 1. But indeed

θk−1g =
∑
i1<···<ik

[∑k
j=1(−1)j−1µij (gi1,...,îj ,...,ik)

]
, where (−1)j−1 replaces (−1)j

in (17) because we are ranging over i1 < · · · < ik rather than i0 < · · · < ik−1. □

Proposition 7.2. Let k = 1, . . . , n− 1. Then

∂k+1θk + θk−1∂k = sk + (n− k).

Proof. In the computation below, when a set r∗ = {r1, . . . , rk−1} is fixed, we un-

derstand the sum over s and t as ranging over the indices 1, . . . , n, avoiding this

set. Let f ∈ Pk. By definition,

∂k+1θkf =
∑

i0<···<ik

k∑
j=0

(−1)jπij

 k∑
j′=0

(−1)j
′
µij′ (fi0,..., ˆij′ ,...,ik)


=

∑
i0<···<ik

∑
j ̸=j′

(−1)j+j
′
πijµij′

(
fi0,..., ˆij′ ,...,ik

)
+

k∑
j=0

πijµij

(
fi0,...,îj ,...,ik

)
=

∑
i0<···<ik

∑
j ̸=j′

(−1)j+j
′
µij′πij (fi0,..., ˆij′ ,...,ik)

+
∑

i0<···<ik

k∑
j=0

fi0,...,îj ,...,ik ;

in the left-most sum we range over k + 1 indices and select the indices of µij′ and

πij from them; the same element is obtained by ranging over k−1 indices and then

choosing the indices of µs and πt from the complement. We thus have:

=
∑

r1<···<rk−1

∑
s̸=t

(
(−1)j(s)+j(t)+1µsπt(fr1,...,rj(t),t,rj(t)+1,...,rk−1

)
)
+ (m− k)

∑
r1<···<rk

fr1,...,rk

=
∑

r1<···<rk−1

∑
s̸=t

(
(−1)j(s)+1µsπt(ft,r1,...,rk−1

)
)
+ (m− k)

∑
r1<···<rk

fr1,...,rk

=
∑

r1<···<rk−1

∑
s̸∈r∗

(−1)j(s)+1µs

 ∑
t̸∈{s}∪r∗

πt(ft,r1,...,rk−1
)

+ (m− k)f

=
∑

r1<···<rk−1

∑
s̸∈r∗

(−1)j(s)+1µs
(
(∂kf)r1,...,rk−1

− πs(fs,r1,...,rk−1
)
)
+ (m− k)f

=
∑

r1<···<rk−1

∑
s̸∈r∗

(−1)j(s)+1µs(∂kf)r1,...,rk−1

+
∑

r1<···<rk−1

∑
s̸∈r∗

(−1)j(s)µsπs(fs,r1,...,rk−1
) + (m− k)f

= −θk−1∂kf +
∑

p1<···<pk

[∑
i

µpiπpi(fp1,...,pk)

]
+ (m− k)f

= −θk−1∂kf + skf + (n− k)f,

where in the second to last equality we applied Proposition 7.1 for g = ∂kf . □

Corollary 7.3. Let k = 1, . . . , n− 1. If f ∈ Pk satisfies ∂kf = 0, then

∂k+1θkf = (sk + n− k)f.
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8. Conclusion of the proof of exactness

Recall the polynomial hk(λ) =
∏k
i=0(λ− i) from (15).

Lemma 8.1. Fix k = 1, . . . , n − 1. Then hk(λ)+(−1)khk(n)
λ+n−k is a polynomial with

integral coefficients.

Proof. We claim that λ+n−k divides hk(λ)+(−1)khk(n) as a polynomial over the

integers. Indeed, k−n is a root of hk(λ)+(−1)khk(n), as hk(k−n)+(−1)khk(n) =∏k
i=0(k− n− i) + (−1)k

∏k
i=0(n− i) =

∏k
i=0(k− n− i)−

∏k
i=0(i− n) = 0; and we

are done by Gauss’ lemma. □

Notice that hk(n) =
∏k
i=0(n− i) = n!

(n−k−1)! . We can now wrap up the compu-

tations.

Proof of Theorem 5.3. Fix k = 1, . . . , n−1. By the lemma, β(λ) = hk(λ)+(−1)khk(n)
λ+n−k

has integral coefficients, and we write (λ + n − k)β(λ) = hk(λ) + (−1)k n!
(n−k−1)! .

Projecting to F and taking the operator sk (defined in Section 6) for λ, we have by

Proposition 2.5 that (sk + n− k)β(sk) = hk(sk) + (−1)k n!
(n−k−1)! = (−1)k n!

(n−k−1)! .

Let f ∈ Pk be an element for which ∂kf = 0. By Proposition 6.2, ∂kβ(sk)f = 0

as well. Applying Corollary 7.3 we get

n!

(n− k − 1)!
f = (−1)k(sk + n− k)β(sk)f = (−1)k∂k+1θkβ(sk)f ∈ Im(∂k+1).

and since n! is invertible by assumption, we have proved that f ∈ Im(∂k+1). □

In other words, (11) is a resolution of
⋂
Ker(ϵj).

9. The case n = 2

In this section we specialize Theorem 5.3, on the exactness of the complex (11),

to the case n = 2. Let ({P12, P1, P2, P∅}, {π1, π2, µ1, µ2}) be an inclusion-exclusion

system for Q2, as depicted in Figure 2.

P12

π2
��

??
µ2

π1
��

__
µ1

P1

π1
��

__
µ1

P2

π2
��

??
µ2

P∅

Figure 2. An inclusion-exclusion system for Q2.

Our resolution of K = Ker(π1) ∩Ker(π2) takes the form

(18) 0 // K �
� // P12

∂2 // P1 ⊕ P2
∂1 // P∅ // 0

where the maps are

∂2f = (−π2(f), π1(f)),
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and

∂1(f1, f2) = π1(f1) + π2(f2).

Exactness at P12 is the statement that K = Ker(∂2), which is obvious. Exactness

at P∅ is trivial because the πj are surjective. As we see, even in this minimal case,

exactness at P1 is both intriguing and nontrivial.

Remark 9.1. Exactness of (18) at P1 = P1 ⊕ P2 is equivalent to the statement

that the fiber product P1 ×P∅ P2 is isomorphic to P12/K.

The fact that (18) is exact at P1 is a special case of Theorem 5.3, but we give

an explicit formula:

Proposition 9.2. Let f1 ∈ P1 and f2 ∈ P2 be such that π1f1 = π2f2. Then the

element

g = µ1f2 + µ2f1 − µ1µ2π2f2 ∈ P12

satisfies π1g = f2 and π2g = f1.

Proof. We first assume charF ̸= 2. By Proposition 7.2, ∂2θ1 + θ0∂1 = s1 + 1,

so multiplying by s1 from the right, using the fact that s21 = s1 (satisfying the

polynomial h1(λ) = λ2−λ), we obtain 1 = ∂2(θ1− 1
2θ1s1)+θ0(∂1−

1
2∂1s1); namely,

for every f ∈ P1 we have that f = ∂2(θ1 − 1
2θ1s1)f + θ0(∂1 − 1

2∂1s1)f . Since

∂1 ◦ s1 = ∂1 by (16) (as s0 = 0), when ∂1f = 0 we have that f = ∂2g for

g = (θ1 −
1

2
θ1s1)f.

In order to express this formula in terms of the πj and µj , let us recall the

maps s1 :P1 ⊕ P2 → P1 ⊕ P2 of (14) and θ1 :P1 ⊕ P2 → P12 of (17), defined by

s1(h1, h2) = (µ1π1h1, µ2π2h2)

and

θ1(h1, h2) = µ1h2 − µ2h1.

(We also have θ0 :P∅ → P1 by θ0h = (µ1h, µ2h), which will not be necessary

here). Write f = (−f1, f2) ∈ P1. Thus

g = (θ1 −
1

2
θ1s1)(−f1, f2)

= θ1(−f1, f2)−
1

2
θ1s1(−f1, f2)

= (µ1f2 −
1

2
µ1µ2π2f2) + (µ2f1 −

1

2
µ2µ1π1f1)

= µ1f2 + µ2f1 −
1

2
(µ1µ2 + µ2µ1)π1f1.

This element, although symmetric under switching indices, is not defined when

charF = 2. But π2[µ1, µ2] = [π2, µ1]µ2 + [µ1, π2µ2] = 0µ2 + [µ1, 1] = 0, and by
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symmetry π1[µ1, µ2] = 0 as well, so that Im([µ1, µ2]) ⊆ K. We may therefore

replace g by

(19) g′ = g − 1

2
[µ1, µ2]π1f1 = µ1f2 + µ2f1 − µ1µ2π1f1,

and this element is defined in any characteristic. We omit the verification that

π1g
′ = f2 and π2g

′ = f1 as this is done in general in Theorem 10.1.

□

We thus have improved Theorem 5.3 when n = 2:

Corollary 9.3. For n = 2, the complex (11) is exact over any field F .

10. Common ancestors

Fix 1 ≤ k < n. We prove another curious property of inclusion-exclusion sys-

tems, which generalizes the exactness of (11) at Pn−1 (but has nothing to do with

exactness at Pn−k, as may seem at first sight).

Let ({PS}, {πj , µj}) be an inclusion-exclusion system of order n (Definition 3.1).

Recall the definition of πS and µS from (8)–(9), and as before, denote by S̄ the

complement of an index set S in {1, . . . , n}. Recall that by definition each compo-

nent of f is an alternating function of its indices. To avoid alternating signs, in this

section we define fS to be fi1,...,ir where i1 < · · · < ir are the indices composing S,

and write fS for fS̄ . We say that g ∈ Pn = P{1,...,n} is a common ancestor of

f ∈ Pn−k if fS = πSg for every ordered set S of cardinality k. Namely, all the

entries of f are determined by a single element at the top level. We say that an

element f ∈ Pn−k is coherent if

πi(f
S∪{j}) = πj(f

S∪{i})

for every S of cardinality k − 1, and every i, j ̸∈ S. (Equivalently if πS−S′(fS
′
) =

πS′−S(f
S) for every S, S′ of cardinality k).

Theorem 10.1. An element f ∈ Pn−k has a common ancestor if and only if it is

coherent.

Proof. Coherence is clearly necessary, because if g is a common ancestor then

πi(f
S∪{j}) = πiπS∪{j}g = πS∪{i,j}g = πjπS∪{i}g = πj(f

S∪{i}).

Sufficiency follows from the explicit formula for a common ancestor, given in

Proposition 10.3 below. □

Lemma 10.2. Let k ≥ 1 and m ≥ 0 be integers. Then∑
i

(−1)i
(
k

i

)(
m+ i− 1

k − 1

)
= (−1)kδm,0

(summing where both binomial coefficients are standardly defined).
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Proof. Consider the sums u(x) =
∑k
i=0

(
k
i

)
xi = (1 + x)k and

v(y) =

∞∑
j=k−m

(
m+ j − 1

k − 1

)
yj = yk−m

∞∑
j=0

(
j + k − 1

k − 1

)
yj = yk−m(1− y)−k,

using [10, Eq. (2.5.7)]. On one hand, the coefficient of x0 in the Laurent series of

u(−x)v(x−1) =

k∑
i=0

∞∑
j=k−m

(−1)i
(
k

i

)(
m+ j − 1

k − 1

)
xi−j

is our sum
∑
i(−1)i

(
k
i

)(
m+i−1
k−1

)
. On the other hand,

u(−x)v(x−1) = (1− x)kxm−k(1− x−1)−k = (−1)kxm;

so the coefficient of x0 is (−1)kδm,0. □

We can now give a formula for the common ancestor, providing an explicit proof

for Theorem 10.1.

Proposition 10.3. Let f =
∑

|C|=k f
C be a coherent element of Pn−k. For every

index set S of cardinality ≥ k, choose some subset CS ⊆ S of cardinality k. The

element

(20) g =
∑
|S|≥k

(−1)|S|−k
(
|S| − 1

k − 1

)
µSπS−CS

fCS ∈ Pn

is a well defined common ancestor for f .

For k = 1 we obtain a classical inclusion-exclusion formula

g =
∑
|S|≥1

(−1)|S|−1µSπS−CS
fCS ,

which specializes to (19) when n = 2. One way to obtain (20) is by induction on k,

climbing from a coherent element of Pn−k to a coherent element of Pn−k+1 etc.

Proof. Let S be an index set of cardinality ≥ k. We first show that πS−CS
fCS is

independent of CS ⊆ S (as long as |CS | = k). Suppose C,C ′ ⊆ S are subsets of

cardinality k of S, with C0 = C ∩ C ′ of cardinality k − 1. Srite C = C0 ∪ {i} and

C ′ = C0 ∪ {i′}. Then

πS−Cf
C = πS−C0−{i}f

C0∪{i}

= πS−C0−{i,i′}πi′f
C0∪{i} = πS−C0−{i′,i}πif

C0∪{i′}

= πS−C0−{i′}f
C0∪{i′} = πS−C′fC

′
;

and this proves the claim because every two subsets of cardinality k can be con-

nected by changes of one index at a time.

Fix an index set C of cardinality k. For every S, we choose CS so that it

contains C ∩ S. We rearrange the sum by the intersection of S with C, and then
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replace all CS by C:

πCg =
∑
|S|≥k

(−1)|S|−k
(
|S| − 1

k − 1

)
πCµSπS−CS

fCS

=
∑
C0⊆C

∑
|S|≥k, S∩C=C0

(−1)|S|−k
(
|S| − 1

k − 1

)
πCµSπS−CS

fCS

=
∑
C0⊆C

∑
|S|≥k, S∩C=C0

(−1)|S|−k
(
|S| − 1

k − 1

)
µS−C0

πC−C0
πS−CS

fCS

=
∑
C0⊆C

∑
|S|≥k, S∩C=C0

(−1)|S|−k
(
|S| − 1

k − 1

)
µS−C0

πS∪(C−C0)−CS
fCS

=
∑
C0⊆C

∑
|S|≥k, S∩C=C0

(−1)|S|−k
(
|S| − 1

k − 1

)
µS−C0

πS−C0
fC ;

now replace S by S ·∪C0:

=
∑
C0⊆C

∑
|S|≥k−|C0|, S∩C=∅

(−1)|S|+|C0|−k
(
|S|+ |C0| − 1

k − 1

)
µSπSf

C

which depends on C0 only through its cardinality:

=

k∑
i=0

(
k

i

) ∑
|S|≥k−i, S∩C=∅

(−1)|S|−k+i
(
|S|+ i− 1

k − 1

)
µSπSf

C

=
∑

S∩C=∅

(∑
i

(−1)|S|−k+i
(
k

i

)(
|S|+ i− 1

k − 1

))
µSπSf

C

and we are done by Lemma 10.2:

=
∑

S∩C=∅

δ|S|,0µSπSf
C = fC .

□

11. Exactness at Pn−1

The case k = 1 of Theorem 10.1 states that a coherent element of Pn−1 has a

common ancestor in Pn. We use this to provide a characteristic-free proof that (11)

is exact at Pn−1.

Some alteration of the signs will simplify notation. For every h ∈ Pn−1, we let

h∗ ∈ Pn−1 denote the element whose entries are h∗
1,...,t̂,...,n

= (−1)t−1h1,...,t̂,...,n.

Two facts now follow from Proposition 5.5:

(a) for g ∈ Pn, (∂ng)
∗
1,...,t̂,...,n

= πt(g1,...,n);

(b) for f ∈ Pn−1, (−1)t
′−t(∂n−1f)1,...,t̂,...,t̂′,...,n = πt(f

∗
1,...,t̂′,...,n

)−πt′(f∗1,...,t̂,...,n)
for every t < t′.

Theorem 11.1. The complex (11) is exact at Pn−1 over any field F .
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Proof. Let f ∈ Pn−1 be an element such that ∂n−1f = 0. Write f∗ as a sum

f∗ =
∑
f i where each f i ∈ P1...,̂i,...,n. By (b), the assumption that ∂n−1f = 0 gives

πif
i′ = πi′f

i for every i, i′, so the conditions of Proposition 10.3 hold (for k = 1).

Let g ∈ Pn be the element defined by (20), which is characteristic-free. By the

proposition, πjg = f j for each j, so (a) gives us that (∂ng)
∗ =

∑
j(∂ng)

∗
1,...,ĵ,...,n

=∑
j πj(g1,...,n) =

∑
f j = f∗, proving that ∂ng = f . □

Remark 11.2. We do not know if (11) is exact over fields of positive characteristic.

12. Applications

We briefly present some applications of Theorem 10.1 to polynomials and per-

mutations.

12.1. Polynomials. We now specialize Theorem 10.1 to the inclusion-exclusion

system of Example 3.4. Recall that for any index set S = {i1, . . . , ik}, PS is the

space of multilinear polynomials in the letters {xi1 , . . . , xik}∪Y , where Y is a fixed

set. Fix k < n. A system of polynomials {fS ∈ PS : |S| = k} is coherent if for

every S of cardinality k − 1, and every i, i′ ̸∈ S, we have that (fS∪{i})|xi=1 =

(fS∪{i′})|xi′=1. A polynomial g ∈ P{1,...,n} is a common ancestor if for every

subset S of cardinality k, g|xi 7→1,i̸∈S = fS .

Corollary 12.1. Every coherent system of polynomials {fS ∈ PS : |S| = k} has a

common ancestor.

Corollary 12.2. The space of coherent systems of polynomials (a subspace of Pk =⊕
|S|=k PS) is spanned by coherent systems of monomials.

Indeed, the space Pn of common ancestors is spanned by monomials.

12.2. Permutations. Let us rephrase Example 3.4 in the language of permuta-

tions, by introducing an inclusion-exclusion system on permutations of subsets of

{1, . . . , n}. We view permutations on a set {i1, . . . , ik} as words with k distinct

letter, where 1 ≤ i1 < · · · < ik ≤ n. For an index set S, let SymS denote the

symmetric group over S (more commonly denoted SS).

Example 12.3. For an index set S, let PS = F [SymS ] be the group algebra

of SymS. The map πj is defined on F [SymS ] (for j ∈ S) by deleting j from each

permutation; and the map µj is defined on F [SymS ] (for j ̸∈ S) by concatenating

j at the end of each permutation.

A system of elements in the group algebras fS ∈ F [SymS ], ranging over index

sets of cardinality k, is coherent if the shadows, obtained from cancellation of

the indices in S −S′ in fS and cancellation of the indices in S′ −S in fS′ , coincide

as the same element of F [SymS∩S′ ].

Corollary 12.4. Every coherent system of elements {fS ∈ F [SymS ] : |S| = k} has

a common ancestor in F [Sym{1,...,n}].
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Of particular interest are distribution elements in F [SymS ], namely, working

over R, elements with positive coefficients summing to 1, so that they naturally

represent a distribution space. For example, when k = 2, every system of distribu-

tion elements is coherent, because every cancellations give the trivial distribution

on a single element. A coherent system of distributions is realizable if it has a

common ancestor which is a distribution element. By Corollary 12.4, every coher-

ent system of distribution elements has a common ancestor. However, a coherent

system of distributions need not be realizable:

Proposition 12.5. The shadows of a distribution element in Sym{1,2,3} satisfy

1 ≤ Pr{12}+ Pr{23}+ Pr{31} ≤ 2.

Proof. Indeed, under any distribution on {1, 2, 3}, Pr{ij} = Pr{ijk} + Pr{ikj} +
Pr{kij} for any permutation i, j, k of 1, 2, 3, and so Pr{12} + Pr{23} + Pr{31} =

1 + Pr{123}+ Pr{231}+ Pr{312}. □

Set q = 1− p. We obtain as an example for n = 3 that the coherent element

(p[12] + q[21], p[23] + q[32], p[31] + q[13]) ∈ P2

is not realizable unless 1
3 ≤ p ≤ 2

3 .

However, we can prove the following. Let Π :Pn → Pk be the map sending

f ∈ Pn to the vector whose entries are the shadows of f . A coherent system of

distributions in Pk is realizable if and only if it is the image of a distribution element

under Π.

Proposition 12.6. The map Π, restricted to distribution elements in Pn, is an

open map.

Proof. Let v ∈ Pn be an element in the interior of the closed simplex of distribution

elements. Let Π(v) + p ∈ Pk be a coherent element. Then p ∈ Pk is coherent as

well, and its coefficients sum to zero in each component. The map Π is onto the

coherent subspace of Pk by Theorem 10.1. Indeed, an inverse map is given by (20),

and its image has zero sum coefficients as well, because the sum of coefficients is

preserved under deletion of entries. Let g ∈ Pn be a common ancestor for p. If p is

small enough, then the ℓ1-norm of g is smaller than the distance of v from the walls

of the simplex, making v+g a common ancestor of Π(v)+p, which is a distribution

element. □

As an application let uk be the element in Pk =
⊕

|S|=k F [SymS ] whose com-

ponents are all uniform distributions. This element is clearly realizable, being

composed of the shadows of the uniform distribution on {1, . . . , n}.

Corollary 12.7. There is an open ball around uk in the space of coherent systems,

all of whose elements are realizable.

Proof. Apply Proposition 12.6 to the image of the uniform distribution un. □
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13. The absolute kernel

In this final section we give formulas for the dimension of the absolute kernel in

an inclusion-exclusion system, equivalently a representation of Fn.

13.1. Dimension of the absolute kernel.

Proposition 13.1. In any inclusion-exclusion system ({PS}, {πj , µj}), the abso-

lute kernel K =
⋂
Ker(πj) has dimension

dim(K) =

n∑
i=0

(−1)i dim(Pn−i).

Proof. The Euler characteristic of the complex (11) is equal to the alternating sum

of dimensions

χ([P]) = dim(K)− dim(Pn) + dim(Pn−1)− · · ·+ (−1)n−1 dim(P0).

Since the complex is exact, we have that χ([P]) = 0, proving the claim. □

13.2. Spechtian polynomials. A multilinear polynomial f(x1, . . . , xn;Y ) in the

variables {x1, . . . , xn} ∪ Y is n-Spechtian if f(x1, . . . , xi−1, 1, xi+1, . . . , xn;Y ) = 0

for every i. The space of n-Spechtian polynomials, denoted Spn,Y , is clearly the

absolute kernel of the inclusion-exclusion system of Example 3.4. When |Y | = m

we denote Spn,Y as Spn,m.

Spechtian polynomials are of special interest in PI-theory, see [5, Subsection 6.2].

We say that two polynomials are disjoint if they have no common variable. A higher

commutator is, by definition, either a variable, or a commutator [f1, f2] where f1, f2

are disjoint higher commutators. The Spechtian polynomials are sums of products

of disjoint higher commutators [5, Proposition 6.2.1]. The polynomial identities of

an algebra follow from its Spechtian identities [5, Corollary 6.2.2].

Corollary 13.2. For any n,m ≥ 0,

(1) dim(Spn,m) =
∑n
k=0(−1)k

(
n
k

)
(n− k +m)!,

(2) dim(Spn,m) is the number of permutations σ ∈ Sn+m such that none of

1, . . . , n is a fixed point.

(3) dim(Spn,m) ≈ e−
n

n+m (n+m)! when n/m is fixed and n→ ∞.

Proof. In Example 3.4 we have that dimPk =
(
n
k

)
(n− k+m)!, which gives the di-

mension of Spn,m by substitution in Proposition 13.1. The description as a number

of permutations follows by standard inclusion-exclusion (on the conditions σ(i) = i

for i = 1, . . . , n). The approximation follows because for a random permutation

σ ∈ Sn+m, the number of fixed points in the range {1, . . . , n} has approximately

the Poisson distribution with expectancy n
n+m . □

Remark 13.3. Takingm = 0 in Corollary 13.2 gives the known identity dim(Spn,0) =

n!
∑n
k=0

(−1)k

k! ≈ e−1n! , which is the number of derangements (=permutations with-

out fixed points) of order n, as was proved in 1991, independently, by P. Donnelly,
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S. Kapoor and E. Reingold, and R. Phatarfod, see [1]. (Indeed, in the terminology

of [1], Spn,0 is the kernel of the Tsetlin adjacency matrix.)

Another approach, based on polynomial identities, is to take R to be the free

algebra in [4, Theorem 4.27(ii)], so that the codimension series is c̃(t) =
∑∞
n=0 t

n =
1

1−t ; then
∑∞
n=0 dim(Spn,0)

tn

n! = γ̃(t) = e−tc̃(t) = e−t

1−t .

13.3. Dimension formula for Fn. In conclusion, we rephrase Proposition 13.1 in

terms of a representation of the free left regular band Fn. Putting Proposition 4.7

into Proposition 13.1, recalling that Pk =
⊕

|S|=k PS , and writing dim(ϵV ) =

dim(V )− dim(Ker(ϵ)) for every element ϵ, we obtain:

Theorem 13.4. Let V be a finite dimensional representation space of Fn, generated
by endomorphisms ϵj. The absolute kernel has dimension

dim(
⋂
j

Ker(ϵj)) =

n∑
k=1

(−1)k−1
∑

i1<···<ik

dim(Ker(ϵi1 · · · ϵik)).

To illustrate Theorem 13.4, we extract an amusing linear algebra exercise, luring

first year students into the rudiments of left regular bands.

Corollary 13.5. Let ϵ1, ϵ2 :V → V be idempotent endomorphisms on a finite di-

mensional vector space V . Assume ϵ1ϵ2ϵ1 = ϵ1ϵ2 and ϵ2ϵ1ϵ2 = ϵ2ϵ1. Then

dim(Ker(ϵ1) ∩Ker(ϵ2)) = dim(Ker(ϵ1)) + dim(Ker(ϵ2))− dim(Ker(ϵ1ϵ2)).

Proof. This is the case n = 2 of Corollary 13.4. We also give a direct proof.

Clearly Ker(ϵ2) ⊆ Ker(ϵ1ϵ2), and Ker(ϵ1) ⊆ Ker(ϵ1ϵ2ϵ1) = Ker(ϵ1ϵ2). On the other

hand x − ϵ1ϵ2x = (1 − ϵ1)x + ϵ1(1 − ϵ2)x ∈ Ker(ϵ1) + Ker(ϵ2) using the identity

ϵ2ϵ1ϵ2 = ϵ2ϵ1, proving that

Ker(ϵ1ϵ2) = Ker(ϵ1) + Ker(ϵ2).

We now have that

dim(Ker(ϵ1) ∩Ker(ϵ2)) = dim(Ker(ϵ1)) + dim(Ker(ϵ2))− dim(Ker(ϵ1) + Ker(ϵ2))

= dim(Ker(ϵ1)) + dim(Ker(ϵ2))− dim(Ker(ϵ1ϵ2)).

which proves the claim. □

13.4. The symmetric case. In the symmetric case of Remark 5.4, where the

representation is equivariant with respect to an action of Sn, we get:

Corollary 13.6. Let V be a representation as in Theorem 13.4, which is symmetric

with respect to an Sn-action. Then

dim(
⋂
j

Ker(ϵj)) =

n∑
k=1

(−1)k−1

(
n

k

)
dim(Ker(ϵ1 · · · ϵk)).

Corollary 13.7. In Corollary 13.6, assume n = p is prime. Then

dim(
⋂
j

Ker(ϵj)) ≡ dim(Ker(ϵ1 · · · ϵp)) (mod p).
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